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AbstratThis paper addresses image segmentation via a generative modelapproah. A Bayesian network (BNT) in the spae of dyadi wavelettransform oeÆients is introdued to model texture images. Themodel is similar to a Hidden Markov model (HMM), but with non-stationary transitive onditional probability distributions. It is om-posed of disrete hidden variables and observable Gaussian outputsfor wavelet oeÆients. In partiular, the Gabor wavelet transform isonsidered.The introdued model is ompared with the simplest joint Gaus-sian probabilisti model for Gabor wavelet oeÆients for several tex-tures from the Brodatz album [1℄. The omparison is based on ross-validation and inludes probabilisti model ensembles instead of singlemodels. In addition, the robustness of the models to ope with addi-tive Gaussian noise is investigated. We further study the feasibility ofthe introdued generative model for image segmentation in the noveltydetetion framework [2℄. Two examples are onsidered: (i) sea surfaepollution detetion from intensity images and (ii) image segmentationof the still images with varying illumination aross the sene.Keywords: Dyadi wavelet transform, Gabor wavelet trans-form, generative probabilisti model, Bayesian networks and en-sembles, image texture segmentation, novelty detetion.Glossary:BNT - Bayesian networkHMM - Hidden Markov modelWT - Wavelet transformWTC - Wavelet transform oeffiientsGWT - Gabor wavelet transformGWTC - Gabor wavelet transform oeffiientsMAP - Maximum a posterior prinipleML - Maximum likelihoodEM - Expetation-MaximizationMRF - Markov random fieldHMTM - Hidden Markov tree modelCPD - Conditional probability distributionCPT - Conditional probability tableSNR - Signal to noise ratioCV - Cross-validationPDF - Probability density funtionGMM - Gaussian mixture modelIntrodutionImage segmentation is a diÆult and yet very important problem arising inmany visual appliations suh as medial imaging, automated monitoring,2



doument proessing, remote sensing and many others. The main goal ofimage segmentation is to deompose an image into its onstituent parts orobjets [3, 4℄. This beomes possible sine real objets have homogeneousphysial properties that should be reeted in images. In some ases, anassumption of the homogeneity of the objet gray level intensity or oloris suÆient and works well in pratie. In many others, this assumptionis violated, and instead image objets are assumed to be represented asrepeated patterns alled visual textures (see Figures 2a,d for some textureexamples). Though textures are easily reognized by humans, there is no aunique and strit mathematial de�nition of the latter [5, see for review andother de�nitions℄.Segmentation based on texture properties is referred to as texture seg-mentation. The level to whih segmentation is arried and the approahesto address the problem ruially depend on the partiular appliation, i.e.its aims and the available information. In general, the less is known aboutthe possible number of objets (textures) in the image sene and their ap-pearane, the more diÆult the problem beomes. In some appliations, theimage parts should be additionally lassi�ed into ertain texture ategories,suh as soil, sand, grass, et. This type of the segmentation problem isreferred to as a texture lassi�ation problem and it assumes that represen-tatives of all possible textures that may appear in the image are available.There is also a onstrained variant of this problem when only the objet(texture) of interest should be found in the image and only the informa-tion about this partiular texture or its antipode appearane is availablebeforehand; we refer to this type of the segmentation problem as texturedetetion.Texture lassi�ation, detetion and image segmentation, in general, arediÆult representatives of statistial pattern reognition when the data ishigh-dimensional. In the framework of statistial pattern reognition, tex-ture (image) lassi�ation and detetion emerge as supervised and semi-supervised image pixel lassi�ation tasks, respetively. In the most diÆ-ult ase of the texture (image) segmentation when no a priori informationis available to us, texture segmentation emerges as unsupervised image pixellassi�ation task.An important element of the supervised/unsupervised lassi�ation us-ing a Bayesian approah, leading to a MAP (maximum a posterior priniple)when mislassi�ation loss funtions are the same for all lasses [6℄, is esti-mating posterior lass probabilities p( = ijx) given the observation x 2 Rn.It is in general, a diÆult task and one of the ways to avoid a diret estima-tion of the posterior lass probabilities is using lassi�ers based on generativemodels.Classi�ers based on generative models estimate posterior lass probabil-3



