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Abstract

This paper presents an algorithmic procedure to calculate the delay distribution of
(im)patient customers in a discrete time D-MAP/PH/1 queue, where the service time
distribution of a customer depends on his waiting time. We consider three different
situations: impatient customers in the waiting room, impatient customers in the system,
that is, if a customer has been in the waiting room, respectively, in the system for a
time units it leaves the waiting room, respectively, the system. In the third situation, all
customers are patient—that is, they only leave the system after completing service. In
all three situations the service time of a customer depends upon the time he has spent
in the waiting room. As opposed to the general approach in many queueing systems, we
calculate the delay distribution, using matrix analytic methods, without obtaining the
steady state probabilities of the queue length. The trick used in this paper, which was
also applied by Van Houdt and Blondia [J. Appl. Probab. Vol. 39, No 1, pp. 213–222
(2002)], is to keep track of the “age” of the customer in service, while remembering the D-
MAP state immediately after the customer in service arrived. Possible extentions of this
method to more general queues and numerical examples that demonstrate the strength
of the algorithm are also included.

Index Terms: matrix analytic methods, D-MAP arrival process, phase-type services,
(im)patient customers, age dependent service times.



1 Introduction

This paper introduces an algorithmic procedure to calculate the delay distribution of a first-
come-first-serve queue with correlated arrivals (D-MAP, see Section 2), phase-type service
times that might depend on the waiting time of a customer and customers who are either
patient or impatient. As opposed to the general approach in many queueing systems, we
calculate the delay distribution without obtaining the steady state probabilities of the queue
length. The trick, which was also applied in [14], is to keep track of the “age” of the customer
in service, while remembering the D-MAP state immediately after the customer in service
arrived. As far as we know, there is currently no method available to compute the delay
distribution of a queueing system that combines impatient customers with either correlated
arrivals and/or age dependent service times. The same can be said as far as queueing systems
with patient customers that have age dependent service times is concerned.

Queueing systems of this type have obvious applications in manufacturing, service indus-
tries and telecommunications. For instance, in service industries, items that have been stored
for a certain amount of time might require additional or alternative processing. In telecom-
munication systems, packets belonging to real time services become worthless to a receiver
if they do not arrive before a certain deadline, therefore, these packets can be modeled as
impatient customers. A study of the telephone system based on a queue with (im)patient
customers was performed in [15].

The paper is structured as follows. Section 2 introduces the three queueing systems of
interest. In Section 3 we develop an algorithm to compute the waiting time distribution of
the system where all customers are impatient in the system (thus, even if they reach their
critical age while in the server, they immediately leave the queue). Section 4 indicates the
necessary changes to Section 3 if we consider impatient customers in the waiting room instead
of the system, thus, once a customer enters the server, he is no longer impatient. Patient
customers are considered in Section 5, while numerical examples, for each of the three systems,
are presented in Section 6. In Section 7, we briefly describe how to generalize the methods
presented in Section 3 to 5, if we are dealing with an arrival process that distinguishes different
customer types.

2 The D-MAP/PH/1 queue with (im)patient customers and age-dependent
service times

The arrival process of the queueing system of interest is a discrete time Markov arrival process,
commonly known as the D-MAP process [2, 3], that does not allow batch arrivals; therefore, it
is a subclass of the D-BMAP arrival process, which allows batch arrivals. Formally, a D-MAP
is characterized—similar to its continuous time variant the MAP process [10]—by two m×m
matrices D0 and D1, where m is a positive integer. The (j1, j2)

th entry of the matrix D1

represents the probability that a customer arrives and the underlying Markov chain makes a
transition from state j1 to state j2. The matrix D0 covers the case when there is no arrival.
Thus, if the D-MAP is in state j1 at time n, then, with probability (Dx)j1,j2 , we have x
arrival(s) at time n and the state at time n + 1 equals j2. The matrix D, defined as

D = D0 + D1

represents the stochastic m × m transition matrix of the underlying Markov chain of the
arrival process. Let θ be the stationary probability vector of D, that is, θD = θ and θe = 1,
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where e is a column vector with all entries equal to one. The stationary arrival rate is given
by λ = θD1e.

