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Abstract

Unlike natural agents, artificial agents are, to varying extent, designed according to sets of
principles or assumptions. We argue that the designer’s philosophical position on truth, belief
and knowledge has far reaching implications for the design and performance of the resulting
agents. Of the many sources of design information and background we believe philosophical
theories are under-rated as valuable influences on the design process. To explore this idea we
have implemented some computer-based agents with their control algorithms inspired by two
strongly contrasting philosophical positions. A series of experiments on these agents shows
that, despite having common tasks and goals, the behaviour of the agents is markedly different
and this can be attributed to their individual approaches to belief and knowledge. We discuss
these findings and their support for the view that epistemological theories have a particular

relevance for artificial agent design.

Keywords: Autonomous agents, Agent design philosophy, Agent knowledge bases, Relations
between Philosophy and Artificial Intelligence.

1 Introduction

Autonomous cognitive agents, whether natural or artificial, are information processing entities that
make decisions, recognise patterns, gather information and perform actions. The concept of auton-
omy refers to the ability to use experience to determine action. This includes being able to adapt
behaviour in order to pursue goals under changing circumstances. Artificial agents can take a range
of forms from software agents to anthropomorphic robots. They have been characterised according
to their degree of participation in their environment, with the most highly integrated being de-
scribed as situated, embedded or embodied [3]. A situated agent is one that has a direct coupling
with its environment, rather than through some intermediate representation; while an embedded
agent has a stronger integration where the environment is a necessary component in shaping the
agent’s behaviour and goals. Most conventional computer programs are not agents because their
coupling with an environment is very weak, although they may have significant indirect effects
(e.g. weather prediction). Examples of situated agents include the software agents (softbots) that
are used in personalised web scanning systems which select or analyse specific material for their
customers. Examples of embedded agents include auto-pilots and other sophisticated feedback
control systems. Embodiment refers to the agent having a physical structure within the envi-
ronment itself, which necessarily gives the potential to influence or disturb situations and events.
Perhaps robots (notwithstanding humans) are the best examples of autonomous agents that are
situated, embedded and embodied. As our main concern is with the relationships between agent
and environment we will use autonomous mobile robots as our case study system throughout, (and
will use the terms agent and robot synonymously). This will ensure a close coupling between agent

and environment and emphasise the complexity of real world applications.



We will consider an agent to be an embedded computer system that constructs and manipulates
an internal world model on the basis of sensory information. This internal model will be held
as a representation in some form of knowledge-base that we will call an Agent Knowledge-Base
(AKB). By existing and reacting in its domain, an agent will build and maintain an AKB that
represents what it knows to be true. The approach an agent takes to truth depends upon which
theory of truth is upheld, which in turn depends upon the underlying metaphysical foundations
of the agent. For example, one agent might be designed according to a theory of objective truth
based on correspondence, whereas another agent could be founded on a different theory based
upon coherence. However, even if an agent’s designer is not aware of such distinctions, knowledge
processing design decisions will be made that implicitly represent some form of metaphysical or
epistemological position.

In a previous paper, we discussed the metaphysical theories of realism and anti-realism. We
argued that, although being abstract, such concepts were nevertheless relevant to the various
decisions that are made when an AKB is being designed [5]. In particular, different epistemological
theories will have significant effects, and these should be manifest when agents based on different
views of truth, belief and knowledge produce different behaviours and performances. In order to
test this idea we have implemented several agents with deliberately different stances on these issues.
The agents all have the same goals, environment and physical structure but their control algorithms
are developed from opposing epistemological positions. The purpose of these implementations is
to firmly ground the theories and concepts in testable realisations so that we may examine if and
how philosophical design differences between the agents will lead to significant differences in their

behaviour.

2 The Design of Two Agents

We now develop two strongly contrasting frameworks for two different agents. The aim is to
deliberately chose two very different positions on belief and knowledge so that any differences in
performance on a common task will be clearly exaggerated to assist analysis. The two designs are
based on a strongly holistic approach and a strongly atomistic approach. We also find it instructive
to introduce a third design as an intermediate stage.

Our focus is on robotic agents and so the inputs will be sensory data and the outputs will
be actions applied to the environment. Because the environment, physical structure and task
(simple navigation) are all fixed, much of the design, for any agent, may be thought to be already
strongly determined by the functional aspects required to achieve the task. However, there are
still ontological choices open for the agents, and these will colour their designs. The first choice is
the nature of sensed information and its status as regards experience. A second choice is a theory

about truth, and a third concerns how beliefs are justified.



2.1 A Strongly Atomistic Position - PA

Position PA represents a view in which packets of incoming information are treated as atomic,
independent facts that have high intrinsic value. Each piece of sensory data is seen as carrying its
own meaning about the state of the world, independently of any other considerations. In this form
of fairly extreme atomism, previous experience has no role to play in interpreting sensory data.

An appropriate theory of truth for atomism is a correspondence theory in which a belief is
accepted as true if it describes an actual state of the world. That is, sensory data that are believed
are considered to correspond to true facts about the world.

Belief justification is the process by which a belief is supported or gains support, usually from
other beliefs. If each atom of incoming sensory data is to carry its own meaning, then i1t can not
be justified by other beliefs. However, foundationalist theories of justification allow the use of
a special class of beliefs, basic beliefs which are never justified themselves but can justify other
beliefs [2]. In this way empirical evidence can be treated as basic beliefs and then support other,

inferential, beliefs.

2.2 A Strongly Holistic Position - PH

In contrast to PA, position PH has been designed to be based primarily on holistic principles.
A holistic view sees it important to reconcile new sensory data with existing experience. New
information must be evaluated in terms of what is already known, and in strong holism this means
being assessed against all relevant knowledge.

Our strongly holistic position will adopt a coherence theory of truth, that is, a belief will be
considered true if it is compatible with an existing set of (coherent) beliefs.

Regarding justification, all beliefs will be involved in mutual support. The degree of justification
of a belief relates to the consistency and compatibility of that belief with the belief set of which it

1s a member.

2.3 The Philosophical Differences

We can view these positions as offering a set of options available to AKB designers that lie on a
kind of spectrum. Figure 1, adapted from [7], illustrates this idea. The shaded areas represent the
extreme positions represented by PA and PH.

