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Abstract. Power series representations for special functions are computationally
satisfactory only in the vicinity of the expansion point. Thus, it is an obvious idea to
use instead Padé approximants or other rational functions constructed from sequence
transformations. However, neither Padé approximants nor sequence transformation
utilize the information which is avaliable in the case of a special function – all
power series coefficients as well as the truncation errors are explicitly known – in
an optimal way. Thus, alternative rational approximants, which can profit from
additional information of that kind, would be desirable. It is shown that in this
way a rational approximant for the digamma function can be constructed which
possesses a transformation error given by an explicitly known series expansion.
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1. Introduction

Power series are among the most important tools of calculus. For ex-
ample, they are extremely useful for the construction of solutions to
differential equations. Accordingly, many special functions are defined
and computed via power series.

However, from a purely numerical point of view, a power series
representation is a mixed blessing. Power series converge well only in
the vicinity of the expansion point. Further away, they converge slowly
or even diverge. Consequently, the defining power series alone normally
does not suffice for an efficient and reliable computation of a special
function.

In applied mathematics and in theoretical physics, Padé approxi-
mants have become the standard tool to overcome convergence prob-
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2 Ernst Joachim Weniger

lems with slowly convergent or divergent power series [2]. Therefore, it
looks like an obvious idea to use them for the computation of special
functions.

Padé approximants are defined as solutions of a system of nonlinear
equations [2], although they are in practice more often computed by
recursive algorithms, for example by Wynn’s epsilon algorithm [17]. All
these algorithms only need the input of the numerical values of the lead-
ing series coefficients. No further information about the function, which
is to be approximated, is needed. This is a very advantageous feature,
in particular if apart from a finite number of series coefficients very
little else is known, and it has undoubtedly contributed significantly to
the popularity of Padé approximants and their practical usefulness.

If, however, we want to compute a special function, we are in a much
better situation. Not only do we know explicitly all coefficients of the
power series, but we are also able to write down at least formally explicit
expressions for the truncation errors. An approximation scheme for a
special function should be able to benefit from additional information
of that kind, but Padé approximants – due to their very nature –
cannot. Thus, valuable information is wasted, and Padé approximants
are in the case of special functions normally less effective than other
sequence transformations which can utilize information of that kind.
For example, it was shown in [12, 13, 14, 15, 16] that Levin’s sequence
transformation [5] and some generalizations [12, Sections 7 - 9] can be
much more effective than Padé approximants, in particular if factorially
divergent asymptotic series for special functions have to be summed.

The power of Levin-type transformations, which were recently re-
viewed by Homeier [4], is due to the fact that they use as input data not
only the elements of the sequence to be transformed but also explicit
truncation error estimates. In the majority of all applications, only
some very simple truncation error estimates introduced by Levin [5]
and Smith and Ford [11] are used. In the case of special functions,
however, it may well be possible to derive more sophisticated trun-
cation error estimates which should ultimately lead to more effective
approximations. Further research into this direction would be highly
desirable.

In the case of special functions, it is also possible to pursue a more
direct approach. As discussed for example in [3, 12], a sequence trans-
formation is a map, which transforms a slowly convergent or divergent
sequence {sn}∞n=0, whose elements may for instance be the partial sums
of an infinite series, into another sequence {s′n}∞n=0 with hopefully bet-
ter numerical properties. Concerning the input sequence it is assumed
that its elements can for all n ∈ N0 be partitioned into a (generalized)
limit s and a remainder rn according to sn = s + rn. A sequence
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transformation tries to determine and eliminate the remainders rn from
the sequence elements sn. Unfortunately, a complete elimination of the
remainders can normally be accomplished only in the case of more or
less artificial model problems. Thus, the elements of the transformed
sequence can also be partitioned according to s′n = s+r′n into the same

(generalized) limit s and a transformed remainder r′n which is normally
nonzero for all finite values of n. The transformation process was suc-
cessful if the transformed remainders {r′n}∞n=0 have better numerical
properties than the original remainders {rn}∞n=0.