The service time of a customer depends upon his waiting time w and has a common
phase-type distribution function [12] with a matrix representation (mw,α′

w,T w), where mw

is a positive integer, α′
w is an 1 × mw nonnegative stochastic vector and T w is an mw × mw

substochastic matrix. The ith component of the vector α′
w is the probability that a customer,

who waited w time units before entering the service system, starts his service in phase i—that
is, the phase of the service equals i at time n+1, if we denote n as the time that the customer
entered the service system (and if we observe the phase at time n + 1 just prior to a possible
phase change at time n+1). If T F

w = e−T we, then the ith entry of the vector T F
w denotes the

probability that such a customer—being one that waited w time units—completes his service
provided that he is in the ith phase at the current time instant. The (i1, i2)

th entry of T w, on
the other hand, is the probability that such a customer continues his service in phase i2 at
the next time instant provided that he is in phase i1 at the current time instant. Notice, the
minimum service time of a customer is one time unit1. The mean service time of a customer
who waited w time units in the waiting room is given by 1/µw = α′

w(I −T w)−1e. We assume
that for some large v, (mw,α′

w,T w) equals (mv,α
′
v,T v) for w > v. Notice, this assumption

is without loss of generality if we consider impatient customers (the first two situations) by
choosing v = a, where a denotes the critical age of impatient customers.

Before we proceed further, let us state the same thing in another way. The service time
of a customer depends upon his waiting time w and has a common phase-type distribution
function with a matrix representation (mser,αw,T ). Indeed, by setting mser =

∑v
i=0 mi and

defining αw and T as

αw = [0w,bα
′
w0w,c],

T =











T 0 0 . . . 0

0 T 1 . . . 0
...

...
. . .

...
0 0 . . . T v











,

where 0w,b, resp. 0w,c, is a 1 ×
∑min(w−1,v−1)

i=0 mi, resp. 1 ×
∑v

i=w+1 mi, vector filled with
zeros, we see that both cases are equivalent. For many practical situations, one can often
define a significantly smaller matrix T that is equivalent to the T matrix mentioned above.
For example, if all the customers with a waiting time smaller than 100 time units have a
deterministic service time of 4 time units and those with a longer waiting time (i.e., w ≥ 100)
are served in 2 time units, v equals 100 and the T matrix defined above is a 402×402 matrix.
However, it is sufficient to define mser = 4 and T as

T =









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









.

The vectors αw are equal to [1 0 0 0] for w < 100 and [0 0 1 0] for w ≥ 100. It should be
noted that such a reduction of T is only possible in specific cases and not in the general case.

1The service time equals l time units with probability α′

wT l−1

w T F

w
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Finally, in the case of a simultaneous arrival and departure we assume that the departure
occurs first. Also, if an arriving customer sees the server empty upon arrival, his service
will start immediately (see [7]). In the forthcoming sections we describe the models using
(mser,αw,T ). Finally, we define T F = Te − e and mtot = mserm. In each of the following
three sections, we create a(n) (in)finite Markov chain (MC), indicate how to calculate the
steady state vector of this MC and present a simple formula to find the delay distribution
of a customer using the steady state vector. While constructing each of these MCs, we will
always observe the system just prior to possible phase changes, arrivals or departures. Thus,
if we refer to the system state at time n, such events happening at time n are not yet taken
into account by the system state.

3 Impatient Customers in the System

In this section, we consider the D-MAP/PH/1 queue with service times depending on the
waiting time and impatient customers in the system. Thus, if a customer has spent a certain
time, say a time units, in the system (that is, waiting room and server) he immediately leaves
the queue without starting/completing his service.

Consider a Markov chain (MC) with a finite number of states labeled 1, 2, . . . , amtot + m.
The set of states {1, . . . ,m} is referred to as level zero of the MC, whereas the set of states
{(i − 1)mtot + m + 1, . . . , imtot + m} is referred to as level i of the MC for 0 < i ≤ a. The
states of level i, with 0 < i ≤ a, are labeled as (s, j), where 1 ≤ s ≤ mser and 1 ≤ j ≤ m. Let
state j of level zero of the MC correspond to the situation in which the queue and the server
are empty, while the current state of the D-MAP is j. Let state (s, j) of level i of the MC
correspond to the situation in which there is a customer in service, who arrived i ≤ a time
units ago2, while the service process is currently in phase s and the D-MAP arrival process
was in state j at time n − i + 1, where n is the current time instant. Recall, we observe the
system just prior to possible phase changes, arrivals or departures.