ities using the Bayes' rule:p( = ijx) = p(xj = i)p( = i)PMi=1 p(xj = i)p( = i) ;where M is a number of lasses. If all the lass priors are the same, esti-mation of the posterior probabilities is ompletely replaed by estimatingonditional lass probabilities p(xj = i). Though this problem may also bequite diÆult, it may still be easier than the original one. Moreover, sineour main goals are lassi�ation, detetion and segmentation, less omplexmodels and less data than for a texture synthesis problem1, may be required.The generative model lassi�ers may be easily updated when a new lass isadded or removed, or when new features independent from the previous areintrodued. Using generative models for texture lassi�ation implies thattextures are samples of ergodi stohasti proesses [7℄.One an easily reognize MRFs (Markov Random Fields) [8, 9℄ as a typeof generative model lassi�er. Though MRFs an desribe a wide range ofimage distributions, they are known to be omputationally intensive. Theonvergene and omputation of MRFs grow exponentially with the liquesize, that make them unrealisti in pratie.Reently, with the rapid development of wavelet tehniques an interestin the generative model lassi�er approahes was revived. New approahesbased on modeling the texture images in the wavelet domain have beenproposed [10, 11, 12℄. Due to multi-resolution properties of the wavelettransform (WT) and loality of wavelet basis funtions, a wavelet imagerepresentation turns out to be simple, i.e. it is sparse [13, 14℄ and it hassmall redundany. This allows the enoding of WT oeÆients by simpleprobabilisti models that are fatorized aross sale. The models an betrained from the single image due to the ergodiity assumption, that sam-pling over an image spae domain and over a random �eld are equivalent[7, 15℄.Despite, the ommon assumptions and ideas underlying these approahes,they still di�er in the type of the wavelet transform used and probabilistimodels imposed. The multi-sale statistial model [11℄ assumes a wavelettransform with a pyramidal struture but with a trivial non-parametri on-ditional distributions as a ratio of Parzen window density estimators. Alter-natively Hidden Markov Tree Models (HMTMs) [10℄ are parametri modelswith disrete hidden states and Gaussian observable variables introdued forseparable 2D wavelet transforms. In addition, these models are limited bythe independent band assumption, i.e. wavelet oeÆients orresponding tothree di�erent orientations: horizontal, vertial and diagonal, are assumedto be independent. Finally, random asades on wavelet trees [12℄ have been1The problem of generating textures as samples from the probabilisti model.4



introdued for the steerable pyramid2 [16℄ and the pyramid (wavelet) oeÆ-ients are desribed as Gaussian sale mixtures with the ontinuous (hidden)sale variables obeying a multi-sale autoregressive proess. This model wasused for image denoising and wavelet oeÆient oding.In this paper, we ontinue this line of thought and introdue a generativeprobabilisti model for Gabor wavelet transform (GWT) oeÆients to solvetwo types of image segmentation problems: texture lassi�ation and texturedetetion. The GWT has been suessfully and extensively used for textureanalysis [17, 18, 19℄; it is shift-invariant, has optimal spatial/frequeny lo-alization properties, has �ner orientation seletivity than a separable real-ization of the WT [13℄ and is biologially motivated. The GWT (Set. 1)may be more eÆient for the analysis of omplex oriented textures than the2D separable WT.Though the model is demonstrated using a Gabor WT, it is quite generaland may be easily generalized to probabilisti modeling of the output oeÆ-ients of any bank of �lters depending on sale and orientation parameters,suh as the dyadi oriented wavelet transform [13℄ or a bank of di�erene ofGaussian �lters [20℄ onsidered at di�erent sales and orientations.The introdued generative model (Set. 2) has the form of a Bayesiannetwork (BNT) [21℄ and