Skip to main content
Log in

Design and Implementation of Fuzzy Sliding-Mode Controller for a Wedge Balancing System

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we address the design and implementation of fuzzy sliding-mode controller for balancing a wedge system. At first, we examine the mathematical model of the wedge balancing system. The dynamic system is complex and ill defined; hence we propose the fuzzy sliding-mode control (FSMC) method to achieve the control objective. The proposed control method enhances the ability of fuzzy logic control so that the minimal number of fuzzy inference rules is systematically obtained even the plant parameters are unknown. Both computer simulations and real-time experiments are exploited to demonstrate the validity and feasibility of the developed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosine, G., Gelentane, G., and Garofalo, F.: Variable structure model reference adaptive control systems, Internat. J. Control 39(6) (1984), 1339–1349.

    Google Scholar 

  2. Chen, C.-L.: Optimal design of fuzzy sliding-mode control: A comparative study, Fuzzy Sets Systems 93 (1998), 37–48.

    Google Scholar 

  3. Chen, C.-S.: Analysis and design of uncertain system using fuzzy control logic, PhD Dissertation, National Tsing Hua University, 1997.

  4. Dieulot J.-Y. and Borne, P.: Parameter tuning of stable fuzzy controllers, J. Intelligent Robotic Systems 33 (2002), 301–312.

    Google Scholar 

  5. Furuta, K. and Yamakita, M.: A new inverted pendulum apparatus for education, in: 1991 IFAC Conf. on Advances in Control Education, pp. 191–196.

  6. Glover, J. S. and Munighan, J.: Designing fuzzy controllers from a variable structure standpoint, IEEE Trans. Fuzzy Systems 5 (1997), 138–144.

    Google Scholar 

  7. Gurumoorthy, R. and Sanders, S. R.: Controlling nonminimum phase nonlinear system – the inverted pendulum on a cart example, in: Proc. of the 1993 ACC, Vol. 1, pp. 680–685.

  8. Hagan, M., Latino, C. D., Misawa, E., and Young, G.: An interdisciplinary control systems laboratory, in: Proc. of the 1996 IEEE Internat. Conf. on Control Applications, pp. 403–408.

  9. Hsu, P., Wendiandt, J., Runge, C., Soderstrom, D., Bohn, R., Cahoon, W., Marketti, T., and Ward, D.: The wedge – a controller design experiment, in: 1991 IFAC Conf. on Advances in Control Education, Boston, pp. 169–174.

  10. Hwang, G.-C. and Lin, S.-C.: A stability approach of fuzzy control design for nonlinear systems, Fuzzy Sets Systems 48 (1992), 279–287.

    Google Scholar 

  11. Hwang, C. L., Sung, F. Y., and Wei, M. H.: Improved fuzzy sliding-mode control for a linear servo motor system, Control Engrg. Practice 5 (1997), 219–227.

    Google Scholar 

  12. Ishigame, A., Furakawa, T., Kawamoto, S., and Taniguchi, T.: Sliding mode controller design based on fuzzy inference for nonlinear systems, IEEE Trans. Industrial Electronics 40(1) (1993), 64–70.

    Google Scholar 

  13. Kim, S.-W. and Lee, J.-J.: Design of a fuzzy controller with fuzzy sliding surface, Fuzzy Sets Systems 71 (1995), 359–367.

    Google Scholar 

  14. Lee, C.-C.: Fuzzy logic in control system: Fuzzy logic controller, Parts I and II, IEEE Trans. Systems Man Cybernet. 20(2) (1990), 404–435.

    Google Scholar 

  15. Li, T.-H. S. and Shieh, M.-Y.: Switching-type fuzzy sliding mode control of a cart-pole system, Mechatronics 10 (2000), 91–101.

    Google Scholar 

  16. Lin, C.-E. and Sheu, Y.-R.: A hybrid-control approach for pendulum-car control, IEEE Trans. Industrial Electronics 39(3) (1992), 208–214.