The level of the Markov chain can never increase by more than one during a transition
between time instant n and n + 1. Let us explain. If the server is idle at time n, that is, the
MC is at level zero at time n, we remain in level zero if the server remains idle, otherwise we
make a transition to level one (because an arriving customer immediately enters the service
system). For a busy server we have: either the customer in service, denoted as c, remains
in the service system, thus, a transition is made from level i to i + 1, or a new customer c ′

enters the service system3, the age at time n of which can be at most one less than the age
of customer c at time n, meaning that the new level is at most i. As a result, the system can
be described by a transition matrix P with the following structure:

P =



















B1 B0 0 0 . . . 0 0

B2 A1
1 A1

0 0 . . . 0 0

B3 A2
2 A2

1 A2
0 . . . 0 0

...
...

...
. . .

...
...

Ba Aa−1
a−1 Aa−1

a−1 Aa−1
a−2 . . . Aa−1

1 Aa−1
0

E Ca Ca−1 Ca−2 . . . C2 C1



















, (1)

2A customer with an age larger than a can never be in the service system, because customers leave the
system whenever their age equals a (possibly making the server available for a new customer while leaving).

3The situation in which the server becomes idle corresponds to a transition to level zero.
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where Ai
k and C i are mtot ×mtot matrices, Bi, i > 1, and E are mtot ×m matrices, B1 is an

m × m matrix and B0 is an m × mtot matrix and hence P is a (m + amtot) × (m + amtot)
matrix.

Next, let us derive an expression for each of the matrices Ai
k, Bi, Ci and E. Assume

that the MC is in state 1 ≤ j1 ≤ m at level zero at time n, that is, the D-MAP is in state j1

at time n and the server is idle. Then, anyone of two events can occur: (i) with probability
(D0)j1,j2 , there is no arrival at time n and the D-MAP makes a transition to state j2. (ii)
with probability (α0)s2

(D1)j1,j2, a customer arrives at time n (to the empty system) and
starts his service in phase s2 (for some 1 ≤ s2 ≤ mser), while the D-MAP is in state j2 at
time n + 1. An arrival implies a transition to level one (because the customer has been in
the service system for one time unit at time n + 1), otherwise the MC remains at level zero,
hence,

B1 = D0, (2)

B0 = α0 ⊗ D1, (3)

where ⊗ denotes the Kronecker product between matrices. Suppose that the MC is in state
(s1, j1) at level i, with 0 < i < a, at time n. Then, we get a transition to level zero if the
customer in service completes his service (with probability (T F )s1

) and there is no arrival at
time instant n − i + 1, n − i + 2, . . . , n. Hence,

Bi+1 = T F ⊗ Di
0, (4)

for 0 < i < a. A transition to state (s2, j1) of level i + 1 occurs if the customer remains in
the service system (with probability (T )s1,s2

). Notice, in this case the state of the D-MAP
remains the same, therefore,

Ai
0 = A0 = T ⊗ Im, (5)

where Im denotes the m×m unity matrix. Finally, a transition to level i− l, with 0 ≤ l < i,
occurs if the customer in service completes his service (with probability (T F )s1

) and there is
no arrival until time n + 1 − (i − l), that is, there is no arrival at time n− i + 1, . . . , n − i + l
and at time n + 1− i + l we have an arrival4. The age at time n of the customer who arrived
at time n + 1 − i + l clearly equals i − l − 1. The phase at the start of the service depends
upon this age. Transitions from level i to i− l are governed by the Ai

l+1, hence, for 1 ≤ i < a
and 0 ≤ l < i,

Ai
l+1 = T F αi−l−1 ⊗ (Dl

0D1), (6)

for hereon, any matrix to the power 0 is taken to be the identity matrix of appropriate
dimension. Next, consider the case where the MC is at level a at time n. No matter whether
the customer in service completes his service at time n, this customer leaves the system.
Thus, as far as the transition probabilities are concerned, we could regard level a as if the
service completion probability vector T F is identical to e. As a result, a transition is made
to level a− i, for 0 ≤ i < a, if there are no arrivals until time n + 1 − (a − i), that is, there is
no arrival at time n − a + 1, . . . , n − a + i and at time n + 1 − a + i we have an arrival. The