is similar to HMTMs as it has a mixed disretehidden state and ontinuous observation variable model. However, the inde-pendent band assumption is relaxed and replaed by the wavelet oeÆientindependene within the sale. Similar to [12℄ the model enodes orientationand sale dependenies simultaneously. In ontrast to the reviewed works,the dyadi WT is used instead of the deimated (pyramidal) WT and ourmain goal is a texture segmentation instead of texture synthesis. The Ga-bor BNT parameters are found using the EM (expetation maximizationalgorithm) and image lassi�ation is based on the Bayesian lassi�er thatis equivalent to lassi�ation by ML (maximum likelihood) in our ase3.In order to perform texture detetion, the novelty detetion approah[2℄ is used. In the texture detetion problem, probabilisti model for onlyone texture of interest is learned; and �nal detetion is based on identifyingthe image pixels as belonging to the texture, if they get suÆiently largelikelihood value under the learned probabilisti model.The introdued model is ompared (Set. 3) with the simplest joint Gaus-sian probabilisti model for Gabor wavelet oeÆients for several texturesfrom the Brodatz album [1℄. The omparison is based on ross-validationand inludes probabilisti model ensembles instead of single models. In ad-dition, the robustness of the models to ope with additive Gaussian noise isinvestigated. We further study the feasibility of the introdued generative2The 2D separable wavelet transform may be onsidered as a partial ase of the steer-able pyramid3lass priors are assumed to be the same5



model (Set. 4) for (i) sea surfae pollution detetion from intensity imagesand (ii) objet detetion from still images with varying illumination arossthe sene.1 Gabor Wavelet TransformAppliation of the oriented WT has been motivated by many physiologi-al experiments disovering a lass of ells in the mammalian visual ortex,whose responses depend on the frequeny and orientation of the visual stim-uli [13℄. In partiular, it has been shown [17℄ that these impulse responsesan be approximated by Gaussian windows modulated by a harmoni wave.These observations motivated a wide use of the Gabor WT in the omputervision study.The Gabor WT is a type of dyadi oriented wavelet transform [13℄ withomplex valued �lters de�ned by:g(~r) = C�exp(�k ~r k22�2 )exp(2�i~k � ~r); C� = 12��2 ; (1)where ~r = (x; y) and ~k = (f os �; f sin �) is a vetor de�ning a radial fre-queny f and orientation � of the osinusoidal/sinusoidal modulation waves.The MTF (modulated transfer funtion) of this �lter is given by:ĝ(~w) = exp(�k ~w � ~k k22�?2 ); �? = 12�� : (2)Equation (2) shows that in the frequeny domain the energy of the �lter isonentrated at the frequeny ~w = ~k and its e�etive support is inverselyproportional to the sale parameter �.The �lter parameters are sampled by the equal logarithmi frequenyband sheme; i.e. Gaussian �lters are distributed over the frequeny domainin suh a way that their size inreases by a fator 2 and adjaent Gaussiansinterset at positions where their respetive magnitudes have values of halfof their maxima. Suh sampling guarantees almost a omplete overing ofthe frequeny domain [13℄. As a result one gets the following sheme:fj = 2j�1f0; �?j = fj3p2ln2 ; j = 1; 2 : : : log2(N=2): (3)The initial frequeny is equal to f0 = p2N , where N is the texture samplesize in pixels. Parameter j stands for an otave number. For some textures,the lowest radial frequenies are not very useful, beause the orrespondingfeatures are too oarse. So atually, one an start from a larger otavenumber j0 > 1 and ompensate low frequenies with a Gaussian �lter withthe MTF given by exp(� k~wk22�?2j0�1 ). The orientation parameter � is sampled6
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Figure 1: Gabor WT and Gabor BNT: a. Sum of the MTFs of the evenGabor WT for j = 2 : : : 5 with four orientations and a low-pass Gaussian�lter; N = 64 ; b. Gabor BNT. Note how the BNT for the Gabor WTCs(Figure 1b) exploits the rosette like struture of the Gabor WT �lters in thefrequeny domain (see Figure 1a).with �� = �=K, where K is a number of onsidered orientations startingfrom �0 = 0, so that �k = (k�1)��. Filter (1) is a omplex �lter, onsistingof a pair of real �lters orresponding to the real gR and imaginary gI parts.In appliations often only real-valued even symmetri Gabor �lters orre-sponding to the