Skip to main content
Log in

Cantor Diagrams: A Unifying Discussion of Self-Reference

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Within the framework of category theory, Cantor diagrams are introduced as the common structure of the self-reference constructions by Cantor, Russell, Richard, Gödel, Péter, Turing, Kleene, Tarski, according to the so-called Cantor diagonal method. Such diagrams consist not only of diagonal arrows but also of idempotent, identity and shift arrows. Cantor theorem states that no Cantor diagram is commutative. From this theorem, all the constructions above can be systematically retrieved. We do this by grouping them into two main classes: the class based on Cantor diagrams with a numerical shift function and the class based on Cantor diagrams with a Boolean shift function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackermann, W.: Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99 (1928), 118–133.

    Google Scholar 

  2. Cantor, G.: Ñber eine Eigenshaft des Inbegriffs aller reellen algebraichen Zahlen, Journal für die Reine und Angewandte Mathematik 77 (1874), 258–262.

    Google Scholar 

  3. Cantor, G.: Ñber eine elementare Frage der Mannigkeitslehre, Jahresber. Deutsch. Math.-Verein. 1 (1890, 1891), 75–78.

    Google Scholar 

  4. Frege, G.: Grundgesetze der Arithmetik, Begriffschriftlih Abgeleitet, Vol. 2, Jena, 1903.

  5. Frege, G.: Philosophical and Mathematical Correspondence, eds G. Gabriel et al., Blackwell, Oxford, 1980.

    Google Scholar 

  6. Germano, G.: Incompleteness theorem via weak definability of truth: A short proof, Notre Dame Journal of Formal Logic 14 (1973), 377–380.

    Google Scholar 

  7. Germano, G.: An arithmethical reconstruction of the liar's antinomy using addition and multiplication, Notre Dame Journal of Formal Logic 17 (1976), 457–461.

    Google Scholar 

  8. Germano, G. and Mazzanti, S.: Primitive iteration and unary functions, Annals of Pure and Applied Logic 40 (1988), 217–256.

    Google Scholar 

  9. Germano, G. and Mazzanti, S.: General iteration and unary functions, Annals of Pure and Applied Logic 54 (1991), 137–178.

    Google Scholar 

  10. Gonseth, F.: La vérité mathématique et la réalité, Enseign. Math. 31 (1933), 96–114.

    Google Scholar 

  11. Gödel, K.: Ñber formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatshefte für Mathematik und Physik 38 (1931), 173–198.

    Google Scholar 

  12. Kleene, S. C.: General recursive functions of natural numbers, Mathematische Annalen 112 (1936), 727–742.

    Google Scholar 

  13. Kleene, S. C.: Introduction to Metamathematics, North-Holland, Amsterdam, 1952.

    Google Scholar 

  14. Lawvere, F. W.: Diagonal arguments and Cartesian closed categories, in P. Hilton (ed.), Category Theory, Homology Theory and Their Applications II, Proceedings of the Conference, Seattle Research Center of the Battelle Memorial Institute, 1968, Lecture Notes in Math. 92, Springer, Berlin, 1969.

    Google Scholar 

  15. Mac Lane, S.: Categories for the Working Mathematician, Springer-Verlag, New York, 1971.

    Google Scholar 

  16. Matijasevic, Yu. V.: Enumerable sets are diophantine, Soviet Math. Dokl. 11 (1970), 354–358.

    Google Scholar 

  17. Péter, R.: Konstruktion nichtrekursiver Funktionen, Mathematische Annalen 111 (1935), 42–60.

    Google Scholar 

  18. Richard, J.: Les principes des mathématiques et les problèmes des ensembles, Rev. Gén. Sci. Pures Appl. 16 (1905), 541–543; also in Acta Mathematica 30 (1906), 295- 296.

    Google Scholar 

  19. Richard, J.: Sur un paradoxe de la théorie des ensembles et sur l'axiome Zermelo, Enseign. Math. 9 (1907), 94–986.

    Google Scholar 

  20. Robinson, J.: General recursive functions, Proceedings of the American Mathematical Society 1 (1950), 703–718.

    Google Scholar 

  21. Robinson, R.: Primitive recursive functions, American Mathematical Society. Bulletin 53 (1947), 925–942.

    Google Scholar 

  22. Tarski, A. in collaboration with A. Mostowski and R. M. R. Robinson: Undecidable Theories, North-Holland, Amsterdam, 1953.

    Google Scholar 

  23. Turing, A.: On computable numbers, with an application to the entscheidungsproblem, Proceedings of the London Mathematical Society 42 (1936- 1937), 230–265.

    Google Scholar 

  24. Walters, R. F. C.: Categories and Computer Science, Cambridge Univ. Press, 1991.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germano, G.M., Mazzanti, S. Cantor Diagrams: A Unifying Discussion of Self-Reference. Applied Categorical Structures 11, 313–336 (2003). https://doi.org/10.1023/A:1024447013739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024447013739

Navigation