4Indeed, we are at level i − l at time n + 1 if the customer in service has an age i − l at time n + 1, thus,
he arrived at time n + 1 − i + l.
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age at time n of the arriving customer is obviously equal to a− i− 1. The phase at the start
of the service depends upon this age. Transitions from level a to a − i are governed by the
Ci+1 matrix, hence, for 0 ≤ i < a,

Ci+1 = eαa−i−1 ⊗ (Di
0D1). (7)

Finally, in order to get from level a to level zero, there should not be any arrival at time
n − a + 1, n − a + 2, . . . , n, therefore,

E = e ⊗ Da
0. (8)

This concludes the description of the transition matrices.
The steady state vector π of P , that is, π = πP and πe = 1, is found using the Latouche-

Jacobs-Gaver (LJG) algorithm [9]. This algorithm calculates the solution of πQ = 0, where
Q is an infinitesimal generator matrix for a bidimensional Markov process with a lower block-
Hessenberg form. By rewriting π = πP as π(P − I) = 0, we see that (P - I) is such a
generator matrix. Applying the LJG algorithm results in the following algorithm, the time
and memory complexity of which are O(m3

tota
2) and O(m2

tota):

Algorithm:

• INPUT: the matrices D0, D1, the phase-type distribution function characterized by
(mser,αw,T ) and the critical age a.

• STEP 1a: Calculate the matrices C i and E by means of equations (7) and (8). Define
Ga = C1 − I, Πa,0 = −(Ga)

−1E and for k = 1, . . . , a − 1, Πa,k = −(Ga)
−1Ca−k+1.

• STEP 1b: Calculate the matrix A0 by means of equation (5). For s = a−1, a−2, . . . , 1,
calculate the matrices Bs+1 and As

k by means of equations (4) and (6) and define
Gs = As

1 − I + A0Πs+1,s, Πs,0 = −(Gs)
−1 [Bs+1 + A0Πs+1,0] and for k = 1, . . . , s− 1,

Πs,k = −(Gs)
−1
[

As
s−k+1+ A0Πs+1,k].

• STEP 1c: Calculate the matrices B0 and B1 by means of equations (2) and (3). Define
G0 = B1 − I + B0Π1,0.

• STEP 2: Calculate de steady state vector π = (π0,π1, . . . ,πa) by π0G0 = 0, π1 =
π0B0(−G1)

−1 and for s = 2, . . . , a, πs = πs−1A0(−Gs)
−1.

The implementation of this algorithm requires the storage of a single mtot × (m + mtota)
matrix W using the following method. First, during step 1a, we store [Πa,0 Πa,1 . . . Πa,a−1

(−Ga)
−1
]

in W . During step 1b, we overwrite Πs+1,s by(−Gs)
−1 and Πs+1,k by Πs,k.

Finally, during step 1c, we store G0 in Π1,0
5. Thus, at the start of step 2 we have W =

[

G0 (−G1)
−1 (−G2)

−1 . . . (−Ga)
−1
]

, which suffices to obtain π in step 2. Other algorithms,
having the same time and memory complexity as the LJG algorithm, to obtain π can be found
in the literature [4, 8]. Morover, the LJG algorithm is, as far as we know, as efficient as any
known algorithm to solve finite level independent MCs of the GI/M/1 type. Such a MC has
a transition matrix similar to P but with Ai

k = Aa−1
k for any k and i. For instance, if we

consider impatient customers with a service time that is independent of the waiting time w,
that is, αw = α0 for any w, we obtain such an MC.

5The matrix G0 is a m × m matrix, thus, it requires only the first m rows of W .
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Denote P [X = i] as the probability that a customer completes his service i time units
after entering the system. Then, by noticing that this probability equals the expected number
of customers who complete their service at age i at an arbitrary time instant, divided by the
expected number of customers who leave the system at an arbitrary time instant, we have

P [X = i] =
1

λ

mser
∑

s=1

(T F )s

m
∑

j=1

(πi)(s,j), (9)

for 0 < i ≤ a. Pout = 1 −
∑a

i=1 P [X = i] equals the probability that a customer leaves the
system before starting/completing his service.