real part of the �lter (1): gR = C�exp(�k~rk22�2 ) os(2�~k � ~r)is used. Using the even-symmetri �lters only has been justi�ed by psy-hophysial studies [18℄; moreover, it speeds up the learning and segmen-tation/lassi�ation proesses4. We use a fast separable realization of theGabor WT in the spatial domain as was proposed in [19℄. GWT oeÆientsare obtained onvolving an image x with the family of �lters (1) sampled bysheme (3): Wjk1 = x � gR(fj ; �k); Wjk2 = x � gI(fj; �k): (4)The sum of the MTFs of the low-pass �lter and the even part of theGWT for j = 2 : : : 5 and K = 4 orientations for the ase of N = 64 pixels isshown in Figure 1a and an example of the GWT oeÆients in Figures 7-d.2 Gabor WT oeÆient modelingThe Gabor WT obeys similar primary and seondary properties as the 2Dseparable WT [22℄. Primary properties inlude: loality of the �lters inthe spatial and frequeny domain, multi-resolution and ompression. The4our ode is written and algorithm given for a general ase of omplex GWT oeÆients,however only the even part is used in simulations presented.7



latter means that the WT leads to a sparse representation, i.e. there aremany small oeÆients. The primary properties have been used as anargument to the approximate independene of the WT oeÆients (WTCs)and as an assumption of the sharply peaked exponential distribution of theWTCs [13, 14℄. However, the WT an not ompletely deorrelate real-world signals or images; these residual dependenies always remain and arereferred to as seondary properties. The seondary properties mean thatlarge/small oeÆients tend to propagate aross sales and, additionally,aross adjaent orientations in the ontext of the Gabor WT. We proposeto model the primary and seondary properties of the Gabor WT oeÆientsby the Bayesian network [21, 23, see for introdution on graphial models℄depited in Figure 1b.This network is similar to a Hidden Markov model [24℄, but with non-stationary transitive onditional probability distributions (CPDs). Similarto a way the HMTM in the wavelet domain inherits the tree struture ofthe WT, the BNT for the Gabor WTCs (Figure 1b) exploits the rosettelike struture of the Gabor WT �lters in the frequeny domain (see Fig-ure 1a). This network onsists of the disrete and Gaussian ontinuousnodes. Nodes Sj and Mjk are disrete and hidden and nodes Wjki are on-tinuous, observable and orrespond to GWTC (4). Node Sj orresponds toan otave number j and represents the overall sale ativity. We assumethat the disrete variable Sj is binary; when its value is zero (Sj = 0) thesale is non-ative and when Sj = 1, it is in an ative state. Disrete vari-ables Mjk; k = 1 : : : K orrespond to K orientations of the Gabor WT forthe sale �j and have a similar ativity state interpretation as Sj.From the Markovian properties of the Gabor BNT graph, one an seethat the Gabor WTCs orresponding to di�erent sales are assumed to beonditionally independent given a orresponding parent sale variable S.Similarly, the Gabor WTCs are assumed to be onditionally independentwithin the sale given the values of the orresponding parent orientationvariableM . This network imposing onditional independene on the WTCsonnets them (introdues dependenies) through the hidden state variables.The joint probability of the omplete variable (W;S;M) is read from theBNT graph as:p(W;S;M) = 2Yi=1 KYk=1 JYj=j0 P (WjkijMjk)P (MjkjSj)P (Sj jSj�1); (5)where P (Sj0 jSj0�1) � P (Sj0) stands for a prior probability of the binaryvariable Sj0 (j0 is a number of the band otave from whih the modelingstarts).When only the even (osine) WTCs are onsidered eah node Mjk hasonly one hild wavelet node Wjk1 and the produt over i is dropped inequation (5). If desired, a oeÆient orresponding to a low-pass �lter may8



