Skip to main content
Log in

Chain melting temperature estimation for phosphatidyl cholines by quantum mechanically derived quantitative structure property relationships

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Geometries for 62 phosphatidylcholines (PC) were optimized using the AM1 semiempirical quantum mechanical method. Results obtained from these calculations were used to calculate 463 descriptors for each molecule. Quantitative Structure Property Relationships (QSPR) were developed from these descriptors to predict chain melting temperatures (Tm) for the 41 PCs in the training set. After screening each QSPR for statistical validity, the Tm values predicted by each statistically valid QSPR were compared to corresponding Tm values extracted from the literature. The most predictive, chemically meaningful QSPR provided Tmvalues which agreed with literature values to within experimental error. This QSPR was used to predict Tm values for the remaining 21 PCs to provide external validation for the model. These values also agreed with literature values to within experimental error. The descriptor developed by the final QSPR was the second order average information content, a topological information-theoretical descriptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Luisi, P.L., Bachmann, P.A., Walde, P., Lang, J., J. Am. Chem. Soc. 113 (1991) 8204.

    Google Scholar 

  2. Walde, P. In Self-Production of Supramolecular Structures; Fleischaker, G.R. et al. Eds.; Kluwer Academic Publishers: Netherlands, 1994; pp. 209-216.

    Google Scholar 

  3. Luisi, P.L., Walde, P., Blochliger, E., Blocher, M., J. Phys. Chem. B 102 (1998) 10383.

    Google Scholar 

  4. Luisi, P.L., Walde, P., Blocher, M., Liu, D., Chimia 54 (2000) 52.

    Google Scholar 

  5. Singer, S.J., Nicholson, G.L., Science 175 (1972) 720.

    Google Scholar 

  6. Huang, C., Biochemistry 30 (1991) 26.

    Google Scholar 

  7. Gaber, B.P., Nagumo, M., Light, W.R., Chandrasekhar, I., Pattabiraman, N., Adv. Exp. Med. Biol. 238 (1988) 1.

    Google Scholar 

  8. Esposito, D., Zloh, M., Gibbons, W.A., Biochem. Soc. Trans. 26 (1998) S35.

    Google Scholar 

  9. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P., J. Am. Chem. Soc. 107 (1985) 3902.

    Google Scholar 

  10. AMPAC with Graphic User Interface, Version 7.0 Semichem, Web www.semichem.com, Shawnee Mission, KS.

  11. Klampt, A., J. Chem. Soc. Perkin 2 (1993) 799.

    Google Scholar 

  12. Klampt, A., J. Phys. Chem. 99 (1995) 2224.

    Google Scholar 

  13. Klampt, A., J. Phys. Chem. 100 (1996) 3349.

    Google Scholar 

  14. Holder, A.J., White, D.A., Harris, C.D., Eick, J.D., Chappelow, C.C., Theochem 541 (2001) 159.

    Google Scholar 

  15. CODESSA Version 2.63 Semichem, Web www.semichem.com, Shawnee Mission, KS.

  16. Jobson, J.D. Applied Multivariate Data Analysis, Vol. 1: Regression and Experimental Design, Springer-Verlag, New York, NY, 1991.

    Google Scholar 

  17. SPSS Version 10.0.5 for Windows SPSS, Inc. Web www.spss.com/spss10/, Chicago, IL.

  18. Yourtee, D.M., Holder, A.J., Smith, R., Morrill, J.A., Kostoryz, E., Brockman, W., Glaros, A., Chappelow, C.C., Eick, J.D., J. Biomat. Sci. Poly. Ed. 12 (2001) 89.

    Google Scholar 

  19. Basak, S.C., Harris, D.K., Magnuson, V.R., J. Pharm. Sci. 73 (1984) 429.

    Google Scholar 

  20. Mihalic, Z., Nikilic, S., Trinajstic, N., J. Chem. Inf. Comput. Sci. 32 (1992) 28.

    Google Scholar 

  21. Needham, D.E., Wei, I.C., Seybold, P.G., J. Am. Chem. Soc. 110 (1988) 4186.

    Google Scholar 

  22. Huang, C., Biochemistry 30 (1991) 26.

    Google Scholar 

  23. Lewis, R.N.A.H., Mak, N., McElhaney, R.N., Biochemistry 26 (1987) 6118.

    Google Scholar 

  24. Wang, Z., Lin, H., Li, S., Huang, C., J. Biol. Chem. 270 (1995) 2014.

    Google Scholar 

  25. Xu, H., Huang, C., Biochemistry 26 (1987) 1036.

    Google Scholar 

  26. Wang, Z., Lin, H., Huang, C., Biochemistry 29 (1990) 7063.

    Google Scholar 

  27. Coolbear, K., Berde, C., Keough, K., Biochemistry 22 (1983) 1466.

    Google Scholar 

  28. Davis, P., Fleming, B., Coolbear, K., Keough, K., Biochemistry 20 (1981) 3633.

    Google Scholar 

  29. Davis, P., Keough, K., Biochim. Biophys. Acta. 778 (1984) 305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holder, A.J., Yourtee, D.M., White, D.A. et al. Chain melting temperature estimation for phosphatidyl cholines by quantum mechanically derived quantitative structure property relationships. J Comput Aided Mol Des 17, 223–230 (2003). https://doi.org/10.1023/A:1025382226037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025382226037

Navigation