4 Impatient Customers in the Waiting Room

This queueing system is same as the one discussed in Section 3 except for the following: If a
customer enters the service system before reaching the critical age a, he remains in the service
system until his service is completed. Thus, the customers are no longer impatient once they
are being served. If we define the same MC as in the previous section for this queueing
system, we get a transition probability matrix P ′ that is either finite or infinite depending
on whether the service time distribution of a customer is bounded. For unbounded service
times we get an infinite P ′ matrix, because the age of the customer in service is unbounded.
For bounded service times, where we denote smax as the maximum service time, we get a
P ′ matrix of dimension m + mtot(a + smax − 1), because the maximum age of a customer in
service is a + smax − 1 (a customer enters the service system with an age of at most a − 1).

In order to find π′, the steady state vector of P ′, we define a new MC with a transition
matrix P̃ of dimension m + mtota as follows. Instead of observing the MC at each time
instance n, we only observe the chain when the server is either occupied by a customer of age
at most a or it is idle. Therefore, the transition probability matrix P̃ is identical to P except
for the last mtot rows – the rows corresponding to level a. Thus, P̃ can be written as

P̃ =



















B1 B0 0 0 . . . 0 0

B2 A1
1 A1

0 0 . . . 0 0

B3 A2
2 A2

1 A2
0 . . . 0 0

...
...

...
. . .

...
...

Ba Aa−1
a−1 Aa−1

a−1 Aa−1
a−2 . . . Aa−1

1 Aa−1
0

Ẽ C̃a C̃a−1 C̃a−2 . . . C̃2 C̃1



















. (10)

Let us derive an expression for Ẽ and C̃i for i = 1, . . . , a. First, consider a transition from
state (s1, j1) at level a to state j2 at level 0. Denote by c the customer of age a who is
in the server at time n. This customer will remain in the server for k more time units
(with probability (T kT F )s1

, recall we observe the system just prior to the possible phase
changes and departure epochs) for some k ≥ 0. Thus, customer c leaves the system at time
n + k. Therefore, the next time instant that we observe is time n + k + 1. At time instant
n−a+1, . . . , n−a+k either there is an arrival or no arrival—if there is an arrival at time n−a+l
for some l = 1, . . . , k, the arrived customer leaves the waiting room at the time instant n+l as
his age is a by then—and there is no arrival at the time n− a+ k +1, n− a+ k +2, . . . , n+ k
(a customer arriving at any of these time instants would have an age of at most a − 1 at
time n + k and therefore would enter the service system at time n + k, which cannot be if we
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want to make a transition to level zero). This event happens with a probability (DkDa
0)j1,j2 .

Hence, the matrix Ẽ corresponding to the transition from level a to level 0 is given by

Ẽ =

∞
∑

k=0

(T kT F ) ⊗ (DkDa
0) =

(

∞
∑

k=0

(T kT F ) ⊗ Dk

)

Da
0. (11)

Now, consider the transition from state (s1, j1) at level a to state (s2, j2) at level a − i, for
0 ≤ i < a. Again, denote by c the customer of age a who is in service at time n. This
customer will remain in the service system for k more time units for some k ≥ 0. Thus,
customer c leaves the system at time n + k. Therefore, the next time instant that we observe
is time n + k + 1. At time instant n − a + 1, . . . , n − a + k either there is an arrival or no
arrival, there is no arrival at time n−a+k +1, . . . , n−a+k + i and an arrival occurs at time
n−a+k + i+1. The age at time n+k of this arrived customer is clearly a− i− 1, therefore,
the vector αa−i−1 determines s2. The above mentioned event happens with a probability
(DkDi

0D1)j1,j2 . As a result, transition from level a to a − i, for 0 ≤ i < a, governed by the
matrix C̃i+1, is found as

C̃i+1 =
∞
∑

k=0

(T kT F )⊗(αa−i−1⊗(DkDi
0D1)) =

(

∞
∑

k=0

(T kT F ) ⊗ Dk

)

(αa−i−1⊗Di
0D1). (12)

The sum occuring in both equation (11) and (12) is finite if the service time distribution is
bounded, otherwise we approximate it by the first k ′ terms if