Normally, only relatively little is known about the remainders rn.
In the case of special functions, however, the situation is much bet-
ter: All coefficients of the power series are explicitly known, and the
truncation errors of the partial sums of the power series are at least in
principle also explicitly known. Thus, it should be possible to optimize
the determination and elimination of the remainders – or equivalently
the transformation process – by utilizing the available information as
effectively as possible.

It is the intention of this article to show that these goals can be
accomplished in the case of the psi or digamma function [1, Eq. (6.3.1)]

ψ(z) =
d

dz
ln(Γ(z)) =

Γ′(z)

Γ(z)
, (1.1)

which is a meromorphic function with poles at z = 0,−1,−2, . . .. Our
starting point is the power series representation [1, Eq. (6.3.14)]

ψ(1 + z) = − γ + zZ(z) , (1.2a)

Z(z) =
∞
∑

ν=0

ζ(ν + 2) (−z)ν , (1.2b)

which converges for |z| < 1. Here, γ is Euler’s constant [1, Eq. (6.1.3)]
and ζ(ν + 2) is a Riemann zeta function [1, Eq. (23.2.1)].

2. The transformation of the power series

In this article, an explicit rational approximant for Z(z) will be con-
structed. We only have to consider 0 < z < 1. For z < 0, we can use the
reflection formula ψ(1− z) = ψ(z)+π coth(πz) [1, Eq. (6.3.5)], and for
z ≥ 1, we can use the recurrence formula ψ(z+1) = ψ(z)+ 1/z [1, Eq.
(6.3.5)]. If the argument z is very large, the digamma function should
of course be computed via its asymptotic expansion [1, Eq. (6.3.18)].

For our purposes, it is convenient to rewrite (1.2b) as follows:

Z(z) = Zn(z) + Rn(z) , (2.1a)
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4 Ernst Joachim Weniger

Zn(z) =
n
∑

ν=0

ζ(ν + 2) (−z)ν , (2.1b)

Rn(z) = (−z)n+1
∞
∑

ν=0

ζ(n+ ν + 3) (−z)ν . (2.1c)

As discussed in the previous section, a rational approximant to Z(z)
can only improve convergence if the truncation errors Rn(z) are trans-
formed into other truncation errors with better numerical properties.
Thus, we first have to rewriteRn(z) in such a way that we better under-
stand its nature. This can be achieved by replacing the zeta functions
ζ(n+ ν + 3) in (2.1c) by their Dirichlet series [1, Eq. (23.2.1)] and by
interchanging the order of summations. The resulting inner series is a
geometric series and can be expressed in closed form. Thus, we obtain

Zn(z) = Z(z) − (−1)n+1
∞
∑

m=0

[z/(m+ 1)]n+1

(m+ 1)(m+ z + 1)
. (2.2)

This relationship, which holds for all z 6= −1,−2,−3, . . ., shows that the
partial sums Zn(z) are a special case of the following class of sequences
with qj = z/j and cj = −1/[(j(j + z)]:

sn = s + (−1)n+1
∞
∑

j=1

cj(qj)
n+1 , n ∈ N0 . (2.3)

Concerning the qj ’s, we assume that they all have the same sign and
are ordered in magnitude according to

1 > |q1| > |q2| > · · · > |ql| > |ql+1| > · · · ≥ 0 , (2.4)

whereas the cj ’s are unspecified coefficients.
Wynn [18] showed that the convergence of a sequence of the type of

(2.3) can be accelerated with the help of his epsilon algorithm [17]:

ǫ
(n)
−1 = 0 , ǫ

(n)
0 = sn , n ∈ N0 , (2.5a)

ǫ
(n)
k+1 = ǫ

(n+1)
k−1 + 1/[ǫ

(n+1)
k − ǫ(n)k ] , k, n ∈ N0 . (2.5b)

The epsilon algorithm requires as input data only the numerical values
of the elements of the sequence (2.3), but not the values of the qj’s.
Wynn also derived asymptotic estimates for the transformation errors

s − ǫ(n)2k [18, Theorems 16 and 17], which were later extended by Sidi
[10].

