Skip to main content
Log in

Survey of Intelligent Control Techniques for Humanoid Robots

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper focusses on the application of intelligent control techniques (neural networks, fuzzy logic and genetic algorithms) and their hybrid forms (neuro-fuzzy networks, neuro-genetic and fuzzy-genetic algorithms) in the area of humanoid robotic systems. It represents an attempt to cover the basic principles and concepts of intelligent control in humanoid robotics, with an outline of a number of recent algorithms used in advanced control of humanoid robots. Overall, this survey covers a broad selection of examples that will serve to demonstrate the advantages and disadvantages of the application of intelligent control techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, T. and Fukuda, T.: 1997, Natural motion generation of biped locomotion robot using hierarchical trajectory generation method consisting of GA, EP layers, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, Albuquerque, USA, April, pp. 211-216.

  • Arkin, R. C.: 1999, Behaviour-Based Robotics, MIT Press, Cambridge, MA, USA.

    Google Scholar 

  • Billard, A. and Mataric, M.: 2000, Learning human arm movements by imitation: Evaluation of a biologically-inspired connectionist algorithms, in: Proc. of the IEEE Internat. Conf. on Humanoid Robots HUMANOIDS 2000, Cambridge, MA, USA, September.

  • Brooks, R. A.: 1997, From earwigs to humans, Robotics Autonom. Systems 20(2-4), 291-304.

    Google Scholar 

  • Capi, G., Nasu, Y., Barolli, L., Yamano, M., Mitobe, K., and Takeda, K.: 2001, A neural network implementation of biped robot optimal gait during walking generated by genetic algorithm, in: Proc. of the 9th Mediterranean Conf. on Control and Automation, Dubrovnik, Croatia, June.

  • Cheng, M.-Y. and Lin, C.-S.: 1997, Genetic algorithm for control design of biped locomotion, J. Robotic Systems 14(5), 365-373.

    Google Scholar 

  • Doerschuk, P. I., Simon, W. E., Nguyen, V., and Li, A.: 1998, A modular approach to intelligent control of a simulated jointed leg, IEEE Robotics Automat. Mag. 5(2), 12-21.

    Google Scholar 

  • Doya, K., Kimura, H., and Kawato, M.: 2001, Neural mechanisms of learning and control, IEEE Control Systems Mag. 21(4), 42-54.

    Google Scholar 

  • Endo, K., Yamasaki, F., Maeno, T., and Kitano, H.: 2002, A method for co-evolving morphology and walking pattern of biped humanoid robot, in: Proc. of the 2002 IEEE Internat. Conf. on Robotics and Automation, Washington, DC, USA, May, pp. 2159-2164.

  • Fukuda, T., Komata, Y., and Arakawa, T.: 1997, Stabilization control of biped locomotion robot based learning with GAs having self-adaptive mutation and recurrent neural network, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, Albuquerque, USA, April, pp. 217-222.

  • Garcia, L.-M., Oliveira, A. A. F., Grupen, R. A., Wheeler, D. S., and Fagg, A. H.: 2000, Tracing patterns and attention: Humanoid robot cognition, IEEE Intelligent Systems (July/August), 70-77.

  • Giszter, S. F., Moxon, K. A., Rybak, I. A., and Chaplin, J. K.: 2000, Neurobiological and neurorobotic approaches to a control architecture for a humanoid motor system, IEEE Intelligent Systems (July/August), 64-69.

  • Goldberg, D. E.: 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, USA.

    Google Scholar 

  • Goswami, A.: 1999, Postural stability of biped robots and the foot-rotation indicator point, Internat. J. Robotics Res. 18(6), 523-533.

    Google Scholar 

  • Guihard, M. and Gorce, P.: 2001, Dynamic control of a biomechanical inspired biped: BIPMAN, in: Proc. of the 4th Internat. Conf. on Climbing and Walking Robots, Karlsruhe, Germany, September.

  • Haupt, R. and Haupt, S. E.: 1998, Practical Genetic Algorithms, Wiley, New York.

    Google Scholar 

  • Haykin, S.: 1994, Neural Networks - A Comprehensive Foundation, Vols. 1, 2, Mackmillan, Englewood Cliffs, NJ, USA.

  • Hirai, K.: 1997, Current and future perspective of Honda humanoid robot, in: Proc. of the IEEE/RSJ Internat. Conf. on Intelligent Robotics and Systems IROS, pp. 500-508.

  • Hirai, K., Hirose, M., Haikawa, Y., and Takenaka, T.: 1998, The development of Honda humanoid robot, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, Leuven, Belgium, May, pp. 1321-1326.

  • Hu, J., Pratt, J., and Pratt, G.: 1999, Stable adaptive control of a bipedal walking robot with CMAC neural networks, in: Proc. of the 1999 IEEE Internat. Conf. on Robotics and Automation, Detroit, USA, May, pp. 1950-1956.