also be onsidered. It is assumed to be independent of the WTCs, thus, itsPDF is modeled separately and multiplied by p(W;S;M).Gabor BNT parameters inlude onditional probability tables (CPTs)for disrete variables Sj; Mjk and means and varianes for Wjki. Therefore,the following parameters have to be de�ned: (i) prior probability p(Sj0 = 0),(one parameter); (ii) transitive probabilities between sale ativity statevariables, p(Sj+1 = 0jSj = l), where l 2 f0; 1g and j = j0 : : : J � 1 (2(J �j0) parameters); (iii) transitive probabilities between sale and orientationativity state variables, p(Mjk = 0jSj = l) (2K(J � j0+1) parameters); (iv)onditional means �jki;l and varianes �jki;l of the wavelet oeÆients giventhat the parent orientation nodeMjk is in the state l 2 f0; 1g (8K(J�j0+1)parameters for even and odd parts of WTCs). Sine the Gabor WT �ltersare band-width �lters, theoretial means are approximately equal to zero5.In addition, we allow tying CPTs between sale and orientation parameters,so that p(Mjk = 0jSj = l) do not depend on j. This signi�antly reduesthe number of parameters and in addition, imposes new sale/orientationdependenies on the WTCs.The joint WTC probability is a mixture of Gaussians with diagonal ma-tries and with a number of mixture omponents equal to 2K(J�j0+1), butwith the mixture oeÆients onstrained by the Gabor BNT struture. Adiret modeling of a Gaussian mixture with the same number of mixtureomponents, requires imposing an appropriate prior on the mixture oeÆ-ients and ovariane matries and is not simple. The marginal distribution(non-joint) of WTCs is a mixture of two Gaussians that approximates ex-ponential distributions quite well; this is due to modeling small oeÆientsby a Gaussian with a small � and large oeÆients with � large.We also onsider a jointly Gaussian distribution model in the Gaborianspae as a baseline for omparison. This model an eÆiently apture lin-ear orrelations between wavelet oeÆients and thus is a good model foromparison. We also note that sine the Gabor WT basis is not a stritlyomplete basis (as the lowest/highest pass �lters are negleted), data model-ing by a joint Gaussian distribution in the original signal spae and Gaborianspae are not equivalent. The network parameters are found using the EMalgorithm that is straightforward for the onsidered Bayesian network andis similar to the Baum-Welsh (Forward-bakward) algorithm used in HMM[25, 23, 24℄.5This is due to the ergodiity assumption: E[W ℄ � R x � g ds = F [x � g℄jw=0 =F [x℄jw=0F [g℄jw=0, where s is a spatial variable, x is a signal, g is a band-pass �lter withF [g℄jw=0 � 0 and F is a Fourier transform.
9



3 Texture lassi�ationFor performane evaluation of generative Gabor BNTs for texture lassi�a-tion, images from the Brodatz album [1℄ have been used. The Brodatz dataonsists of 112 monohrome images of di�erent textures of size 512 � 512pixels and is available on-line6. Textures are referred to by the number inparenthesis (i.e. D12) that orresponds to the page number in the Brodatztexture book [1℄. Despite a wide use of the Brodatz data, there is not asingle benhmark tehnique omparing di�erent algorithms, sine the lat-ter are applied in di�erent senarios and use di�erent measures and databloks. We hoose nine images from the Brodatz album [1℄; this hoie wasonstrained to suh images that any sub-image of size 64�64 pixels roppedfrom the entire image is suÆient for pereptual disrimination. This meansthat the hosen textures are regular and are likely to satisfy the ergodiityondition7.First the GWT has been applied to eah image and then obtained waveletoeÆients (as images) have been sampled uniformly with the rate of 64pixels per row and olumn to get texture samples in the wavelet domain.These samples have been disjointly split into S = 10 ross-folds, in orderto estimate mislassi�ation error using ross-validation (CV) [26℄. Severalshemes to use CV may be proposed in the ontext of generative lassi�ers.The one that has been used is desribed below.Let us enumerate di�erent textures by an index r = 1; 2; : : : ;M , i.e.instead of saying that the texture represents grass, sand, soil or whatever itis referred by its number. Now, let frs be the sth ross-fold for the rth-textureand prs(W) be a probability assigned to a sample W by the Gabor BNT ofthe rth-texture with the parameters trained on all the texture samples exepta ross-fold frs. In order to lassify a sampleW 2 frs in the Gaborian spae,the ML lassi�er should ompare probability prs(W) with the probabilitiesassigned by the Gabor BNTs orresponding to textures � 6= r. But thereare S probability models for eah �th-texture and none of them have seentraining data for texture r during training; i.e. there exist SM�1 (M is anumber of textures) di�erent lassi�ers to estimate error on the ross-foldfrs. In order to avoid this omputational burden and stabilize results, wepropose to average p�s(W) over ross-folds per eah alternative texture8, toget a simple texture ensemble pe�(W ) = 1S PSs=1 p�s(W). Then the lass isassigned by ML aording to:r? = argmaxr;� fprs(W); pe�(W)g:6For example, http://www.ux.his.no/�tranden/brodatz.html.7The omplexity of the Gabor BNT depends on j0; J; K, so the number of parametersgrows linearly with log2(N), where N is the size of the sub-image. It may also be suÆientto start with larger j0 for larger N , so N is ritial only for onvolution operation and fromthe statistial viewpoint, to provide a suÆient number of independent training samples.8One an also try to average log-likelihood, instead, or to onsider some voting sheme.10



