Skip to main content
Log in

Synchronization of Strongly Coupled Excitatory Neurons: Relating Network Behavior to Biophysics

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Behavior of a network of neurons is closely tied to the properties of the individual neurons. We study this relationship in models of layer II stellate cells (SCs) of the medial entorhinal cortex. SCs are thought to contribute to the mammalian theta rhythm (4–12 Hz), and are notable for the slow ionic conductances that constrain them to fire at rates within this frequency range. We apply “spike time response” (STR) methods, in which the effects of synaptic perturbations on the timing of subsequent spikes are used to predict how these neurons may synchronize at theta frequencies. Predictions from STR methods are verified using network simulations. Slow conductances often make small inputs “effectively large”; we suggest that this is due to reduced attractiveness or stability of the spiking limit cycle. When inputs are (effectively) large, changes in firing times depend nonlinearly on synaptic strength. One consequence of nonlinearityis to make a periodically firing model skip one or more beats, often leading to the elimination of the anti-synchronous state in bistable models. Biologically realistic membrane noise makes such “cycle skipping” more prevalent, and thus can eradicate bistability. Membrane noise also supports “sparse synchrony,” a phenomenon in which subthreshold behavior is uncorrelated, but there are brief periods of synchronous spiking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acker CD, Kopell N, White JA (2001) Synchronization of strongly coupled excitatory neurons: Relating biophysics to network behavior. In: Fifth International Conference on Cognitive and Neural Systems. Boston, MA.

  • Alligood K, Sauer T, Yorke J (1997) Chaos-an introduction to dynamical systems. Springer-Verlag, New York.

    Google Scholar 

  • Alonso A, Klink R (1993) Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J. Neurophysiol. 70: 128-143.

    PubMed  Google Scholar 

  • Alonso A, Llinás RR (1989) Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342: 175-177.

    Article  PubMed  Google Scholar 

  • Canavier CC, Butera RJ, Dror RO, Baxter DA, Clark JW, Byrne JH (1997) Phase response characteristics of model neurons determine which patterns are expressed in a ring circuit model of gait generation. Biological Cybernetics 77: 367-380.

    Article  PubMed  Google Scholar 

  • Chow CC, Kopell N (2000) Dynamics of spiking neurons with electrical coupling. Neural Comput. 12: 1643-1678.

    Article  PubMed  Google Scholar 

  • Chrobak JJ, Lorincz A, Buzsaki G (2000) Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus 10: 457-465.

    Article  PubMed  Google Scholar 

  • Crook SM, Ermentrout GB, Bower JM (1998) Spike frequency adaptation affects the synchronization properties of networks of cortical oscillations. Neural Comput. 10: 837-854.

    Article  PubMed  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1994) An efficient method for computing synaptic conductances based on a kinetic-model of receptor-binding. Neural Computation 6: 14-18.

    Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: C Koch, I Segev, eds. Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge, MA. pp. 1-26.

    Google Scholar 

  • Dhillon A, Jones RS (2000) Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro. Neuroscience 99: 413-422.

    Article  PubMed  Google Scholar 

  • Dickson CT, Magistretti J, Shalinsky MH, Fransen E, Hasselmo ME, Alonso A (2000) Properties and role of I (h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J. Neurophysiol 83: 2562-2579.

    PubMed  Google Scholar 

  • Dorval AD, Christini DJ, White JA (2001) Real-time linux dynamic clamp: A fast and flexible way to construct virtual ion channels in living cells. Ann. Biomed. Eng. 29: 897-907.

    Article  PubMed  Google Scholar 

  • Eder C, Ficker E, Göndel J, Heinemann U (1991) Outward currents in rat entorhinal cortex stellate cells studied with conventional and perforated patch recordings. Eur. J. Neurosci. 3: 1271-1280.

    PubMed  Google Scholar 

  • Ermentrout B (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8: 979-1001.

    PubMed  Google Scholar 

  • Ermentrout B (2002) Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, Ist edn. Society for Industrial & Applied Mathematics.

  • Ermentrout GB, Kopell N (1991) Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29: 195-217.

    Google Scholar 

  • Ermentrout GB, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc. Natl. Acad. Sci. USA 95: 1259-1264.

    Article  PubMed  Google Scholar 

  • Ermentrout B, Pascal M, Gutkin B (2001) The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Comput. 13: 1285-1310.

    Article  PubMed  Google Scholar 

  • Farmer SF (1998) Rhythmicity, synchronization and binding in human and primate motor systems. J. Physiol. 509: 3-14.

    Article  PubMed  Google Scholar 

  • Fransén E, Alonso A, Dickson C, Magistretti J, Hasselmo ME (2003) Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Submitted.

  • Gerstner W (2001) A framework for spiking neuron models: The spike response model. In: F Moss, S Gielen, eds. Neuro-Informatics and Neural Modelling. Elsevier Science B.V. pp. 469-516.

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81: 2340-2361.

    Google Scholar 

  • Gloor P (1997) The Temporal Lobe and Limbic System. Oxford University Press, New York.

    Google Scholar 

  • Golomb D, Hansel D, Mato G (2001) Mechanisms of synchrony of neural activity in large networks. In: F Moss, S Gielen, eds. Neuro-Informatics and Neural Modelling. Elsevier Science B.V. pp. 469-516.