In approach PA sentences contain their own atomic meaning. An approach to truth based on
PA will be based on a correspondence theory of truth and a foundationalist theory of justification
will be used.

An approach based on PH will be based on coherence, rather than correspondence. Under
this view, the truth of a belief is determined in terms of its relationship with an agent’s existing

beliefs. The approach to justification based on PH is also based on coherence, in that a belief is
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Figure 1: AKB Design Options at the Philosophical Level

justified to the extent that it is a member of a coherent set of beliefs. Thus, no belief i1s immune

from revision.

We summarise the different metaphysical and epistemological positions for the two agents in

Table 1. For further elaboration of these issues, see [5].

Concept

Position PA

Position PH

The nature of

the external world

Objectively true independently

of verification

Truth depends on context

and is dynamic

The unit of empirical

Individual beliefs and

The entire knowledge

based on basic beliefs which

require no justification

significance perceptions base

Truth Defined in terms of Defined in terms of
correspondence with the coherence with an
external world agent’s existing beliefs

Justification A foundationalist approach A coherence-based

approach in which
every belief may be

open to revision

Table 1: The Differences Between Approaches PA and PH

2.4 The Functional Requirements of the Agents

We now develop the requirements and features that agents based on PA or PH will need if they are
to be fully realised as implementations. The functionality of the agents will be described in terms
of three key processing stages: Data Input (from the external world), Derivation (combining

new beliefs with existing beliefs), and Evaluation (knowledge base revision).



It is useful to identify three classes of beliefs: Basic Beliefs — By, as used by the the agents
based on PA, Assumed Beliefs — Ax which have been built into the system by the system

designer, and Derived Beliefs — Dg which have been derived from basic or assumed beliefs.

2.4.1 Agents Based on PA

We have developed two variants based on position PA: agent SA is strongly based on PA, while
agent WA is based on a weaker form of PA.

First we consider Data Input. The atomistic agents define accuracy in terms of correspondence
with the external world. This means that information from the agent’s senses will be treated with
utmost importance and an agent based on PA would be expected to label each piece of data with
a binary truth indicator as soon as it enters the system without any form of pre-processing. Agent
WA | however, relaxes this slightly in that it is able to make decisions on the basis of several
consecutive pieces of sensory data.

Regarding Derivation, an agent based on PA would derive all its information concerning
the state of the external world from its senses. This derivation process would take the form of
justification based on foundationalism, whereby the agent’s senses provide the basic beliefs By
from which the rest of the agent’s beliefs Dg are derived. Thus, in these agents, basic beliefs are
not themselves inferentially justified, and require no justification. There is no Evaluation stage

for these agents as their knowledge bases are not subject to revision.

The Strongly Atomistic Agent - SA

Each sensory unit of data in agent SA is treated separately as having its own value and meaning.
These sensory data form its basic beliefs Bx and the rest of its beliefs, Dg, are then (asymmet-
rically) derived from Bg. However, we notice that this approach to agent design poses certain
problems. Because all sensory data are of high importance, they must be dealt with immediately
and any consequent changes will be incorporated in the internal model. Thus, agent SA has
no ability to amend the value of its sensor data and if these data are not entirely accurate they
will have the potential to degrade the quality of its internal model. Thus, the performance of
agent SA with imperfect sensors or perceived uncertainties in the environment is expected to be

disappointing.

The Weakly Atomistic Agent - WA

While minimising any shift away from position PA | agent WA has been designed to address the
problems caused by inaccurate sensor data. This has been done using a system of suggestions.
Whereas agent SA acts immediately on new sensor information, agent WA translates the sensor
information it receives into suggestions which may be acted upon if they receive enough support.

This has the effect of averaging sensor data over several consecutive sensory readings. The number



over which sensor data should be averaged, as well as the amount of support which suggestions
require before being carried out, can both be set as parameters.

Even though some theoretical purity has been sacrificed at the expense of operational improve-
ments, agent WA can still claim to be based on PA. This is because (a) all the information used
by agent WA is derived from its sensors, and (b) the process by which the agent decides which

suggestions to act on is atomistic, being based on individual beliefs.

2.4.2 An Agent Based on PH

Agent SH is a strongly holistic design where the accuracy of belief ¢ depends on the extent to
which ¢ coheres with the agent’s other existing beliefs. For this reason, agent SH should have the
ability to analyse the data it receives, and then accept it, modify it, or even reject it altogether,
depending on which course of action leads to the most coherent knowledge base.

Regarding Data Input, agent SH has the power to reject sensor data, and so great care must
be taken to ensure that agent SH does place sufficient importance on sensor data. Coherence-based
epistemological theories are often criticised for their inability to explain the importance we attach
to empirical information. How can agent SH avoid becoming a target of similar criticism?

This criticism would be justified if agent SH were to ignore sensor information. However,
rather than being ignored, incoherent sensor data are rejected. The difference 1s that to ignore ¢
is to behave as if ¢ never happened, while to reject ¢ is to decide, on the basis of existing beliefs,
that ¢ is inaccurate. In order for agent SH to decide that rejecting ¢ is the best course of action,
the resulting knowledge base K~ ¢, including the explanation of the rejection of ¢, must be more
coherent than Kt¢. Thus, the process of entering data into K is concerned with maximising the
coherence of K.

Regarding Derivation, the method used by agent SH to derive its knowledge base is based on
the coherence theory of justification. Figure 2 reveals several important differences between the
approach to justification taken by PA and PH. Firstly, the coherence approach to justification
means that all beliefs are inferentially justified, and that even the most central beliefs can be
in part justified by less central beliefs. Secondly, agent SH’s beliefs are organised in a web-like
manner. Beliefs which are central to the agent’s belief system are stored at the center of this web,
while those which are less important are stored at the periphery. Empirical data, while providing
most of the agent’s information concerning the external world, are not central to the agent’s belief
structure. This non-central positioning of empirical data allows agent SH to amend its sensor data
when necessary.