Let the number of lassi�ation errors for the ross-fold s and texture r to beers, then the mean Err = 1S PSs=1 ers is used to estimate the lassi�ationerror for texture r.In addition to CV experiments, the robustness of the proposed models toGaussian additive noise is heked. A new test image omposed of 4 randomtexture pathes with square or triangle layouts (see Figure 2), is ontami-nated with a small amount of additive Gaussian noise and is presented forlassi�ation. Mislassi�ation errors of the texture ensembles for this imageare evaluated to assess and ompare performanes of the di�erent models.3.1 Texture segmentation resultsFour probabilisti models have been simulated in the Gaborian spae: thejointly Gaussian probabilisti model (A) and three Gabor BNT models withan inreasing omplexity: (B) with � = 0 and with CPTs tied; (C) with� = 0 and without CPTs tied; (D) without onstraints on the CPTs and� parameters. The Gabor BNTs have been trained by the EM algorithmfor a maximum of 200 epohs and are stopped earlier if the log-likelihoodinrease from one iteration to the next is less than 10�4.Model's mislassi�ation errors in the CV experimentModels D103 D111 D16 D17 D21 D24 D29 D34 D6A 9 32 13 38 10 35 46 32 14B 6 31 8 29 8 28 33 25 6C 7 33 8 25 9 31 39 23 8D 8 36 11 29 11 38 39 18 9Table 1: Averaged mislassi�ation errors (in perent) in the ross-validationexperiments for di�erent textures (olumns) and using di�erent probabilistimodels (rows). See text for model's desription. Textures are referred tothe same as in the Brodatz album.The mean mislassi�ation error results in perents for CV experimentsare presented in Table 1. Our results learly demonstrate that texture las-si�ation by ML using the Gabor BNTs (the lines B-D of Table 1) is superiorto using the jointly Gaussian probabilisti model A (the line A of Table 1).It turns out that the most exible model D is the worst among the on-sidered Gabor BNTs, apart from texture D34. This is due to the urseof dimensionality problem [27℄: there is insuÆient data to robustly traina lassi�er in high dimensional parameter spae. This leads to estimatorswith high variane and large predition errors. A way to avoid this prob-lem is by imposing appropriate bias onstraints or priors [28℄. One aneasily reognize the model B as a onstrained version of the model D. Thisalso demonstrates that the imposed orientation onstraints in the Gaborian11



spae are appropriate. In general, the Gabor model B is the best one forlassi�ation.The robustness results for the models A-B are presented in Table 2.These results are with Gaussian additive noise of SNR = 20dB and SNR =40dB9; results without noise (SNR =1) serve as a baseline for omparison.All mislassi�ation errors are averaged over �ve runs (eah run orrespondsto a random noise sampling) and are given in perents. These results learlyshow that the Gabor BNT ( the model B) is less sensitive to noise and morerobust than the model A. In summary, the model B generalizes better thanthe model A. Model's robustness to noiselayout triangle squareSNR 1 40dB 20dB 1 40dB 20dBModels:A: 16.6 18.9 41.4 13.8 16.3 41.2B: 12.8 14.1 31.3 9.9 11.6 30.8Table 2: Mislassi�ation errors in perents versus models A, B and versusdi�erent levels of Gaussian additive noise. There is no noise when SNR =1.4 Texture DetetionIn many ases simple generative probabilisti models, suh as desribingobjets by a smoothed intensity or olor generated from the normal multi-variate distribution is suÆient [29, 30, ignoring the dynamial aspet℄. Dif-�ult examples when these models are inappropriate appear due to varyingillumination aross an image plane or when objets/bakground are omplextextures. In these ases more omplex generative models should be appliedfor image segmentation.For segmentation by texture in video appliations one should onstrutprobabilisti