Skip to main content
Log in

Shock-Vortex Interactions at High Mach Numbers

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We perform a computational study of the interaction of a planar shock wave with a cylindrical vortex. We use a particularly robust High Resolution Shock Capturing scheme, Marquina's scheme, to obtain high quality, high resolution numerical simulations of the interaction. In the case of a very-strong shock/vortex encounter, we observe a severe reorganization of the flow field in the downstream region, which seems to be due mainly to the strength of the shock. The numerical data is analyzed to study the driving mechanisms for the production of vorticity in the interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chatterjee, A. (1999). Shock wave deformation in shock-vortex interactions. Shock Waves 9, 95-105.

    Google Scholar 

  2. Arandiga, F., Chiavassa, G., and Donat, R. (2001). Application of Harten's Framework: From Conservation Laws to Image Compression, Springer Lecture Notes in Computational Science and Engineering, Vol. 20, p. 281.

    Google Scholar 

  3. Cai, W., and Shu, C. W. (1993). Uniform high-order spectral methods for one and two dimensional Euler equations. J. Comp. Phys. 104, 427-443.

    Google Scholar 

  4. Chiavassa, G., and Donat, R. (2001). Point value multiscale algorithm for 2D compressible flows. SIAM J. Sci. Comp. 23(3), 805-823.

    Google Scholar 

  5. Chiavassa, G., Donat, R., and Marquina, A. (2001). Fine-mesh simulations for 2D Riemann problems with multilevel schemes. International Series of Numerical Mathematics, Vol. 140.

  6. Chiavassa, G., Donat, R., and Marquina, A. (2000). A wavelet algorithm for 2D conservation laws. Proceedings of Conference R. Temam, Equations aux derivées partielles non-linéaires: Applications é la mécanique des fluides et é la météorologie, Poitiers.

  7. Don, W. S. (1993). Numerical study of pseudospectral methods in shock waves applications. J. Comp. Phys. 104.

  8. Donat, R., Font, J. A., Ibénez, J. M., and Marquina, A. (1998). A flux-split algorithm applied to relativistic flows. J. Comput. Phys. 146, 58-41.

    Google Scholar 

  9. Donat, R., and Marquina, A. (1996). Capturing shock reflections: An improved flux formula. J. Comp. Phys. 125, 42.

    Google Scholar 

  10. Donat, R., and Marquina, A. (1999). Computing strong shocks in ultrarelativistic flows: A robust alternative. International Series of Numerical Mathematics, Vol. 129.

  11. Dosanjh, D. S., and Weeks, T. M. (1965). Interaction of a starting vortex as well as a vortex street with a traveling shock wave. AIAA J. 3, 216-223.

    Google Scholar 

  12. Einfeldt, B., Munz, C. D., Roe, P. L., and Sjörgreen, B. (1991). On godunov-type methods near low densities. J. Comp. Phys.. 92, 273-295.

    Google Scholar 

  13. Ellzey, J. L., Henneke, M. R., Picone, J. M., and Oran, E. S. (1995). The interaction of a shock with a vortex: Shock distortion and the production of acoustic waves. Phys. Fluids 7, 172-184.

    Google Scholar 

  14. Erlebacher, G., Hussaini, M. Y., and Jackson, T. L. (1998). Nonlinear strong shock interactions: A shock fitted approach. Theoret. Comput. Fluid Dynamics 11, 1-29.

    Google Scholar 

  15. Erlebacher, G., Hussaini, M. Y., and Shu, C. W. (1997). Interaction of a shock with a longitudinal vortex. J. Fluid Mechanics 337, 129-153.

    Google Scholar 

  16. Fürst, J. (2001). Modélisation numérique d'écoulements transsoniques avec des schémas TVD et ENO, Ph.D. thesis, University of Aix-Marseille and of Praha.

  17. Fürst, J., Angot, P., Debieve, J. F., and Kozel, K. (1997). Two and three-dimensional applications of TVD and ENO schemes, Numerical Modelling in Continuum Mechanics, 3rd Summer Conf. in Praha, MATFIZPRESS Charles Univ., Vol. 1, pp. 103-111.

    Google Scholar 

  18. Fedkiw, R., Merriman, B., Donat, R., and Osher, S. (1997). The penultimate scheme for systems of conservation laws: Finite difference ENO with Marquina's flux splitting. In Hafez, M. M., and Chattot, J. J. (eds.), Innovative Methods for Numerical Solutions of PDEs, pp. 49-85.

  19. Grasso, F., and Pirozzoli, S. (2000). Shock-wave–vortex interactions: Shock and vortex deformations and sound production. Theoret. Comput. Fluid Dynamics 13, 421-456.

    Google Scholar 

  20. Inoue, O., and Hattori, Y. (1999). Sound generation by shock-vortex interactions. J. Fluid Mech. 380, 81-116.

    Google Scholar 

  21. Jiang, G. S., and Shu, C. W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202-228.

    Google Scholar 

  22. Kevlahan, N. K.-R. (1997). The vorticity jump across a shock in a non-uniform flow. J. Fluid Mech. 341, 371-384.

    Google Scholar 

  23. Marquina, A., and Mulet, P. A flux-split algorithm applied to conservative models for multicomponent compressible flows. To appear in J. Comput. Phys.

  24. Marquina, A. (1994). Local piecewise hyperbolic reconstruction of numerical fluxes for nonlinear scalar conservation laws. SIAM J. Sci. Comput. 15, 892-915.

    Google Scholar 

  25. Meadows, K. R., Kumar, A., and Hussaini, M. Y. (1991). Computational study on the interaction between a vortex and a shock wave, AIAA J. 29(2), 174-179.

    Google Scholar 

  26. Naumann, A., and Hermanns, E. (1973). On the interaction between a shock wave and a vortex field. AGARD CP 131.

  27. Pao, S. P., and Salas, M. D. (1981). A Numerical Study of Two-Dimensional Shock-Vortex Interaction, AIAA paper AIAA-81-1205. 14th Fluid and Plasma Dynamics Conference.

  28. Picone, J. M., and Boris, J. P. (1988). Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 23-51.

    Google Scholar 

  29. Ribner, H. S. (1985). Cylindrical sound waves generated by shock-vortex interaction. AIAA J. 23(11), 1708-1715.

    Google Scholar 

  30. Samtaney, R., and Zabusky, N. J. (1994). Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: Models and scaling laws. J. Fluid Mech. 269, 45-78.

    Google Scholar 

  31. Shu, C. W., and Osher, S. J. (1989). Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comp. Phys. 83, 32-78.

    Google Scholar 

  32. Smart, M. K., Kalkhoran, I. M., and Popovic, S. (1998). Some aspects of streamwise vortex behavior during oblique shock wave/vortex interaction. Shock Waves 8, 243-255.

    Google Scholar 

  33. Toro, E. F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rault, A., Chiavassa, G. & Donat, R. Shock-Vortex Interactions at High Mach Numbers. Journal of Scientific Computing 19, 347–371 (2003). https://doi.org/10.1023/A:1025316311633

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025316311633

Navigation