When required to maximise the coherence of K, we use the term “integrity” as a measure for
comparing the coherence of knowledge bases in SH agents. Our method used to calculate the
integrity of a knowledge base I(K) is described in detail in [4] and includes a mixture of all of
the following concepts: consistency, mutual belief support, explanatory power, and the principle

of minimal change.
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Figure 2: The Approach to Justification Based on PH

Evaluation for agent SH is the process whereby the integrity of a derived knowledge base
is calculated, any problems are identified, and possible solutions, in the form of changes to the
knowledge base, are suggested. Once all the possible solutions have been derived, the integrity
of each one is calculated, and the solution with the highest integrity i1s adopted. These solu-
tions are obtained independently, meaning that if n solutions are to be evaluated, the values of
I(Ky), I(Ka),...,I(Ky) will have to be obtained. The fact that PH prohibits the use of a pseudo-
objective standpoint from which to obtain these values means that all integrity measures must be

derived from the point of view of the base interpretation Kj.

3 Agent Implementations

In order to provide a realistic test in a concrete application domain, the three agents described above
were implemented as autonomous mobile robots that must navigate through their environment
and reach a goal location. A simple simulated robot body and environment was used which
gives the advantage that the problem and environment can be kept identical for all agents but
different control algorithms can realise any theoretical differences originating from their contrasting
philosophical approaches. We are aware of, and agree with, the argument that simulation is not a
sound methodology for representing and analysing all the nuances of real applications [6], but it is
well suited for design analysis and other high level studies of control regimes and their differences.
In this case, the control, consistency and repeatability of the simulation tool gives an ideal scientific
scenario for comparative experiments.

Our simulated robot agent and its environment is a standard design as used in many experiments
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Figure 3: The Environment Used to test Agent Performance

on mobile robot control and navigation. The robot environment is two-dimensional and consists
of a rectangular room that can contain simple objects. Figure 3 shows the configuration of the
robot world, (of size 400 by 400 units). The robot is represented as a small circle and is equipped
with sensors that measure distance (shown as dotted lines) to the nearest object in orthogonal
directions: up, left, down, and right. There are two robot outputs; small movement steps in the z
and y dimensions, and these are executed in steps called timeslices. The defined aim of the robotic
agent is simply to move from a given start position to reach a goal position. A real environment can
be “noisy” in that the sensors may have inaccuracies and the actions may not be perfectly executed;
such errors and uncertainties are modelled in the simulation by adding amounts of disturbance to
both the sensor values and the movements executed by the simulator.

The agents initially have no knowledge of their actual position or any details of the environment
and can only receive sensory signals and send out motor commands. From this they must build
up their own understanding of their robot world. A major problem for any such agent is in
knowing whether a change in sensory data is due to noise or is an actual feature of an object in
the environment.

A key feature of this particular simulation arrangement is that the behaviour and performance
of the agents can be fully observed and accurately measured. The agent designer and experimenter
has a “God’s Eye” view of the world, being able to observe the whole system directly: agent body,
agent “mind” and simulated environment. Such an objective point of view is normally unavailable
but 1s extremely valuable when it can be achieved. Thus, because the actual robot world and the
agent’s internal model are clearly distinct and are both explicitly recorded, they can be precisely

compared to assess the degree of difference and hence the extent of error in the agent’s knowledge



of the world.

3.1 The Robot Simulator

The Robot Simulator is a software module that simulates the physical aspects of the agents. The
simulator models the environment, simulates robot movements and generates simulated sensory
data. It keeps track of the robot’s actual position and moves it in accordance with motor commands.

At the start of every movement timeslice, the robot simulator performs geometric calculations
to compute the four sensory values corresponding to the number of units between the robot and
the nearest surface in the up, left, down, and right directions. The simulator also generates robot
moves in the x, y space by calculating increments for each direction: A, and A,. These are used
to update the robot’s position from a previous timeslice ¢(._1) to a new location at {. and are
based on the distance moved during a timeslice for a typical robot operating speed (5 units). The
increments are reduced appropriately when the movement of the robot would bring it into contact
with an obstacle.

The implementation language was Prolog and an object-oriented design was employed, using

the SICStus Objects library [1].

3.2 Agent-Specific Implementation Details

As all the agents operate in the same identical environment there are some common functions
needed for basic bookkeeping. These deal with the recording of the simulated environment and its
graphics display. Also each agent requires storage facilities so that they can build up their own
internal models of their environment. Notice that these models of the world are quite separate
from the real world as modelled by the simulator. In particular, the agents experience obstacles
as surfaces, not as 2D rectangular objects. This is because, as the agents move around, the
sensory values fall into distinct sequences or clusters with occasional abrupt changes to new cluster
patterns. These correspond, respectively, to the robot following one “wall” and then moving into
view of another one. Consequently, the structures that naturally arise in an agent model are surface
representations.

To allow the agents to be able to evaluate the accuracy of their world model, they are able to
compare actual sensor readings with readings they would expect to detect by computing “expected”
readings from the data they have stored in their world models.

The system operates in a cyclic manner using fixed size timeslices. During each timeslice, the
agents perform the sequence: data input, knowledge base modification, and movement generation.

These stages are implemented differently according to their theoretical requirements.
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3.2.1 Agent SA

The data input stage for agent SA is very simple; data are read from the sensors and placed in the
relevant data structure for basic beliefs, Bx. Then a forward chaining mechanism is used to infer
any consequences Dy from the basic beliefs. A list of relations, in the form of rules, are tested
against the basic beliefs and if the preconditions of a relation are met, the relation is applied. This
process is repeated until every rule has been tested and no more changes can be made.

Most of the rules used by agent SA result in the modification of data. Any inconsistencies
between newly derived knowledge and the existing map are translated directly into changes to
agent SA’s internal map. Agent SA has a problem when translating a series of discrete sensor
readings into a continuous surface. If agent SA finds that its sensor readings do not match its world
model, there are two options: it can either create a new surface, or it can modify an existing surface.
Surface creation occurs when a sensor reading is less than the agent expects it to be, indicating
that a previously undetected surface exists in between the robot and some other feature. However,
when a sensor reading is greater than the agent expects it to be, surface modification occurs and
the length of the recently experienced surface is shortened, i.e. its end is assumed to have been
reached.

In summary, the only technique which agent SA is able to use to interpret the environment is
the forward chaining of rules based on sensor data. The structure of the rule set allows the forward

chaining process to create surfaces based on sensor data and guide the robotic agent to its goal.

