Skip to main content
Log in

Squares in Fork Arrow Logic

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

In this paper we show that the class of fork squares has a complete orthodox axiomatization in fork arrow logic (FAL). This result may be seen as an orthodox counterpart of Venema's non-orthodox axiomatization for the class of squares in arrow logic. FAL is the modal logic of fork algebras (FAs) just as arrow logic is the modal logic of relation algebras (RAs). FAs extend RAs by a binary fork operator and are axiomatized by adding three equations to RAs equational axiomatization. A proper FA is an algebra of relations where the fork is induced by an injective operation coding pair formation. In contrast to RAs, FAs are representable by proper ones and their equational theory has the expressive power of full first-order logic. A square semantics (the set of arrows is U×U for some set U) for arrow logic was defined by Y. Venema. Due to the negative results about the finite axiomatizability of representable RAs, Venema provided a non-orthodox finite axiomatization for arrow logic by adding a new rule governing the applications of a difference operator. We address here the question of extending the type of relational structures to define orthodox axiomatizations for the class of squares. Given the connections between this problem and the finitization problem addressed by I. Németi, we suspect that this cannot be done by using only logical operations. The modal version of the FA equations provides an orthodox axiomatization for FAL which is complete in view of the representability of FAs. Here we review this result and carry it further to prove that this orthodox axiomatization for FAL also axiomatizes the class of fork squares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Benevides, M. R. F., de Freitas, R. P., Veloso, P. A. S., Veloso, S. R. M. and Viana, J. P.: Fork arrow logic: Axiomatization and completeness, in Proceedings of IV WMF: Workshop on Formal Methods, IME, Rio de Janeiro, 2001.

    Google Scholar 

  2. Benevides, M. R. F. and Veloso, P. A. S.: Axiomatization and completeness for fork modal logic, in XII Encontro Brasileiro de Lógica, 1999, pp. 87–94.

  3. Brink, C.: Power structures, Algebra Universalis 30 (1993), 177–216.

    Google Scholar 

  4. Frias, M. F., Baum, G. A. and Haeberer, A. M.: Fork algebras in algebra, logic and computer science, Fund. Inform. 32 (1997), 1–25.

    Google Scholar 

  5. Frias, M. F., Baum, G. A., Haeberer, A. M. and Veloso, P. A. S.: Fork algebras are representable, Bull. Section of Logic 24 (1995), 64–75.

    Google Scholar 

  6. Frias, M. F., Haeberer, A. M. and Veloso, P. A. S.: A finite axiomatization for fork algebras, Logic J. IGPL 5 (1997), 311–319.

    Google Scholar 

  7. Harel, D.: Dynamic logic, in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 2, Reidel, Dordrecht, 1984, pp. 497–604.

    Google Scholar 

  8. Haeberer, A. M., Frias, M. F., Baum, G. A. and Veloso, P. A. S.: Fork algebras, in W. Kahl, C. Brink and G. Schmidt (eds.), Relational Methods in Computer Science, Springer, Berlin, 1997, pp. 54–69.

    Google Scholar 

  9. Jónsson, B. and Tarski, A.: Boolean algebras with operators, part I, Amer. J. Math. 73 (1951), 891–939.

    Google Scholar 

  10. Jónsson, B. and Tarski, A.: Boolean algebras with operators, part II, Amer. J. Math. 74 (1952), 127–162.

    Google Scholar 

  11. Kripke, S.: A completeness theorem in modal logic, J. Symbolic Logic 24 (1959), 1–14.

    Google Scholar 

  12. Lemmon, E. J.: Algebraic semantics for modal logic I, J. Symbolic Logic 31 (1966), 46–65.

    Google Scholar 

  13. Lemmon, E. J.: Algebraic semantics for modal logic II, J. Symbolic Logic 31 (1966), 191–218.

    Google Scholar 

  14. Maddux, R. D.: Relation-algebraic semantics, Theor. Comput. Sci. 160 (1996), 1–85.

    Google Scholar 

  15. Marx, M., Pólos, L. and Masuch, M. (eds.): Arrow Logic and Multi-Modal Logic, CSLI Publications, Stanford, 1996.

    Google Scholar 

  16. Marx, M. and Venema, Y.: Multi-Dimensional Modal Logic, Appl. Logic Series, Kluwer Academic Publishers, Dordrecht, 1997.

    Google Scholar 

  17. Monk, J. D.: Nonfinitizability of classes of representable cylindric algebras, J. Symbolic Logic 34 (1969), 331–343.

    Google Scholar 

  18. Németi, I.: Algebrization of quantifier logics, an introductory overview, Studia Logica 50 (1991), 458–569.

    Google Scholar 

  19. Sahlqvist, H.: Completeness and correspondence in first and second-order semantics for modal logic, in S. Kanger (ed.), Proceedings of the Third Scandinavian Logic Symposium, North-Holland, Amsterdam, 1975.

    Google Scholar 

  20. Sambin, G. and Vaccaro, V.: A new proof of Sahlqvist's theorem on modal definability and completeness, J. Symbolic Logic 54 (1989), 992–999.

    Google Scholar 

  21. Tarski, A. and Givant, S. R.: A Formalization of Set Theory without Variables, Colloquium Publications 41, Amer. Math. Soc., Providence, RI, 1987.

    Google Scholar 

  22. van Benthem, J.: Correspondence theory, in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 2, D. Reidel, Dordrecht, 1984.

    Google Scholar 

  23. Veloso, P. A. S.: On fork relations and programming, in E. H. Haeusler and L. C. Pereira (eds.), Pratica: Proofs, Types, and Categories, PUC-Rio, Rio de Janeiro, 1999.

    Google Scholar 

  24. Venema, Y.: Many-dimensional arrow logic, Ph.D. Thesis, Institute for Logic, Language and Computation, Universiteit van Amsterdam, Amsterdam, 1991.

    Google Scholar 

  25. Venema, Y.: A note on the tense logic of dominoes, J. Philos. Logic 21 (1992), 173–182.

    Google Scholar 

  26. Venema, Y.: Crash course in arrow logic, in [15], pp. 3–34.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Freitas, R.P., Viana, J.P., Benevides, M.R.F. et al. Squares in Fork Arrow Logic. Journal of Philosophical Logic 32, 343–355 (2003). https://doi.org/10.1023/A:1024847106313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024847106313

Navigation