models that are invariant to non-rigid motions, saling and ro-tations. The GWT is not invariant to the latter and therefore the stationary,not evolving dynamis, Gabor BNT is only suitable for a onstrained lassof video images, where the objets are mainly translated and, obviously, forstill images.Segmentation is based on the novelty detetion approah [2℄. First, therepresentative part of the objet of interest or bakground is ropped andits probabilisti model is learned. Then the log-likelihood of the image9Signal to noise ratio in deibels (dB) is estimated as SNR = 20 log10 pvar(x)� , wherex is a signal with E[x℄ � 0 and � stands for the noise standard deviation.12
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40Figure 2: Robustness experiment: a. Image omposed of texturesD6; D103; D16; D17 with a triangle layout (SNR =1); b. Classi�ationresults of Figure 2a. with the model A; . Classi�ation results of Figure 2a.with the model B; d. Image omposed of textures D6; D103; D16; D17with a square layout (SNR = 1); e. Classi�ation results of Figure 2d.with the model A; f. Classi�ation results of Figure 2d. with the model B.pixels is evaluated by the learned model. It is assumed that pixels thatdo not belong to the learned model get small log-likelihood values underit10. Therefore, log-likelihood thresholding an be used for image segmen-tation. This threshold may be set using ross-validation approah, that isdata demanding; instead we use a Gaussian mixture model (GMM) to seta threshold automatially. This means that the log-likelihood of the data isassumed to be moderately well approximated by a mixture of two Gaussiandistributions, where the Gaussian omponent with the larger mean valuedesribes a distribution of the log-likelihood of the data belonging to thelearned model. Estimation of the GMM parameters is a standard proedure[31, 32℄. The threshold seletion proedure for the sea surfae pollution de-tetion is shematially illustrated in Figure 3; the problem and data aredisussed in the next Setion.In fat, one an go further and attempt to divide novel regions to di�erentlevels of novelty using GMM's with more than two mixture omponents.Intuitively, suh segmentation implies that di�erent objets (textures) have10Indeed, novelty detetion is a semi-heuristial and simpli�ed replaement to the statis-tial hypothesis testing where the null hypothesis is H0 : data is generated by the learnedprobabilisti model and an alternative is H1 : data is generated by any other model.13



di�erent levels of similarity to the learned onept that may be measuredby a log-likelihood11. This generalization is straightforward in the noveltydetetion framework. There is no a guarantee, however, that it should workin any possible pratial situation.a b
−12 −10 −8 −6 −4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Log−likelihood
−12 −10 −8 −6 −4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Log−likelihoodFigure 3: Threshold seletion for novelty detetion : a Empirialdistribution (bars) for the log-likelihood of the image pixels and its approx-imation by the GMM (solid line). b Two Gaussian omponents properlyweighted by their prior probabilities (solid urves) that are estimated bythe EM algorithm. The threshold value orresponds to a log-likelihoodvalue in the ross point (marked with the arrow) of the two urves. Thelearned model is the Gabor BNT for the normal wave region (model C).See Setion 4.1 for the problem and data desription. The orrespondingsegmentation result is presented in Figure 4e.4.1 Sea surfae pollution detetionIt is well known that water-borne pollutants, natural, suh as algal bloom,bateria and �sh oil and leakage from the sea bed, and arti�ial, suh asaused intentionally by ships, generate oily spills (sliks) on the water sur-fae. Monitoring and traking of slik regions is an an important environ-mental problem. Many government authorities are interested in automatipollution detetion and general assessment of water quality.As has been demonstrated in [33℄, the slik regions may be eÆientlydeteted from remotely sensed low-platform mounted visible band ameraimages. This beomes possible due to di�erent light reetane of slik and11The log-likelihood should be more appropriate than the likelihood in this frameworkdue to the squashing e�et of the log-transform. Otherwise, a mixture of the generalizedexponential distributions should be more appropriate in the likelihood domain.14