3.2.2 Agent WA

This agent is a variation on agent SA and in nearly all respects is similar to SA. The important
difference 18 WA’s use of a suggestion buffer after the forward chaining process and before the
editing of map beliefs.

The suggestion buffer is a data structure that stores proposed changes to the agent’s map,
and, depending on the amount of support received for each suggestion over a variable number of
timeslices, either carries out the suggestion by modifying agent WA’s internal representation, or
ignores the suggestion. A suggestion takes the form of details of a new surface S that originated
at timeslice T,;. At the end of forward chaining, all the suggested changes to the map will have
been gathered. Then agent WA searches through the list of suggested changes to identify which
are similar enough to each other that they may be taken to represent the same action. This is
done by measuring the similarity of every entry in the suggestion list to every other entry, within
a pre-determined range of timeslices. The similarities of different actions are measured in terms
of the type of action recommended and the new surface co-ordinates which are being suggested.
This is a surprisingly complex task as different suggestions made over different timeslices may be
suggesting the same changes to the map. The similarity testing must thus be able to compensate

for the changes which would occur to the suggestions as the robot moves around the environment.
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Suggestions are filtered by selecting, first, all suggestions which lie within a given timeslice window
(three timeslices were used for most of the experiments), then similarity of commands and directions
was used to eliminate different operations.

The next step is to compensate for variation caused by the movement of the robot. This involves
finding the position of the robot when the suggested change was first mooted, and calculating what
the suggested modification to a surface would have been, ¢f the robot had been at the same position
as it was when the first suggestion being considered was made. Fortunately, all the information
required for these calculations is available from the agent’s model.

Notice that simple averaging of the suggested actions will not yield a sensible change to the
map. The suggestion buffer code must derive the direction of travel of the robot, and, depending
on the direction of travel, use either the maximum or minimum values suggested for the suggested
surfaces.

If there is no noise in the environment, this technique will yield identical suggestions originating
from successive timeslices, if the suggestions are indeed referring to the same obstacle. If there is
noise in the environment, further adjustments have to be made to the position of the surfaces under
consideration to compensate for this. These adjustments, which will only involve the position of
the surface, can be made by simple averaging of the different positions in the relevant suggestions,
as long as the other values in the suggestion are similar enough according to the criteria described
above. The suggestion buffer finally assesses the strength of each suggestion, and implements the
most strongly supported suggestion, provided its strength exceeds a pre-determined value.

In summary, the suggestion buffer for agent WA is simple in concept but the code required to

implement its functionality is surprisingly complex.

3.2.3 Agent SH

Agent SH, representing an agent based as much as possible on holism, requires extra processes to
determine the meaning of every new belief in the context of the whole set of current agent’s beliefs.
This makes the implementation of agent SH considerably more complex than the previous agents.

The mechanism used to keep track of different belief possibilities during processing i1s based
on the idea of interpretations. Agent SH stores every piece of information within an explicit
interpretation, which is identified by means of a unique integer (the base interpretation being
interpretation 0).

Agent SH does not simply read sensory data straight into the relevant belief structures. Instead,
such data must be checked against internal knowledge for the derivation of corrected or acceptable
data. The process used for this, called backward chaining, forces the system to use many different
pieces of data to arrive at sensor values. Another major feature of agent SH is the use of meta-level
beliefs in the form of explanations to provide explanation-guided backward chaining.

The backward chaining process is guided by its attempt to find a value for the “full-explanation”

object in the current timeslice. Figure 4 shows the method used to derive sensor data. First, the

12
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Figure 4: The Relational Structure of Agent SH

position at the previous timeslice is combined with the amount by which the robot moved to arrive
at an estimation of the robot’s current position. Using the current state of the map, this 1s then
used to derive expected sensor readings. Any deviation between the expected sensor readings and
the actual sensor readings is temporarily assumed to be noise, and is recorded for that sensor.
However, the agent should not simply attribute every deviation between its internal representation
and its sensor readings to sensor noise, and so this problem was addressed using a system of
constraints.

Ontological definitions are maintained for every concept used by the agents. As mentioned
before, an object-oriented design has been used for the implementation, and all of the agents’
beliefs concerning the external world are represented as distinct but related objects. This also
includes information concerning any constraints that are placed on objects, as well as explanation-
based information used to guide the resolution of violated constraints. Rather than store every
constraint explicitly within each object, constraints are stored within the ontology in a few high
level objects, and are propagated to lower level objects when appropriate.

Once the backward chaining process has been completed and constraints have been propa-
gated to the relevant objects, the task of finding which constraints have been violated by a given
interpretation is relatively straightforward. This is done by obtaining a complete list of objects
within the interpretation, and, for each object, obtaining a complete list of constraints which are
relevant to the object. This list is then filtered to remove any constraints which have not been
violated. Repeating this process for every constraint relevant to every object yields a complete list
of constraints which have been violated by the current interpretation.

If no constraints have been violated, the interpretation is acceptable and the system proceeds
with the modification of its internal model. Otherwise, the system must resolve the list of violated

constraints using a process of explanation.
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Each explanation-level object (see Figure 4) contains an ordered list of possible explanations
which may explain the failed constraint within that particular hierarchy. In this list, the most
likely failed constraint is a problem with the map, such as a surface being longer or shorter than
expected. The next explanation represents the option that the sensors may have been affected by
noise, and the final entry represents the possible explanation that the robot’s assumed position at
the previous timeslice was mistaken.

The situation is further complicated by the fact that an interpretation may suffer from several
failed constraints, each of which have their own recovery list. In this case, the system attempts
to choose recovery options which appear in as many recovery lists as possible. This minimises the
amount of computation in order to resolve the failed constraints. The recovery process generates
new interpretations which address the problems of the base interpretation. The nature of the
modifications that are carried out on the base interpretation will depend on related high-level

explanations, as shown in Table 2. For further details of these processes involved in agent SH see

[4].

High Level Explanation | Interpretation Modification

Sensor error Store error values in sensor adjustment objects
Map inaccurate Edit map accordingly
Position inaccurate Derive new assumed x and y co-ordinates for

the relevant timeslices and assert directly into

the new interpretation.