Although the epsilon algorithm is a very powerful accelerator for
sequences of type of (2.3) – numerical studies showed that the epsilon
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algorithm accelerates the convergence of the power series in (1.2b)
much more effectively than for example Levin’s transformation [5] or
some generalizations [12, Sections 7 - 9] – it nevertheless cannot profit
from the fact that in the case of (2.2) the qj are explicitly known.
Moreover, no explicit expressions for the rational approximants or the
transformation errors are known. Thus, we use instead the sequence
transformation

T
(n)
k = T

(n)
k (sn, . . . , sn+k) =

k
∏

κ=1

E + qκ
1 + qκ

sn (2.6)

as the starting point for the construction of an explicit rational ap-
proximant to Z(z). Here, E is the shift operator defined by Ef(n) =
f(n+ 1).

The sequence transformation T
(n)
k can also be computed recursively:

T
(n)
0 = sn , n ∈ N0 , (2.7a)

T
(n)
k+1 =

T
(n+1)
k + qk+1T

(n)
k

1 + qk+1
, k, n ∈ N0 . (2.7b)

Essentially identical sequence transformations were discussed by Matos
[8, 9].

An explicit expression for T
(n)
k can be derived with the help of the

elementary symmetric polynomials e
(n)
ν in n variables x1, . . ., xn, which

are defined by the generating function [6, p. 13]

n
∏

j=1

(1 + xjt) =
n
∑

ν=0

e(n)ν tν . (2.8)

The substitution s = 1/t yields the equivalent generating function

n
∏

j=1

(s + xj) =
n
∑

ν=0

e
(n)
n−ν s

ν . (2.9)

Comparison with (2.6) shows that T
(n)
k possesses an explicit expression

involving the elementary symmetric polynomials e
(k)
κ in the k variables

qκ with 1 ≤ κ ≤ k:

T
(n)
k =

k
∑

κ=0

e
(k)
k−κ(q1, . . . qk)E

κ sn

k
∑

κ=0

e(k)κ (q1, . . . qk)

=

k
∑

κ=0

e
(k)
k−κ(q1, . . . qk) sn+κ

k
∑

κ=0

e(k)κ (q1, . . . qk)

.

(2.10)
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6 Ernst Joachim Weniger

In most practical applications, the sequence transformation T
(n)
k is

not particularly useful since the values of the qj’s have to be explicitly
known. If, however, this is the case and if the input data are the ele-
ments of the sequence (2.3), then it can be shown by complete induction
in k that

T
(n)
k = s + (−1)n+1

∞
∑

j=k+1

cj

k
∏

κ=1

qκ − qj
qκ + 1

(qj)
n+1 . (2.11)

Thus, the first k exponential terms cj(qj)
n+1 in (2.3) are eliminated.

Since the qj’s are by assumption ordered in magnitude according to
(2.4), this leads to an acceleration of convergence. Moreover, the appli-

cation of T
(n)
k to the elements of the sequence (2.3) leads for sufficiently

large values of k to a convergent sequence if the original sequence
diverges because the leading qj’s in (2.3) satisfy |qj | > 1.

Combination of (2.2) and (2.11) yields the following explicit rational
approximant to Z(z):

T (k)
n (Zn(z), . . . ,Zn+k(z)) =

k
∏

κ=1

E + (z/κ)

1 + (z/κ)
Zn(z) = Z(z)

− (−1)n+1 zn+k+1

(z + 1)k

∞
∑

m=0

(m+ 1)k
(k +m+ 1)n+k+2(k +m+ z + 1)

.(2.12)

Here, (z + 1)k and (m+ 1)k are Pochhammer symbols. It is a remark-
able feature of this rational approximant that its transformation error
possesses an explicit series expansion. This is quite uncommon in the
theory of rational approximants. Moreover, the first k poles of Z(z)
at z = −1,−2, . . . ,−k are reproduced by T

(n)
k , whereas the remaining

poles at z = −k−1,−k−2, . . . are reproduced by the infinite series for
the transformation error.