  • Golomb D, Rinzel J (1993) Dynamics of globally coupled inhibitory neurons with heterogeneity. Physical Review E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 48: 4810-4814.

    Google Scholar 

  • Golomb D, Wang XJ, Rinzel J (1994) Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. J. Neurophysiol 72: 1109-1126.

    PubMed  Google Scholar 

  • Gray CM (1999) The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron 24: 31-47, 111-125.

    Article  PubMed  Google Scholar 

  • Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer-Verlag, New York.

    Google Scholar 

  • Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural networks. Neural Comput. 7: 307-337.

    PubMed  Google Scholar 

  • Hasselmo ME, Fransen E, Dickson C, Alonso AA (2000) Computational modeling of entorhinal cortex. Ann. NY Acad. Sci. 911: 418-446.

    PubMed  Google Scholar 

  • Jones SR, Pinto DJ, Kaper TJ, Kopell N (2000) Alpha-frequency rhythms desynchronize over long cortical distances: A modeling study. J. Comput. Neurosci. 9: 271-291.

    Article  PubMed  Google Scholar 

  • Kistler WM, Gerstner W, van Hemmen LJ (1997) Reduction of Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput. 9: 1015-1045.

    Google Scholar 

  • Klink R, Alonso A (1993) Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J. Neurophysiol. 70: 144-157.

    PubMed  Google Scholar 

  • Kopell N (1988) Toward a theory of modelling central pattern generators. In: AH Cohen, S Rossignol, S Grillner, eds. Neural Control of Rhythmic Movements in Vertebrates. Wiley, New York. pp. 369-413.

    Google Scholar 

  • Kopell N, Ermentrout GB (2001) Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In: B Fiedler, ed. Handbook on Dynamical Systems, Vol. 2, Toward Applications. Elsevier.

  • Kopell N, Ermentrout GB, Whittington MA, Traub RD (2000) Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. USA 97: 1867-1872.

    Article  PubMed  Google Scholar 

  • Lytton WW (1996) Optimizing synaptic conductance calculation for network simulations. Neural Comput. 8: 501-509.

    PubMed  Google Scholar 

  • Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J. Neurophysiol. 66: 1059-1079.

    PubMed  Google Scholar 

  • Neltner L, Hansel D (2001) On synchrony of weakly coupled neurons at low firing rate. Neural Comput. 13: 765-774.

    Article  PubMed  Google Scholar 

  • O’Keefe J (1993) Hippocampus, theta, and spatial memory. Curr. Opin. Neurobiol. 3: 917-924.

    Google Scholar 

  • Pape HC (1996) Queer current and pacemaker: The hyperpolarization-activated cation current in neurons. Annu. Rev. Physiol. 58: 299-327.

    Article  PubMed  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Reyes AD, Fetz EE (1993) Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. J. Neurophysiol. 69: 1661-1672.

    PubMed  Google Scholar 

  • Robinson HP, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J. Neurosci. Methods 49: 157-165.

    Article  PubMed  Google Scholar 

  • Sharp AA, O'Neil MB, Abbott LF, Marder E (1993) The dynamic clamp: Artificial conductances in biological neurons. Trends Neurosci. 16: 389-394.

    Article  PubMed  Google Scholar 

  • Singer W (1999) Neuronal synchrony: A versatile code for the definition of relations? Neuron 24: 49-65, 111-125.

    Article  PubMed  Google Scholar 

  • Tiesinga PH, Jose JV (2000) Robust gamma oscillations in networks of inhibitory hippocampal interneurons. Network 11: 1-23.

    PubMed  Google Scholar 

  • Van Vreeswijk C, Abbott LF, Ermentrout GB (1994) When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci. 1: 313-321.

    PubMed  Google Scholar 

  • Wang XJ, Rinzel J (1993) Spindle rhythmicity in the reticularis thalami nucleus: Synchronization among mutually inhibitory neurons. Neuroscience 53: 899-904.

    Article  PubMed  Google Scholar 

  • White JA, Budde T, Kay AR (1995) A bifurcation analysis of neuronal subthreshold oscillations. Biophys. J. 69: 1203-1217.

    PubMed  Google Scholar 

  • White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998b) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J. Comput. Neurosci. 5: 5-16.

    Article  PubMed  Google Scholar 

  • White JA, Haas JS (2001) Intrinsic noise from voltage-gated ion channels: Effects on dynamics and reliability in itrinsically oscillatory neurons. In: Moss F, Gielen S, eds. Neuro-Informatics and Neural Modelling. Elsevier Science B.V. pp. 257-278.

  • White JA, Klink R, Alonso A, Kay AR (1998a) Noise from voltagegated ion channels may influence neuronal dynamics in the entorhinal cortex. J. Neurophysiol. 80: 262-269.

    PubMed  Google Scholar 

  • White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci. 23: 131-137.

    Article  PubMed  Google Scholar 

  • Winfree AT (2001) The geometry of biological time, 2 edn. Springer Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acker, C.D., Kopell, N. & White, J.A. Synchronization of Strongly Coupled Excitatory Neurons: Relating Network Behavior to Biophysics. J Comput Neurosci 15, 71–90 (2003). https://doi.org/10.1023/A:1024474819512

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024474819512

Navigation