Table 2: Modifications that are Applied to the Base Interpretation Depending on Failure Expla-

nation

To summarise, agent SH performs a depth-first search of the interpretation space, whereby
every interpretation is based on a different explanation-level solution to the problems of its parent
interpretation. Once the interpretation tree has been fully grown, agent SH will have derived a
number of different interpretations, each of which represents a different high-level solution to the
problems in the base interpretation. The integrity values of each interpretation are then calculated
and the interpretation with the highest integrity score is chosen and copied back into the base
interpretation; all other created interpretations are deleted. The base interpretation will then
contain the best possible explanation of the available sensor data and it is then possible to simply
read the movement values from the current timeslice of interpretation 0, and pass these z and y

movement commands directly to the simulator to be executed.

3.3 A Comparison of the Implementation of the three Agents

We now briefly compare the approaches taken as seen in the implementations of the agents. Table

3 summarises the main differences.
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Agent SA WA SH

Amount of None Extensive

pre-processing

Role of Minimal | Slight Extensive

existing facts

Inference Forward chaining Backward
mechanism chaining
Number of One Many
interpretations

Beliefs measurement Input data Entire
yardstick interpretation

Table 3: Comparison of implemented agent features

The data input stages show some major differences. As Table 3 shows, agents SA and WA
perform no pre-processing of sensor data, but assert data from the robot simulator straight into
their internal data structures. Agent SH makes extensive use of sensor data pre-processing, in that
data which does not agree with its existing beliefs will be modified in such a way as to maximise
the coherence of the agent’s knowledge base. This effect is achieved using the explanation-based
backwards chaining technique which ensures that the driving force behind the derivation of agent
SH’s knowledge base 1s the task of maximising the integrity of its knowledge base.

The use of existing beliefs 1s a major difference between the approaches to knowledge base
derivation used by the three agents. Agent SA makes use of a few existing beliefs, such as the
location of surfaces and the dimensions of the map, when deriving its knowledge base. Agent
WA’s use of existing factual data is slightly greater due to its use of the suggestion buffer. This
operates by measuring the extent to which new suggestions agree with existing suggestions for map
modification. Suggestions which receive sufficient support from existing beliefs are implemented,
while those which do not are discarded. However, the techniques used by agent SH allow it to guide
the derivation of its knowledge base at a much higher level, such as assuming problems are caused
by map or positioning errors. This involves the use of existing factual beliefs; as the measures
of centrality and integrity used to decide between competing solutions compare new beliefs with
existing ones.

The evaluation stage of the cycle is the stage during which the agents decide which possible
beliefs to accept. The approaches to evaluation taken by the agents vary in two major areas. One
is the number of independent Interpretations used by the agent during the course of the knowledge
base derivation process, and the other concerns Belief Measurement, i.e., the yardstick used to
measure the acceptability of beliefs. Agents SA and WA use only one interpretation during the

knowledge base derivation process because the atomism on which they are based is incompatible
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with the view that the value of beliefs can be found by considering collections of beliefs. This
effect is achieved by forward chaining the knowledge base on data received from sensors, and by
rejecting information which contradicts sensor data. Agent SH is unique in that it uses multiple
interpretations. Each interpretation represents an independent solution to a failed constraint based
on a different high-level explanation of available data. The value of individual beliefs is only de-
termined by evaluating their centrality within a given interpretation. The interpretations are kept
separate by prefixing every interpretation-dependent assertion with an integer describing which
interpretation the assertion is relevant to. High level solutions are achieved using a combination of
explanation-driven backward chaining and constraint propagation. These high-level solutions are
then translated into specific low-level actions by parsing the high-level solution with data relating

to the specific failed constraint.

4 Experiments and Results

A set of experiments were designed to provide a comparison of the performance of the three agents
when operating under a variety of conditions. The conditions for five experiments are summarised

in Table 4.

Experiment | Environmental conditions

1 No noise or obstacles (Control)
2 No noise, one obstacle (2 surfaces)
3 One obstacle and high sensor noise
4 One obstacle, high sensor noise

and high motor noise

5 One obstacle, low sensor noise

and low motor noise

Table 4: The Conditions used for the Experiments

For each experiment, results are given in terms of measures of agent performance. We used
five quantitative measures to determine the relative performance of the agents: location accuracy
(Lyy), surface accuracy (S, Su), the number of surfaces added to the agent’s internal map (N,),
the number of seconds required to complete the experiment, and the number of timeslices required
to complete the experiment.

The positional accuracy, Ly, is defined as the mean of the robot’s positional accuracy over all

( 100 )
Lgy = mean | ——
1+d t=1...n

where d is the Euclidean distance between the robot’s actual position (as given by the simulator)

timeslices, that is:
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and the position it believes it to be in (as recorded in its internal model). This returns a percentage,
where 100% indicates the agent’s beliefs concerning its location are completely accurate. The
measure S, concerns the cases where the agent falsely believes a surface exists, while S, concerns
the cases in which the agent fails to identify a surface. A value of 100% means there are no
false reports of surfaces or no unreported surfaces, respectively. All statistics given in the results

represent the means from at least three separate runs.

4.1 Experiment 1

This experiment was designed as a control case against which to compare the other experiments.
Table 5 summarises the performance in driving the robot from the start to the goal position. Figure
5 shows the path taken by all the agents to reach the goal position, and, as seen, all the agents
succeeded in reaching the goal position with 100% accuracy. The only significant performance

difference was that agent SH took 2.7 times longer to complete the task than agents SA and WA.

Category Agent

Category | Sub-Category || SA WA SH

Accuracy | Lgy (%) 100.00 | 100.00 | 100.00
Execution | Seconds 74.54 74.19 200.90
Time Timeslices 57 57 57

Table 5: Results from Experiment 1

Start

@oal

Figure 5: The Path Taken by all Agents in Experiment 1

The performance of agents SA and WA were virtually identical, showing that the suggestion
buffering used by agent WA causes no overhead when it is not used. As expected, the coherence-
based algorithms used by agent SH are more computationally expensive than the algorithms used
by agents SA and WA. However, we see this is the case even when the contradiction resolving

facilities of these algorithms are not used.
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4.2 Experiment 2

In this experiment a single obstacle was placed in the robot’s environment, between the start and
goal positions. The purpose was to test performance when, unlike in experiment 1, the internal
models had to be altered in order to complete the task. As the agents had no prior knowledge of

the obstacle they had to use the sensor readings to infer its location and find a path around it.