The prefactor of the infinite series in (2.12) can be expressed as a
beta function B(x, y) = Γ(x)Γ(y)/Γ(x+ y) [1, Eq. (6.2.2)] according to

zn+k+1

(z + 1)k
=

zn+k+2

k!
B(z, k + 1) . (2.13)

It is possible to derive an alternative expression for the infinite series
in (2.12) which more closely resembles the infinite series in (2.2), from
which it was derived. For that purpose, we write the Pochhammer
symbol in the infinite series in (2.12) as a product according to (m +
1)k =

∏k
κ=1([k+m+1]+[κ−k−1]). Comparison with (2.9) shows that

this is the generating function of the elementary symmetric polynomials
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ê
(k)
κ in the k variables xκ = κ− k − 1 with 1 ≤ κ ≤ k. Thus, we obtain

(m+1)k =
k
∑

κ=0

ê
(k)
k−κ (k+m+1)κ =

k
∑

κ=0

ê(k)κ (k+m+1)k−κ . (2.14)

Inserting this into (2.12) yields:

T (k)
n (Zn(z), . . . ,Zn+k(z)) = Z(z) − (−1)n+1 zn+k+1

(z + 1)k

×
k
∑

κ=0

ê(k)κ

∞
∑

m=0

1

(k +m+ 1)n+κ+2(k +m+ z + 1)
. (2.15)

If we now do a Taylor expansion of 1/(k +m + z + 1) and introduce
the generalized (Hurwitz) zeta function ζ(z, α) =

∑

∞

n=0(n+ α)−z with
α 6= 0,−1,−2, . . . [7, p. 22], we obtain

∞
∑

m=0

1

(k +m+ 1)n+κ+2(k +m+ z + 1)

=
∞
∑

m=0

ζ(n+m+ κ+ 3, k + 1) (−z)m (2.16)

and

T (k)
n (Zn(z), . . . ,Zn+k(z)) = Z(z)− (−1)n+1 zn+k+1

(z + 1)k

×
∞
∑

m=0

(−z)m
k
∑

κ=0

ê(k)κ ζ(n+m+ κ+ 3, k + 1) . (2.17)

Further modifications of (2.17) are possible. For example, ordinary
zeta functions can be introduced instead of the generalized (Hurwitz)
zeta functions according to

ζ(n+m+κ+3, k+1) = ζ(n+m+κ+3)−
k
∑

ν=0

(ν+1)−n−m−κ−3 . (2.18)

For larger values of k, the inner sum in (2.17) is likely to become nu-
merically unstable since the k variables xκ = κ−k−1 of the elementary

symmetric polynomials ê
(k)
κ are all negative. This implies that the ê

(k)
κ

alternate in sign with increasing κ. Thus, sums of the type
∑k

κ=0 ê
(k)
κ fκ

seem to have similar properties as sums of the type
∑k

κ=0(−1)κ
(k
κ

)

fκ
which are known to be numerical unstable for larger values of k if all
fκ have the same sign.
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8 Ernst Joachim Weniger

3. Numerical examples

We now want to show that the new explicit rational approximant to

Z(z) is indeed a numerically useful tool. Thus, we apply both T
(n)
k

defined by (2.6) as well as Wynn’s epsilon algorithm (2.5) to the partial
sums Zn(z) defined by (2.1b).