  • Huang, Q., Nakamura, Y., and Inamura, T.: 2001, Humanoids walk with feedforward dynamic pattern and feednack sensory reflection, in: Proc. of the 2001 IEEE Internat. Conf. on Robotics and Automation, Seoul, Korea, May, pp. 4220-4225.

  • Ivanescu, M., Popescu, A. M., and Popescu, D.: 2001, Moving target interception for a walking robot by fuzzy observer and fuzzy controller, in: Proc. of the 4th Internat. Conf. on Climbing and Walking Robots, Karlsruhe, Germany, September.

  • Juang, J.-G.: 2000, Fuzzy neural network approaches for robotic gait synthesis, IEEE Trans. Systems Man Cybernet., Part B: Cybernetics 30(4), 594-601.

    Google Scholar 

  • Juang, J.-G. and Lin, C.-S.: 1996, Gait synthesis of a biped robot using backpropagation through time algorithm, in: Proc. of the IEEE Internat. Joint Conf. on Neural Networks, Washington, DC, USA, pp. 1710-1715.

  • Kawato, M.: 1999, Internal models for motor control and trajectory planning, Current Opinion Neurobiology 12, 718-727.

    Google Scholar 

  • Kawato, M., Uno, Y., Isobe, R., and Suzuki, R.: 1987, Hierarchical neural network model for voluntary movement with application to robotics, IEEE Control Systems Mag. 57, 169-185.

    Google Scholar 

  • Kiriazov, P.: 2001, Learning robots to move: Biological control concepts, in: Proc. of the 4th Internat. Conf. on Climbing and Walking Robots, Karlsruhe, Germany, September.

  • Kitamura, S., Kurematsu, Y., and Nakai, Y.: 1988, Application of the neural network for the trajectory planning of a biped locomotion robot, Neural Networks 1, 344-356.

    Google Scholar 

  • Klute, G. K., Czerniecki, J. M., and Hannaford, B.: 1999, Pneumatic actuators with biomechanical intelligence, in: Proc. of the IEEE/ASME Internat. Conf. on Advanced Intelligent Mechatronics, Atlanta, USA, September.

  • Kun, A. L. and Miller, III, W. T.: 1999, Control of variable - speed gaits for a biped robot, IEEE Robotics Automat. Mag. 6(3), 19-29.

    Google Scholar 

  • Kurematsu, Y., Katayama, O., Iwata, M., and Kitamura, S.: 1991, Autonomous trajectory generation of a biped locomotive robot, in: Proc. of the IEEE Internat. Joint Conf. on Neural Networks, pp. 1983-1988.

  • Marchese, S., Muscato, G., and Virk, G. S.: 2001, Dynamically stable trajectory synthesis for a biped robot during the single-support phase, in: Proc. of the 2001 IEEE/ASME Internat. Conf. on Advanced Intelligent Mechatronics, Como, Italy, May, pp. 953-958.

  • Mataric, M. et al.: 1998, Behaviour-based primitives for articulated control, in: Proc. of the 5th Internat. Conf. on Soc. for Adaptive Behaviours, MIT Press, Cambridge,MA, USA, pp. 165-170.

    Google Scholar 

  • Miller, III, W. T.: 1994, Real-time neural network control of a biped walking robot, IEEE Control Systems Mag. (February), 41-48.

  • Miller, III, W. T., Glanz, F. H., and Kraft, L. G.: 1987, Application of a general learning algorithm to the control of robotic manipulators, Internat. J. Robotics Reserach 6(2).

  • Nagasaka, K., Konno, A., Inaba, M., and Inoue, H.: 1997, Acquisition of visually guided swing motion based on genetic algorithms and neural networks in two-armed bipedal robot, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, Albuquerque, USA, April, pp. 2944-2949.

  • Pettersson, J., Sandholt, H., and Wahde, H.: 2001, A flexible evolutionary method for the generation and implementation of behaviours for humanoid robots, in: Proc. of the IEEE-RAS Internat. Conf. on Humanoid Robots HUMANOIDS 2001, Tokyo, Japan, November.

  • Pfeiffer, F., Loffler, K., and Gienger, M.: 2002, The concept of jogging JOHNNIE, in: Proc. of the 2002 IEEE Conf. on Robotics and Automation, Washington, DC, USA, May, pp. 3129-3135.

  • Raibert, M.: 1986, Legged Robots that Balance, MIT Press, Cambridge, MA, USA.

    Google Scholar 

  • Reil, T. and Husbands, P.: 2002, Evolution of central pattern generators for bipedal walking in a real-time physics environment, IEEE Trans. Evolutionary Comput. 6(2), 159-168.

    Google Scholar 

  • Rumelhart, D. E. and McClelland, J. L.: 1986, Parallel Distributed Processing (PDP): Exploration in the Microstructure of Cognition, Vols. 1, 2, MIT Press, Cambridge, MA, USA.