Category Agent
Category | Sub-Category || SA WA SH
Accuracy | Lgy (%) 100.00 | 100.00 | 100.00

Sr (%) 100.00 | 100.00 | 100.00

Sy (%) 100.00 | 100.00 | 100.00

N 2 2 2
Execution | Seconds 86.02 | 92.66 | 516.56
Time Timeslices 64 65 64

Table 6: Results from Experiment 2

Start

Figure 6: The Path used by Agent SA in Experiment 2

The results for experiment 2 are summarised in Table 6. All agents were successful. Figure 6
shows the path used by agent SA to reach the goal position. Note that the obstacle is shown on
the map only for the purposes of comparison — the agents do not have access to the obstacle’s real
position. Thick lines in the figures represent the position of surfaces as perceived by the agents,
i.e. as created in the agents’ internal models.

We see that increased complexity in the environment translates into increased execution times.
Agent SA took 15% longer to complete experiment 2 than experiment 1. This compares with
25% more time for agent WA and 157% for agent SH. Thus, agent SH is the most sensitive to
increased complexity in the environment.

Regarding execution time, agent SA recorded the fastest time. This is the expected result, as
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agent SA had less processing to do than agents WA or SH. Agent SH took 6 times longer to
complete the task than agent SA. This shows that the algorithms used by agent SH are significantly
more expensive than those used by agents SA and WA when the task involves changes to the

agent’s internal model.

4.3 Experiment 3

In order to explore the effects of imperfect input data, disturbance noise was added to the readings
produced from the robot sensors. The implementation allowed the addition of an absolute amount
of generated noise, controlled by two parameters: P, which is the probability that a particular
piece of data will be affected by noise (where 0 < P, < 1), and Max,, which is the maximum
amount of noise which may be added to the data. The standard Normal distribution is used to
modulate the noise to realistic levels.

Sensor noise in experiment 3 used P, = 0.5 and Max,, = 15, thus giving a 50/50 chance of the
sensor signals having an error bound of £15 (in an environment of 400 by 400 units).

The results obtained in experiment 3 are summarised in Table 7. Figures 7, 8 and 9 show the
final maps produced by the three agents. As before, dark lines and dots on the maps represent

surfaces which the agents have added to their world models.

Category Agent
Category | Sub-Category || SA WA SH
Accuracy | Lgy (%) 100.00 | 100.00 | 100.00

Sr (%) 12.59 | 58.08 | 100.00

Sy (%) 6.89 46.00 | 100.00

N 80 3 2
Execution | Seconds 159.24 | 102.90 | 514.24
Time Timeslices 64 65 64

Table 7: Results from Experiment 3

As would be expected, all agents achieved 100% accuracy in their location, but the results for
obstacle accuracy show considerable variation. Agent SA uses every piece of sensor data directly in
its world model, so noisy sensor data leads to model inaccuracies. This is seen in the considerably
lower obstacle accuracy scores for SA and the average of 80 surfaces added to its map on each run.
Agent WA was much more accurate, showing the effectiveness of the suggestion buffer as a noise
reduction mechanism. However, agent SH achieved near-perfect accuracy in experiment 3 (values
were rounded to 2 decimal places). Nevertheless, the price of this increased accuracy comes in the
form of increased computational expense.

Agent SA took around 50% more time to complete this task than agent WA This is initially

surprising, but is explained by the time for SA to complete a timeslice increasing in direct propor-
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Start

Figure 7: The Final World Model of Agent SA from Experiment 3

Start

Figure 8: The Final World Model of Agent WA from Experiment 3

tion to the number of surfaces in its internal model. Due to the complexity of the coherence-based
algorithms agent SH took 3 to 5 times longer than the other agents. However, the level of sensor
noise used does not affect agent SH’s execution time, as this was very similar to the time it took

to complete experiment 2.

4.4 Experiment 4

This experiment was similar experiment 3, except that both sensor and movement commands were
subject to noise. The sensor noise was as before: P, = 0.5 and Max,, = 15, while the motor noise
had P, = 0.5 and Max,, = 10. The simulator might now move the robot an erroneous amount and
so this means the robot’s actual position might differ from the position it believes it to be in.
The results obtained in experiment 4 are summarised in Table 8 and figures 10, 11, and 12
show the final maps of the agents after sample runs. The dotted thin trail represents the robot’s
beliefs concerning the path it took to the goal, while the thick trail represents the path it actually
took. Similarly, the solid black circle represents the actual position of the robot, while the hollow

outlined circle represents the position where it believed it to be.
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Start

Figure 9: The Final World Model of Agent SH from Experiment 3

Category Agent
Category | Sub-Category || SA WA SH
Accuracy | Loy (%) 7.61 8.57 12.77

Sy (%) 3.86 7.11 9.46

Sy (%) 2.88 4.61 17.25

N 118 12 4
Execution | Seconds 225.77 | 103.18 | 6351.75
Time Timeslices 64 65 72

Table 8: Results from Experiment 4

Figure 10 shows that the difference between actual position and believed positions caused the
agent to form an erroneous model of the external world. Despite the sensor noise, one can see
how the position of surfaces along the left hand edge of the environment follow a similar pattern
to the actual path of the robot. This also explains why agent SA consistently placed surfaces too
far to the right, meaning that they ended up inside the obstacle’s actual position. Indeed, in this
experiment, agent SA was not able to detect the actual position of the obstacle. This is why the
path agent SA believed it took passes through the actual position of the obstacle.

Figure 11 shows that agent WA was better equipped to operate in a noisy environment than
agent SA. However, like agent SA | agent WA did not actually succeed in reaching its goal position.

Figure 12 shows that agent SH handled the noisy environment reasonably well, as the agent
adjusted 1ts beliefs concerning its position on several occasions. Despite the high cost in terms of
execution time, agent SH was the only agent that actually succeeded in guiding itself from the
start to the goal position.