∑∞
k≥k′(T kT F ) ⊗ Dk < ε, for

some ε small, e.g., 10−20. Such a k′ exists because T is a substochastic matrix.
The steady state vector of P̃ is found by the LJG algorithm of Section 3 if we replace

E and C i by Ẽ and C̃i. Having found π̃ = [π̃0π̃1 . . . π̃a], the steady state vector of P̃ , we
obtain π′ = [π′

0π
′
1 . . .], the steady state vector of P ′, as π′

i = π̃i/c, for 0 ≤ i ≤ a, and

π′
a+i = π̃a(T

i ⊗ I)/c, (13)

where i > 0, I is the unity matrix of dimension m and c =
∑a−1

i=0 π̃ie +π̃a((I − T )−1 ⊗ I)e
is the normalization factor. Notice, if the service time distribution is bounded, T i becomes
zero for i sufficiently large, otherwise it decreases exponentially to zero.

Denote P [X ′ = i] as the probability that a customer completes his service i time units
after entering the system. Then, similar to Section 3, we have

P [X ′ = i] =
1

λ

mser
∑

s=1

(T F )s

m
∑

j=1

(π′
i)(s,j), (14)

for i > 0. P ′
out = 1−

∑

i>0 P [X ′ = i] equals the probability that a customer leaves the system
before starting his service (once started, a customer always completes its service).

5 Patient Customers in the System

As opposed to the previous two sections, all customers are now patient, that is, they wait in
the waiting room until the server becomes available and do not leave the server until their
service is completed. We consider the same MC as in Section 3. Since there is no upper
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bound on the time that a customer spends in the system, the transition probability matrix
P̄ of this MC is an infinite matrix with the following structure:

P̄ =







































B1 B0 0 . . . 0 0 0 0 . . .
B2 A1

1 A1
0 . . . 0 0 0 0 . . .

B3 A2
2 A2

1 . . . 0 0 0 0 . . .
...

...
...

. . .
...

...
...

...
. . .

Bv Av−1
v−1 Av−1

v−2 . . . Av−1
1 Av−1

0 0 0 . . .

Bv+1 Av
v Av

v−1 . . . Av
2 Av

1 A0 0
. . .

Bv+2 Av+1
v+1 Av+1

v . . . Av+1
3 Av+1

2 A1 A0
. . .

Bv+3 Av+2
v+2 Av+2

v+1 . . . Av+2
4 Av+2

3 A2 A1
. . .

...
...

...
. . .

...
...

. . .







































, (15)

where the matrices Ai
k and Bi were defined in Section 3. Remember, in Section 2 we assumed

that the service time distribution becomes identical for all customers with an age of v or higher
(for some v), that is, the vectors αv+i = αv, for i > 0. Therefore, looking at Equation 6, the
matrices Ai

k, for i − k ≥ v, can be written as Ak because the vector αi−k is equal to αv.
π̄, the steady state vector of P̄ , can be calculated as follows. We reblock P̄ by gathering

level 0, 1, . . . , v into a single level, thus,

P̄ =













F 1 F 2 0 . . .
H1 A1 A0 . . .

H2 A2 A1
. . .

...
...

. . .
. . .













, (16)

where F 1 is the (m + vmtot) × (m + vmtot) matrix in the upper left corner of Equation (15),
F 2 is a (m + vmtot) × mtot matrix with all its entries equal to zero, except for the last mtot

rows which equal A0. Finally, H i, for i > 0, is given by

H i =
[

Bv+i+1 Av+i
v+i Av+i

v+i−1 . . . Av+i
i+1

]

. (17)

Thus, P̄ can be seen as an infinite GI/M/1 Type MC with a generalized initial condition [12].
Due to [14, Theorem 1], the steady state vector π̄ of P̄ exists if and only if λ/µv < 1, where
λ and µv where defined in Section 2. Moreover, π̄v+1+i = π̄v+1R

i, for i > 0, where R, an
mtot × mtot matrix, is the smallest nonnegative solution of the following equation:

R =
∞
∑

i=0

RiAi. (18)

This equation can be solved by means of an iterative scheme [11, 13, 1]. The first v + 2
components [π̄0 . . . π̄v+1] of the vector π̄ are then found by solving the boundary condition

[π̄0 . . . π̄v+1] = [π̄0 . . . π̄v+1]