    Google Scholar 

  17. Lin, S.-C. and Chen, Y.-Y.: Design of adaptive fuzzy sliding mode for nonlinear system control, in: Proc. of Internat. Fuzzy Systems Conference, Vol. 1, 1994, pp. 35–39.

    Google Scholar 

  18. Mamdani, E. M.: Application of fuzzy algorithms for control of simple dynamic plant, Proc. IEE 121(12) (1974), 1585–1588.

    Google Scholar 

  19. MBSP Manual, Phimatic Enterprise Co., Taiwan, R.O.C., 1995.

  20. Palm, R.: Sliding mode fuzzy control, in: Proc. of IEEE Internat. Conf. on Fuzzy Systems, 1992, pp. 519–526.

  21. Palm, R.: Robust control by sliding mode, Automatica 30 (1994), 1429–1437.

    Google Scholar 

  22. Palm, R. and Driankov, D.: Stability of fuzzy gain schedulers: Sliding-mode based analysis, in: Proc. of IEEE Internat. Conf. on Fuzzy Systems, 1997, pp. 177–183.

  23. Palm, R. and Driankov, D.: Design of a fuzzy gain scheduler using sliding mode control principles, Fuzzy Sets Systems 121 (2001), 13–23.

    Google Scholar 

  24. Slotine, J. J. E.: The robust control of robot manipulators, Internat. J. Robotics Res. 4 (1985), 49–64.

    Google Scholar 

  25. Slotine, J. J. E.: Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  26. Sugeno, M. and Nishida, M.: Fuzzy control of model car, Fuzzy Sets Systems 16 (1985), 103–113.

    Google Scholar 

  27. Suyitno, A., Fujikawa, J., Kobayashi, H., and Dote, Y.: Variable-structured robust controller by fuzzy logic for servomotors, IEEE Trans. Industrial Electronics 40(1) (1993), 80–88.

    Google Scholar 

  28. Tsai, C.-H. and Tzou, Y.-Y.: DSP-based balancing control of an inverted wedge using robust pole placement technique, in: Proc. of Automatic Control Conference, 1994, pp. 172–179.

  29. Tzafestas, S. G. and Regatos, G. G.: Design and stability analysis of a new sliding-mode fuzzy logic controller of reduced complexity, Mach. Intelligence Robotic Control 1(1) (1999), 27–41.

    Google Scholar 

  30. Tzafestas, S. G. and Rigatos, G. G.: A simple robust sliding-mode fuzzy logic controller of the diagonal type, J. Intelligent Robotic Systems 26(3/4) (1999), 353–388.

    Google Scholar 

  31. Wang, L.-X.: Stable adaptive fuzzy control of nonlinear systems, IEEE Trans. Fuzzy Systems 1(2) (1993), 146–159.

    Google Scholar 

  32. Wang, L.-X.: Stable adaptive fuzzy controllers with application to inverted pendulum tracking, IEEE Trans. Systems Man Cybernet. B 26(5) (1996), 677–691.

    Google Scholar 

  33. Wedge Balancer User Guide, Phimatic Enterprise Co., Taiwan, R.O.C., 1995.

  34. Wei, Q., Levine, W. S., and Dayawansa, W. P.: An experiment to demonstrate the bandwidth requirements of a nonlinear controller, in: 1991 IFAC Conf. on Advances in Control Education, pp. 183–185.

  35. Wu, C.-J.: Quasi time-optimal PID control of multivariable systems: A seesaw example, J. Chinese Institute Engineers 22(5) (1999), 617–625.

    Google Scholar 

  36. Wu, C.-J.: Genetic tuning of PID controllers using a neural network model: A seesaw example, J. Intelligent Robotic Systems 25 (1999), 43–59.

    Google Scholar 

  37. Zadeh, L. A.: Fuzzy sets, Inform. Control 8 (1965), 338–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzuu-Hseng S. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JH., Li, TH.S. & Ou, TH. Design and Implementation of Fuzzy Sliding-Mode Controller for a Wedge Balancing System. Journal of Intelligent and Robotic Systems 37, 285–306 (2003). https://doi.org/10.1023/A:1025497626211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025497626211

Navigation