As the task faced by the agents in experiment 4 was a severe one, it is not surprising that all
the agents performed worse in experiment 4 than they did in any other experiment. The fact that

agent SA performed poorly shows that, as expected, an AKB based on the principles of strong
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Figure 10: The Final World Model of Agent SA from Experiment 4
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Figure 11: The Final World Model of Agent WA from Experiment 4

atomism is not suitable for use in a noisy environment. Agent SA added many more surfaces to
its map than in experiment 3 and this accounts for the increased processing time. The difference
between the performance of agent WA in experiments 3 and 4 is a reflection of the fact that agent
WA was not able to cope with motor noise. However, the maps produced by agent WA were more
accurate than those produced by agent SA and agent WA gave similar times as for experiment
3. The fact that agent SH required, on average, 8 more timeslices than agent SA is due to agent
SH performing positional adjustments, which agent SA was unable to perform. Also agent SH
required substantially more time to complete the task, i.e. over 60 times the time taken by agent
WA This was because agent SH was forced to attempt to resolve contradictions at every timeslice

and the time taken to do this increased with each timeslice.

4.5 Experiment 5

Experiment 5 was the same as experiment 4 except that the values of sensor and motor noise were
both reduced. The reason for this was to reduce the level of disturbance considerably so that a

more typical operating result could be obtained.
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Figure 12: The Final World Model of Agent SH from Experiment 4

The results obtained in experiment 5 are summarised in Table 9. Agent SA produced better
location results but was similar in other respects. Agent WA improved its results on surfaces but
still produced too many. Agent SH gave the most improved performance with all results being
considerably better than in experiment 4. The accuracy scores of agent SH show that it was
much better able to cope with these more realistic levels of noise. It is interesting to note that
the average execution times recorded by agents WA and SH are similar to those recorded by the
agents during experiment 3, while agent SA recorded an execution time which was comparable to

the time it recorded during experiment 4.

Category Agent
Category | Sub-Category || SA WA SH
Accuracy | Lgy (%) 53.83 | 51.17 | 64.00

Sr (%) 4.13 19.76 | 66.67

Sy (%) 2.51 16.24 | 64.08

N 118 9 2
Execution | Seconds 232.71 | 111.43 | 511.66
Time Timeslices 64 66 72

Table 9: Results from Experiment 5

5 Discussion of Experimental Findings

The experiments have shown several significant differences in behaviour, which we can summarise
for the three agents.

Agent SA is much less computationally expensive than agent SH, but its performance 1s poor
in noisy environments. The principal advantage of agent SA is its relative simplicity. This results

in fast execution times, although agent WA was faster than agent SA in very noisy environments.
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When there is no noise agent SA is not very sensitive to variations in environmental complexity,
but sensor noise causes agent SA to (mistakenly) increase the number of surfaces in its internal
model. It is even less able to cope with motor noise.

Agent SH achieved the best accuracy results in every experiment, and was also the only agent
to successfully complete experiment 4. However, the price for this increased accuracy was increased
computational expense as agent SH took longer than the other agents in every experiment. This
agent was also sensitive to increased environmental complexity, in that its computation time is
related to the number of objects in the environment. This means that agent SH might not be
suitable for use in an environment or application that has a ceiling on response times. However,
agent SH was not affected by sensor noise and delivered accurate results. It was more affected by
motor noise, but when this was at reasonably realistic levels it performed remarkably well; with
no increase in execution times and fairly high accuracy.

Agent WA does not possess the theoretical pedigree of agents SA and SH. However, it con-
sistently achieved better accuracy results than agent SA and faster execution times than agent
SH. This suggests that, from a pragmatic point of view, agents based on less extreme philosophical
approaches than those used for agents SA and SH may yield the most useful systems. Concep-
tually, the difference between agents WA and SA is very simple, yet is surprisingly effective. A
visual comparison of the final maps reached by these two agents in experiments 3 and 4 shows
the effectiveness of not having to translate every change in the environment immediately into a
change in an agent’s world model. The execution times for agent WA were not really affected by
either sensor or motor noise. However, its performance, in terms of accuracy, is noticeably better
for sensor noise. This is not surprising as agent WA was specifically designed to cater for some
sensor noise (but not motor noise).

From these results we can make some general observations which bring out some of the design

trade-offs available for AKB designers.

5.1 Noisy Environments

If the environment, sensors and actions all have negligible noise, then an atomistic approach would
bring benefits of fast and efficient operation. This is because the algorithms for such AKBs can be
much simpler and less computationally expensive than those needed for holistic agents.

But if noise was known to be present, or if the degree of noise was unknown, then a holis-
tic approach would give the ability to accommodate incoming data in accordance with the best

understanding of the current state of the environment.

5.2 Computational Expense

Most of the extra computational overhead of the holistic approach concerns consistency-maintenance.

For this reason, it 1s expected that the performance of such systems will compare favourably with
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that of atomistic systems in noise-free environments. Hence, a system operating in a noise-free
environment could incorporate some holistic functionality without a significant loss of performance,

while still possessing the ability to deal with inconsistencies should they arise.

5.3 Fast Response Times

In situations with real-time constraints, where 1t would be desirable for an agent to react as soon
as possible to a given input, the holistic ability to modify sensor data would not be an advantage.

Similarly, there may be situations in which the internal coherence of the system is less important
than 1ts ability to provide solutions as quickly as possible. For example, it might be expected
that an atomistic agent would not possess the functionality to form a consistent model of a noisy
environment. However, as long as the agent has an approximate concept of its position in relation to
its target, it will still produce movement commands which will move the robot nearer to its target.
While the lack of accuracy will probably result in the atomistic agent requiring more movement
commands than a holistic agent, the fact that the agent will be responding more quickly than a

holistic agent can mean that the robot reaches its destination in a similar or even faster time.

5.4 A Consistent Overview

Certain applications may attach more importance to the ability to generate several consistent al-
ternative explanations of external events than the ability to respond immediately to external world
changes. Such applications would benefit from holistic systems which incorporate the functionality

to re-arrange existing beliefs in order to maximise coherence.