    Google Scholar 

  • Salatian, W., Yi, K. Y., and Zheng, Y. F.: 1997, Reinforcement learning for a biped robot to climb sloping surfaces, J. Robotic Systems 14(4), 283-296.

    Google Scholar 

  • Salatian, W. and Zheng, Y. F.: 1992a, Gait synthesis for a biped robot climbing sloping surfaces using neural networks I. Static learning, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, Nice, France, May, pp. 2601-2606.

  • Salatian, W. and Zheng, Y. F.: 1992b, Gait synthesis for a biped robot climbing sloping surfaces using neural networks II. Dynamic learning, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, Nice, France, May, pp. 2607-2611.

  • Sardain, P. and Bessonnet, G.: 2001, Gait analysis of a human walker wearing robot feet as shoes, in: Proc. of the 2001 IEEE Internat. Conf. on Robotics and Automation, Seoul, Korea, May, pp. 2285-2292.

  • Sardain, P., Rostami, M., and Bessonnet, G.: 1998, An anthropomorphic biped robot: Dynamic concepts and technological details, IEEE Trans. Systems Man Cybernet., Part A: Systems and Humans 28(6), 823-838.

    Google Scholar 

  • Schulz, S. and Bretthauer, G.: 2001, A fluidic humanoid robothand, in: Proc. of the IEEE-RAS Internat. Conf. on Humanoid Robots HUMANOIDS 2001, Tokyo, Japan, November.

  • Terano, T., Asai, K., and Sugeno, M.: 1992, Fuzzy Systems Theory and Its Applications, Academic Press, Boston, USA.

    Google Scholar 

  • Vijayakumar, S. and Schaal, S.: 2000, Real time learning in humanoids: A challenge for scalability algorithms, in: Proc. of the IEEE Internat. Conf. on Humanoid Robots HUMANOIDS 2000, Cambridge, MA, USA, September.

  • Vukobratović, M., Borovac, B., and Surdilovic, D.: 2002, Zero-moment point - proper interpretation and the application in gait control, Intelligent J. Engrg. Automat. Problems 3, 3-14.

    Google Scholar 

  • Vukobratović, M. and Timčenko, O.: 1995, Stability analysis of certain class of bipedal walking robots with hybridization of classical and fuzzy control, in: Proc. of the 1st ECPD Internat. Conf. on Advanced Robotics and Intelligent Automation, Athens, Greece, pp. 290-295.

  • Wang, H., Lee, T. T., and Gruver, W. A.: 1992, A neuromorphic controller for a three link biped robot, IEEE Trans. Systems Man Cybernet. 22(1), 164-169.

    Google Scholar 

  • www.androidworld.com

  • www.symbio.jst.go.jp

  • www.world.honda.com/robot

  • Yamaguchi, J. J. et al.: 1998, Development of a bipedal humanoid robot - control method of whole body cooperative dynamic biped walking, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, Leuven, Belgium, May, pp. 3801-3806.

  • Yamazaki, F., Matsui, T., Miyashita, T., and Kitano, H.: 2000, PINO - the humanoid that walks, in: Proc. of the 1st IEEE-RAS Internat. Conf. on Humanoid Robotis.

  • Yang, A. and Low, K. H.: 2002, Fuzzy position/force control of a robot leg with a flexible gear system, in: Proc. of the 2002 IEEE Conf. on Robotics and Automation, Washington, DC, USA, May, pp. 2159-2164.

  • Yoshikawa, Y., Asada, M., and Hosoda, K.: 2001, Development approach to spatial perception for imitation learning incremental demonstrator's view, in: Proc. of the IEEE-RAS Internat. Conf. on Humanoid Robots HUMANOIDS 2001, Tokyo, Japan, November.

  • Zheng, Y. P. and Shen, J.: 1990, Gait synthesis for the SD-2 biped robots to climb sloping surface, IEEE Trans. Robotics Automat. 6(1), 86-96.

    Google Scholar 

  • Zhou, D. and Low, K. H.: 2001, Combined use of ground learning model and active compliance to the motion control of walking robotic legs, in: Proc. of the 2001 IEEE Internat. Conf. on Robotics and Automation, Seoul, Korea, May, pp. 3159-3164.

  • Zhou, C. and Meng, Q.: 2000, Reinforcement learning with fuzzy evaluative feedback for a biped robot, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, San Francisko, CA, USA, pp. 3829-3834.

  • Zimmermann, H.-J.: 1990, Fuzzy Sets Theory and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katić, D., Vukobratović, M. Survey of Intelligent Control Techniques for Humanoid Robots. Journal of Intelligent and Robotic Systems 37, 117–141 (2003). https://doi.org/10.1023/A:1024172417914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024172417914

Navigation