Skip to main content
Log in

The Linear Rational Pseudospectral Method with Preassigned Poles

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present a linear rational pseudospectral (collocation) method with preassigned poles for solving boundary value problems. It consists in attaching poles to the trial polynomial so as to make it a rational interpolant. Its convergence is proved by transforming the problem into an associated boundary value problem. Numerical examples demonstrate that the rational pseudospectral method is often more efficient than the polynomial method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Baltensperger and J.-P. Berrut, The errors in calculating the pseudospectral differentiation matrices for Čebyšev–Gauss–Lobatto points, Comput. Math. Appl. 37 (1999) 41–48; Errata: 38 (1999) 119.

    Google Scholar 

  2. R. Baltensperger and J.-P. Berrut, The linear rational collocation method, J. Comput. Appl. Math. 134 (2001) 243–258.

    Google Scholar 

  3. C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, Singapore, 1978).

    Google Scholar 

  4. J.-P. Berrut, A pseudospectral Čebyšev method with preliminary transform to the circle: Ordinary differential equations, Report 232, Mathematisches Institut, Technische Universität München, Germany (1990); revised Université de Fribourg, Fribourg/Pérolles, Switzerland (1995).

    Google Scholar 

  5. J.-P. Berrut, The barycentric weights of rational interpolation with prescribed poles, J. Comput. Appl. Math. 86 (1997) 45–52.

    Google Scholar 

  6. J.-P. Berrut, Lagrange interpolation is better than its reputation, Report 01-2, Département de Mathématiques, Université de Fribourg, Suisse (July 2001).

    Google Scholar 

  7. J.-P. Berrut and R. Baltensperger, The linear rational collocation method for boundary value problems, BIT 41 (2001) 868–879.

    Google Scholar 

  8. J.-P. Berrut and H. Mittelmann, Rational interpolation through the optimal attachment of poles to the interpolating polynomial, Numer. Algorithms 23 (2000) 315–328.

    Google Scholar 

  9. J.-P. Berrut and H. Mittelmann, The linear rational pseudospectral method with iteratively optimized poles for two-point boundary value problems, SIAM J. Sci. Comput. 23 (2001) 961–975.

    Google Scholar 

  10. J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. revised (Dover, New York, 2001).

    Google Scholar 

  11. P. Canuto, M.Y. Hussaini, A. Quarteroni and T. Zang, Spectral Methods in Fluid Dynamics (Springer, New York, 1988).

    Google Scholar 

  12. H. Chen and B.D. Shizgal, A spectral solution of the Sturm–Liouville equation: Comparison of classical and nonclassical basis sets, J. Comput. Appl. Math. 136 (2001) 17–35.

    Google Scholar 

  13. C. Canuto and A. Quarteroni, Variational methods in the theoretical analysis of spectral approximations, in: Spectral Methods for Partial Differential Equations, eds. R.G. Voigt, D. Gottlieb and M.Y. Hussaini (SIAM, Philadelphia, PA, 1984) pp. 55–78.

    Google Scholar 

  14. B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  15. P. Henrici, Essentials of Numerical Analysis (Wiley, New York, 1982).

    Google Scholar 

  16. E.L. Ince, Ordinary Differential Equations (Dover, New York, 1956).

    Google Scholar 

  17. F. Pérez-Acosta, L. Casasús and N. Hayek, Rational collocation for linear boundary value problems, J. Comput. Appl. Math. 33 (1990) 297–305.

    Google Scholar 

  18. H.R. Rutishauser, Vorlesungen über numerische Mathematik, Band 1 (Birkhäuser, Basel, 1976).

    Google Scholar 

  19. H.R. Schwarz, Numerische Mathematik, 4te Aufl. (Teubner, Stuttgart, 1997).

    Google Scholar 

  20. H.E. Salzer, Lagrangian interpolation at the Chebyshev points xn, v = cos(π/n), v = 0(1)n; some unnoted advantages, Computer J. 15 (1972) 156–159.

    Google Scholar 

  21. T. Tang and M.R. Trummer, Boundary layer resolving pseudospectral methods for singular perturbation problems, SIAM J. Sci. Comput. 17 (1996) 430–438.

    Google Scholar 

  22. G. Vainikko, The convergence of the collocation method for non-linear differential equations, USSR Comput. Math. Phys. 6 (1966) 47–58.

    Google Scholar 

  23. J.A.C. Weideman, Spectral methods based on nonclassical orthogonal polynomials, in: Approximations and Computation of Orthogonal Polynomials, eds. W. Gautschi, G. Golub and G. Opfer, International Series of Numerical Mathematics, Vol. 131 (Birkhäuser, Basel, 1999) pp. 239–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltensperger, R., Berrut, JP. & Dubey, Y. The Linear Rational Pseudospectral Method with Preassigned Poles. Numerical Algorithms 33, 53–63 (2003). https://doi.org/10.1023/A:1025535231813

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025535231813

Navigation