6 Philosophical and AI views of the Agent Designs

While agent WA achieved better accuracy than agent SA | questions can be raised over the extent
to which agent WA is actually based on the extreme atomism of PA. By allowing existing beliefs
to take priority over individual pieces of sensor data the emphasis for the agent’s knowledge base
has moved a small but significant amount towards the holistic end of the spectrum. From an Al
point of view, the additional complexity of WA is due to the amount of “common sense” reasoning
that is required for tasks involving simple spatial and temporal reasoning. From a philosophical
point of view, this complexity is due to the fact that pure atomism is a relatively simple concept
compared with anything moving towards holism.

The complexity of agent SH can be explained from an Al perspective as being due to the
fact that the agent is using a constraint satisfaction method for controlling an embedded robot.
This is a complex task, and it comes as no surprise that using constraint satisfaction together
with backward chaining is more complex than using forward chaining, which is much simpler to

implement. From a philosophical point of view, the complexity of agent SH is due to the fact that
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it is based on radical holism, and, as such, the meaning of every belief has to be determined by
the whole set of the agent’s beliefs.

We have seen how the most “obvious” approach, i.e., that of atomism, where sensory experi-
ence, being accepted on face value and stored away, and thus given importance as some kind of
objective truth, does not necessarily deliver the best performance. Counter-intuitive approaches
can, surprisingly, deliver better or even more appropriate results. The holistic approach can be
seen as a form of subjective system where new experience has to fit in with the internal beliefs
about the world. Clearly, there are many other possibilities but the message for agent designers
must be that common sense approaches are not reliable as the only source of inspiration.

In Section 3.3 we compared the features of the implemented agents. Following our analysis,
Table 10 expands and elaborates on the three key processing stages and the functionality they

entail. This summarises our implementations and illustrates some of the options open to designers.

7 Conclusions

In a previous paper we showed that philosophical theories were relevant to the Al field of au-
tonomous agent design [5]. We have now tested this idea by implementing a series of agents with
different epistemological backgrounds. The purpose of the implementations was to firmly ground
the theories and concepts, so that we can precisely examine any significant differences in their
behaviour. This shows how it is possible to design and implement agents ezplicitly based on par-
ticular philosophical theories. The agents have exhibited different types of behaviour which reflects
the designs upon which they were based, that in turn can be attributed to the differences in their
various philosophical positions. Thus, the philosophical basis of a system makes a difference to the
design and behaviour of that system.

It is rare in Al to find alternative implementations of exactly the same problem, and equally
rare to see attempts to repeat experiments through re-implementations. Yet such experiments are
necessary if we are to understand fully the implications of the range of design options open to us
when building agents and AKBs. This study illustrates the range of design differences that can be
explored by taking different epistemological starting points on a common problem.

It is well known that the disciplines of knowledge representation and epistemology are related.
Knowledge representation is concerned with the task of representing a portion of the unbounded
external world within the bounded world model of a cognitive agent. Epistemology is concerned
with the validity of this representational task. It is the same features of the world which cause
problems for epistemology and knowledge representation and, therefore, some of the techniques
which have been developed by philosophers to address epistemological issues have relevance to Al
problems.

However, despite AD’s long history of research into knowledge representation, reasoning and

inference techniques, applications for cognitive agents are less well advanced. Recent developments
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Functional | Theoretical | Approach Based on PA | Approach Based on PH
Stage Concept
Data Input Accuracy Defined in terms of Defined in terms of
correspondence with coherence with existing
sensor data. beliefs.
Status of Internal model defined in External world defined in
model terms of external world. terms of internal model.
Truth values Beliefs may be either Beliefs may be
true or false. true, false, or unknown.
Derivation Theory of Foundationalism Coherence
(combining Justification Knowledge base derived Knowledge base derived
new beliefs by forward chaining of by explanation-driven
with existing basic beliefs. backward chaining.
beliefs) Relative Asymmetrical. All beliefs are inferred.
importance Justification based on non- | Justification is symmetrical.
of beliefs inferred basic beliefs. All beliefs are revisable.
Internal model | Agent SA. Maximising the coherence
based on Direct consequences of the knowledge base.
of sensor data.
Agent WA.
Sensor data averaged
from multiple timeslices.
Fvaluation Inconsistency Individual inconsistent Based on violated
(knowledge detection beliefs. constraint detection.
base Dealing Agent SA. Holistic explanation-
revision) with Label inconsistencies based recovery
inconsistency and await more accurate involving multiple
sensor data. independent candidate
Agent WA. knowledge bases.
Use of the suggestion
buffer to minimise the
effects of sensor noise.
Solution None Choose most coherent
selection candidate knowledge base.

Table 10: The Functionality Expressed by the Three Agents
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that promise autonomous domestic agents will have to face issues such as bounded models for
unbounded environments and the central distinction between self and non-self. Indeed, if they
are to eventually support a dialogue with other agents they will also have to create and maintain
a model of those agents’ beliefs within their own cognitive model. This illustrates how different
design options can be important. For example, complex agents that need to reason about other
agents may decide to reject incoming sensory information if it conflicts with their experience, even
if other agents accept the same information. Assuming that all agents begin life as identical clones
(because customisation must be done in situ), this situation is more likely to be supported by a
holistic design, than an atomistic approach. Thus, the more obvious or common sense assumptions
for AKB designs often have the tempting appeal of simplicity, but less intuitive theories may also
offer solutions, possibly with much greater benefits.

It is important to recognise that there is substantial disagreement among philosophers concern-
ing which set of theories is correct, and indeed, different philosophers will often espouse subtly
different formulations of the same concept. We took two opposing perspectives for our study,
but our resulting designs were just one set of concrete realisations of many possible alternatives.
Many other interpretations could be produced and these would lead to many variations and design
options. Thus, we are not claiming that the adoption of a particular set of philosophical theories
will necessarily be associated with unique functional and algorithmic approaches to the design of
the agent. Indeed, it is almost inevitable that the personal preferences of the individual researcher
will lead to alternative AKB design choices at the functional and hence algorithmic levels.

As computer scientists, Al researchers may feel uneasy with this level of subjectivity. It is
our assertion, however, that the process of transforming a theory from the philosophical level to
the functional and algorithmic levels always occurs in AKB design, albeit implicitly. By making
this process explicit, Al researchers will open up their access to the vast assortment of philosoph-
ical theories concerning areas which are relevant to Al, such as truth, justification, memory, and

perception, which have already been the subject of rigorous philosophical study.
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