[

F 1 F 2

H̄ Ā

]

, (19)

where H̄ =
∑

l≥1 Rl−1H l and Ā =
∑

l≥1 Rl−1Al (see [12, 11]). The matrix appearing in
Equation (19) has the same structure as P , thus, we can use the LJG algorithm to solve the
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boundary condition. The vector [π̄0 . . . π̄v+1] is normalized as

π̄0e +

v
∑

i=1

π̄ie + π̄v+1(I − R)−1e = 1. (20)

Denote P [X̄ = i] as the probability that a customer completes his service i time units after
entering the system. Then, similar to Sections 3 and 4, we have

P [X̄ = i] =
1

λ

mser
∑

s=1

(T F )s

m
∑

j=1

(π̄i)(s,j), (21)

for i > 0.

6 Numerical Examples

A fairly arbitrary example that demonstrates the strength of our approach is presented in this
section. We consider a D-MAP arrival process with two states. While in state one, resp. two,
an arrival occurs at the current time instant with a probability 0.1, resp. 0.4. The state of
the D-MAP changes with a probability of 0.01. Thus,

D0 =

[

0.891 0.009
0.006 0.594

]

, D1 =

[

0.099 0.001
0.004 0.396

]

. (22)

The service time of a customer is as follows. If the customer waited w time units, with
w ≤ 100, then his service time equals either two or three time units, each with a probability
0.5. If his waiting time w is more than 100, he might need some additional processing, that
is, with a probability 0.2, 0.05 and 0.005 he requires an additional geometrically distributed
service time with a mean 1.5, 5 and 50, respectively. Hence,

T =





























0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0.2 0.05 0.005
0 0 0 0 0 0 1/3 0 0
0 0 0 0 0 0 0 4/5 0
0 0 0 0 0 0 0 0 49/50





























, (23)

the vectors αw = [0.5 0.5 0 0 0 0 0 0 0], for w ≤ 100 and αw = [0 0 0 0.5 0.5 0 0 0 0],
for w > 100. We consider the following three systems, requiring the algorithms developed in
Section 3, 4 and 5: impatient customers in the system, impatient customers in the waiting
room and patient customers. The critical age a for the first two systems varies between 10
and 500. In case of patient customers it suffices to set v = 101.

Figure 1 presents the waiting time distribution for the following cases: impatient customers
in the system with the critical age a equal to 50, 200, 300, 400 and 500 (full lines labeled as
S(a)), impatient customers in the waiting room for the same 5 values for a (dotted lines
labeled W(a)) and patient customers (dashed line labeled P). All the curves more or less
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Figure 1: Delay distribution of (im)patient customers

coincide with the patient customer case as long as the waiting time w is well below the
critical age a. When w approaches a we get an increase, this is caused by the fact that the
system is overloaded during the time periods in which the D-MAP resides in state 2. The
W(a) curves are, as opposed to the S(a) curves, infinite, because there is no upper bound
on the service time of a customer (except for a = 50). The difference between W(a) and
S(a) seems very small, nevertheless the number of customers that leave the system without
starting/completing service differs significantly (see Figure 2). Indeed, for a ≤ 100, it is much
more efficient to finish the service of the customer in progress (because the service time is
nearly deterministic), whereas for a > 100, we get the reverse effect, because the service time
of those customers has a large variation (thus, it is better to drop the customers who require
a large service time).

The computation times for the curves in Figure 1 are below one minute, e.g., for S(500)
we needed 58.6371 seconds using an AMD K7 ATHLON 1.4 GHz processor with 512 Mb
of memory, the system with patient customers required 42.3194 seconds. In general, the
computation time can be further reduced by removing the possible transient states from the
MCs of interest. For instance, in the example above, the states (s, j), for s > 3, at level
i, for i ≤ 100, are transient (because a customer entering the server with an age below 100
can never be in phase 4 to 9). Similarly, the states (s, j), for s ≤ 3, at level i, for i > 103,
are also transient. Removing the transient states from the transition matrix reduces its
dimension, while maintaining its structure (one simply eliminates the rows and columns that
correspond to these states). It is, however, not necessary to remove these states, because
their corresponding entries in the steady state vector will equal zero when applying the LJG
algorithm. In some particular cases removing transient states could result in a dramatic
reduction of the state space. For instance, assume that the interarrival times of the customers
are independent and identically distributed according to some distribution G. Denote gi, for
i ≥ 1, as the probability that the interarrival time equals i. Thus, this GI arrival process is
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described by a D-MAP as follows:

D0 =



















0 g2 g3 g4 . . .
0 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .



















