Skip to main content
Log in

Development of biologically active compounds by combining 3D QSAR and structure-based design methods

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

One of the major challenges in computational approaches to drug design is the accurate prediction of the binding affinity of novel biomolecules. In the present study an automated procedure which combines docking and 3D-QSAR methods was applied to several drug targets. The developed receptor-based 3D-QSAR methodology was tested on several sets of ligands for which the three-dimensional structure of the target protein has been solved – namely estrogen receptor, acetylcholine esterase and protein-tyrosine-phosphatase 1B. The molecular alignments of the studied ligands were determined using the docking program AutoDock and were compared with the X-ray structures of the corresponding protein-ligand complexes. The automatically generated protein-based ligand alignment obtained was subsequently taken as basis for a comparative field analysis applying the GRID/GOLPE approach. Using GRID interaction fields and applying variable selection procedures, highly predictive models were obtained. It is expected that concepts from receptor-based 3D QSAR will be valuable tools for the analysis of high-throughput screening as well as virtual screening data

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cramer, R.D., III, Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

  2. Klebe, G. and Abraham, U., J. Med. Chem., 36 (1993) 70.

    PubMed  Google Scholar 

  3. Taylor, R.D., Jewsbury, P.J., Essex, J.W., J. Comput. Aided Mol. Des., 16 (2002) 151.

    PubMed  Google Scholar 

  4. Tame, J.R.H., J. Comput. Aided Mol. Des., 13 (1999) 99. _

    PubMed  Google Scholar 

  5. Kollman, P., Chem. Rev., 93 (1993) 2395.

    Google Scholar 

  6. Ortiz, A.R., Pisabarro, M.T., Gago, F. and Wade, R.C., J.Med. Chem., 38 (1995) 2681.

    Google Scholar 

  7. Holloway, M.K., Wai, J.M., Halgren, T.A., Fitzgerald, P.M., Vacca, J.P., Dorsey, B.D., Levin, R.B., Thompson W.J., Chen, L.J. and deSolms, S.J., J. Med. Chem., 38 (1995) 2280.

    Google Scholar 

  8. Cho, S.J, Garsia, M.L., Bier, J. and Tropsha, A., J. Med. Chem., 39 (1996) 5064.

    Google Scholar 

  9. Tokarski, J.S. and Hopfinger, A. J., J. Chem. Inf. Comput. Sci., 4 (1997) 792.

    Google Scholar 

  10. Sippl, W., Contreras, J. M., Rival, Y. and Wermuth, C.G., In: K. Gundertofte, F.S: Jorgensen (Eds.), Molecular Modelling and Predicting of Bioactivity, Plenum Press, New York, pp. 53–58 (1998).

    Google Scholar 

  11. Vaz, R.J., McLEan, L.R. and Pelton, J.T., J. Comput. Aided Mol. Des., 12 (1998) 99.

    PubMed  Google Scholar 

  12. Bursi, R. and Grootenhuis, P.D. J. Comput. Aided Mol. Des., 12 (1999) 341.

    Google Scholar 

  13. Lozano, J.J., Pastor, M., Cruciani, G., Gaedt, K., Centeno, N.B., Gago, F. and Sanz, F., J. Comput. Aided Mol. Des., 13 (2000) 341.

    Google Scholar 

  14. Sippl, W., Contreras, J. M., Parrot, I., Rival, Y. and Wermuth, C.G., J. Comput. Aided Mol. Des. 15, (2001) 395.

    PubMed  Google Scholar 

  15. Sippl, W., Bioorg. Med. Chem., 10 (2002) 3741.

  16. Vieth, M. and Cummins, D.J. J. Med. Chem., 43 (2000) 3020.

  17. Costantino, G., Macchiarulo, A., Camaioni, E. and Pellicciari, R., J. Med. Chem., 44 (2001) 3786.

    Google Scholar 

  18. Contreras, J. M., Parrot, I., Sippl, W., Rival, Y. M. and Wermuth, C.G., J. Med. Chem., 44 (2001) 2707.

    Google Scholar 

  19. Malamas, M.S., Sredy, J., Moxham, C., Katz, A., Xu, W., McDevitt, R., Adebayo, F.O., Sawicki, D.R., Seestaller, L., Sullivan, D., Taylor J.R., J. Med. Chem., 43 (2000) 1293.

    Google Scholar 

  20. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., Nucleic Acids Research, 28 (2000) 235.

    Google Scholar 

  21. Singh, U. C. and Kollman, P. A., J. Comput. Chem., 5 (1984) 129.

    Google Scholar 

  22. Goodsell, D. S., Morris G. M. and Olson, A. J., J. Mol. Recognit., 9 (1996) 1.

    PubMed  Google Scholar 

  23. Vedani, A. and Huhta, D. W., J. Am. Chem. Soc., 112 (1990) 269.

    Google Scholar 

  24. Baroni, M., Constantino, G., Cruciani, G., Riganelli, D, Valigi, R. and Clementi, S., Quant. Struct.-Act. Relat., 12 (1993) 9.

    Google Scholar 

  25. Pastor, M., Cruciani, G. and Watson, K., J. Med. Chem., 40 (1997) 4089. 830

    Google Scholar 

  26. Sippl, W., J. Comput. Aided Mol. Des., 14 (2000) 559.

    PubMed  Google Scholar 

  27. Liu, H., Huang, X., Shen, J., Luo, X., Li, M., Xiong, B., Chen, G., Shen, J., Yang, Y., Jiang, H. and Chen, K., J. Med. Chem., 45 (2002) 4816.

  28. Huang, X., Xu, L., Luo, X., Fan, K., Ji, R., Pei, G., Chen, K. and Jiang, H. J. Med. Chem., 45 (2002) 333.

    PubMed  Google Scholar 

  29. Gohlke, H. and Klebe, G., J. Med. Chem., 45 (2002) 4153.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sippl, W. Development of biologically active compounds by combining 3D QSAR and structure-based design methods. J Comput Aided Mol Des 16, 825–830 (2002). https://doi.org/10.1023/A:1023888813526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023888813526

Navigation