The transforms T
(k)
n were computed with the help of the recurrence

formula (2.7) which should be the most effective approach. For the re-
cursive calculation, two one-dimensional arrays t and q suffice (compare
[12, Sections 4.3 and 7.5]):

t[0] ← s0 , (3.1a)

t[m] ← sm , q[m] ← qm , m ≥ 1 , (3.1b)

t[m− j] ← t[m− j + 1] + q[j]t[m− j]
1 + q[j]

, 1 ≤ j ≤ m. (3.1c)

For each m ≥ 0, t[0] = T
(0)
m is used to approximate the limit of the

input sequence.
The argument z = 1 considered in Table 3 lies on the boundary

of the circle of convergence of the power series (1.2b) for Z(z). The
approximants in the last column of Table 3 were chosen according to
[12, Eq. 4.3-6].

All calculations in Table 3 were done in MapleV Release 5.1 with
an accuracy of 32 decimal digits. When the accuracy was reduced to
16 digits, at most the last digit printed differed. Thus, the computa-
tion of the rational approximants in Table 3 is apparently numerically
remarkably stable.

The results in Table 3 show that the new rational approximant and
Wynn’s epsilon algorithm produce results of virtually identical quality.
This is also observed in the case of complex arguments. In Table 3, we
consider z = [1+

√
3 i]/2 which again lies on the boundary of the circle

of convergence of the power series (1.2b) for Z(z).
In the case of the epsilon algorithm, we obtain in the case of z =

[1 +
√
3 i]/2:

− γ + zǫ
(0)
14 = 0.285 073 441 270 305 + 0.691 215 820 928 757 i ,(3.2)

−γ + zǫ
(1)
14 = 0.285 073 441 270 304 + 0.691 215 820 928 755 i .(3.3)

All calculations in Table 3 were again done with an accuracy of 32
decimal digits. When we reduced the accuracy to 16 digits, we observed
as in Table 3 that at most the last digit printed differed.

Wynn’s epsilon algorithm is – as already remarked – a very powerful
accelerator for sequences of the type of (2.3). Thus, the numerical
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Table I. Convergence of the new rational approximant for ψ(1 + z) with z = 1.

n −γ + zZn(z) −γ + zT
(0)
n −γ + zǫ

(n−2[[n/2]])

2[[n/2]]

0 1.067 718 1.067 718 401 946 694 1.067 718 401 946 694

1 −0.134 339 0.466 689 950 366 896 −0.134 338 501 212 901

2 0.947 985 0.426 778 727 217 411 0.435 187 600 653 266

3 −0.088 943 0.423 160 888 178 296 0.418 415 084 082 869

4 0.928 400 0.422 818 740 326 191 0.422 960 666 980 241

5 −0.079 949 0.422 787 312 867 790 0.422 747 356 295 448

6 0.924 128 0.422 784 577 276 038 0.422 786 030 269 854

7 −0.077 880 0.422 784 353 568 296 0.422 784 084 294 859

8 0.923 114 0.422 784 336 420 153 0.422 784 346 626 811

9 −0.077 380 0.422 784 335 187 365 0.422 784 333 783 337

10 0.922 866 0.422 784 335 104 100 0.422 784 335 156 547

11 −0.077 256 0.422 784 335 098 804 0.422 784 335 093 078

12 0.922 805 0.422 784 335 098 486 0.422 784 335 098 692

13 −0.077 226 0.422 784 335 098 468 0.422 784 335 098 450

14 0.922 789 0.422 784 335 098 467 0.422 784 335 098 468

ψ(1 + z) 0.422 784 335 098 467 0.422 784 335 098 467

results presented in Tables 3 and 3 indicate that the new rational

approximant T
(n)
k to Z(z) is indeed numerically useful for the com-

putation of the digamma function. Nevertheless, further improvements
should be possible. For example, we so far completely ignored that we
have an explicit series expansion for the transformation error accord-
ing to (2.12). The convergence of this series can also be accelerated,
for instance by Levin’s u transformation [5], but unfortunately, its
convergence cannot be accelerated as effectively as the convergence of
the series (1.2b) for Z(z). So, most desirable would be an asymptotic
expansion for the transformation error in (2.12) as k becomes large.
However, this is beyond the scope of the present article.
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