, D1 =



















g1 0 0 0 . . .
1 0 0 0 . . .
0 0 0 0 . . .
0 0 0 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .



















. (24)

This D-MAP is always in the first state after an arrival occured, therefore, all the states (s, j)
at level i, for i > 0, are transient if j 6= 1 (because we remember the state of the D-MAP
immediately after an arrival occured). Thus, for this particular arrival process, the transition
matrices, e.g., Ai

k, used in Section 3 to 5, can be reduced to mser × mser matrices (i.e., it
seems as if the D-MAP has only one state). In general, if the j1-th entry of the vector eD1

equals zero, the states (s, j1) at level i > 0 are transient for any s.

7 Extentions to other Queueing Systems

It is possible to combine the techniques presented in Sections 3 to 5 with those used in
[14], to obtain the delay distribution of (im)patient customers in a discrete time MMAP[K]/
PH[K]/1 queue with age dependent service times. The discrete time Markov arrival process
with marked transitions (MMAP[K], see [6, 5]) distinguishes customers into K different types.
The MMAP[K] is sometimes defined such that it allows batch arrivals to occur, but we do not
consider batch arrivals. An MMAP[K] that does not allow batches to occur, is characterized

11



by a set6 of m×m matrices {Dk | 0 ≤ k ≤ K}, with m a positive integer. The (j1, j2)
th entry

of the matrix Dk, for k > 0, represents the probability that a customer of type k arrives and
the underlying Markov chain makes a transition from state j1 to state j2. The matrix D0

covers the case when there are no arrivals. Similar to Section 2, the matrix D, defined as
D =

∑K
k=0 Dk, represents the stochastic m × m transition matrix of the underlying Markov

chain of the arrival process. Let θ be the stationary probability vector of D, that is, θD = θ

and θe = 1, where e is a column vector with all entries equal to one. The stationary arrival
rate of type k customers is given by λk = θDke.

The service time of a type k customer who waited w time units in the waiting room of
such a queue has a common phase-type distribution function with a matrix representation
(mk,αk,w,T k), where mk is a positive integer, αk,w is an 1×mk nonnegative stochastic vector
and T k is an mk × mk substochastic matrix. The mean service time of a type k customer
who waited w time units in the waiting room, equals 1/µk,w = αk,w(I − T k)

−1e. Thus, the

service time of a customer depends on his type and age. Define mK
tot as m

∑K
k=1 mk.

The following systems can be solved by extending the methods discussed in Sections 3 to 5
in combination with [14]. Firstly, assume that all customers are patient and that αk,w = αk,v,
for w > v for some v large. Thus, the service times become age independent from a certain
age, but still depend upon the customer type. We can obtain the delay distribution using
methods similar to Section 5. In order to do so, we have to add the type of the customer in
service to the couple (s, j). Thus, the states of level i, for i > 0, are now labeled as (k, s, j),
where 1 ≤ k ≤ K, 1 ≤ s ≤ mk and 1 ≤ j ≤ m. The states of level zero remain the same.
The mK

tot ×mK
tot matrices Ak

i are found by replacing the αk vectors in [14, Section 2.1] by the
appropriate αk,w vectors. The Bi are identical to those in [14, Section 2.1]. Secondly, assume
that all the customers are impatient, that is, they leave the system, resp. waiting room, when
they reach the critical age a. Notice, a does not depend on the type of a customer. These
two cases, i.e., impatient in the system or waiting room, can be treated similar to Sections
3 and 4 after adding the type of the customer k to the couple (s, j). Thus, the transition
matrices P and P̃ are now (amK

tot + m) × (amK
tot + m) matrices. Finally, it is also possible

to consider a system with impatient customers where the critical age a depends upon the
type k of a customer or to combine patient with impatient customers (where some types are
patient and others are impatient with a critical age ak). The MCs required to obtain the
delay distribution of these queueing systems differ significantly from the ones presented in
this paper, but are nevertheless based on the same ideas.
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