surrounding water surfaes and due to di�erent turbulent water motion har-ateristis of slik and non-slik regions (sliks have a damping e�et on theturbulent water motion). As a result, slik regions generally appear brighterin images than normal wave regions (see Figure 4a), as they reet the skyintensity. This �nding has led to a suessful unsupervised segmentation ofsea-surfae images based on the Gaussian mixture model (GMM) applied tothe tonal (intensity) information [33℄. However, this method is very sensitiveto illumination varying aross the sene [34℄ and the main question is if theslik regions may be deteted as textures and not as just bright intensityregions. a b 
d e f

Figure 4: Gaussian Probabilisti Models: a. Typial sea surfae im-age; b-. Log-likelihoods of the image pixels assigned by models (A)-(B);Brighter intensity values orrespond to larger values of the log-likelihood; d.Classi�ation by ML using models (A)-(B); e-f. Segmentation based on thenovelty detetion approah with models (A)-(B), respetively. GMM withtwo omponents are applied to set a threshold. White olor orrespondsto positive examples, i.e. pixels that orrespond to suÆiently large log-likelihood values and blak olor orresponds to novel regions. i.e. to pixelsobtaining a small log-likelihood under the normal model.In order to answer this question, small sub-images orresponding to nor-mal wave and front slik surfae regions of the image are ropped and en-15



oded by the two types of the probabilisti models. The �rst type of modelare Gaussian models for the low-pass �lter oeÆients of the wave and slikregions, referred to as models (A) and (B), respetively. These two mod-els are based on the smoothed intensity, they do not arry an informationabout region textures and are introdued as a baseline for omparison. Theother two models (C) and (D) are Gabor BNT models for the wave andslik regions, respetively; they enode GWT oeÆients and desribe theregions as textures with illumination being partially removed, as low-pass�lter oeÆients are not modeled by the Gabor BNTs. The Gabor BNTparameters used are: N = 32 pixels, otave j = 2; : : : ; 4 and 4 orientations.The image pixel log-likelihoods assigned by the Gaussian models (A)-(B) are presented in Figures 4b-, respetively. Due to the availability ofthe probabilisti models for normal wave and slik regions, slik segmen-tation an be onsidered as the texture/objet lassi�ation and detetionproblems. Image pixel lassi�ation by ML based on the models (A)-(B)is presented in Figure 4d. This lassi�ation is relatively good, unless thesky region is assigned to the slik region, as sky intensities have large values.Slik detetion based on the models (A) and (B) are presented in Figures 4e-f, respetively. Detetion based on the model (A) onsiders the wave regionsto be normal (non-polluted) regions and the slik is found as an abnormal(novel) region, that does not belong to a wave region. Novelty detetion withthe model (A) disriminates the sky and sea surfae regions, but does notallow the detetion of sliks. Alternatively, detetion based on model (B),onsiders the sliks as being regions of interest and the sky and wave regionsemerge as non-interesting regions. In the ontext of a novelty detetion,model (B) appears to be superior to model (A).a b 
Figure 5: Gabor BNT models: a-b Log-likelihoods of the image pixelsassigned by the models (C)-(D); Brighter intensity values orrespond tolarger values of the log-likelihood;  Novelty detetion based on the model(C) enoding the normal wave region. A region identi�ed as a new one(negative lass) appears in blak olor.16



The log-likelihoods assigned by the Gabor BNTs have been smoothedwith a uniform mask of size 11� 11 pixels (see Figures 5a-b). This smooth-ing is equivalent to a produt of experts [35, 36℄ and leads to improvedsegmentation. The slik detetion with the model (C) is presented in Fig-ure 5, the detetion result with the model (D) is similar to the former. Bothmodels identify a narrow slik region as an alien (abnormal) to them. Thisis due to narrowness of the slik region, i.e. Gabor oeÆients are very higharound narrow slik edges, so that the narrow slik region pixels get smalllog-likelihoods under the models (C) and (D). At the same time the modelsare not able to disriminate between the normal wave and front slik regions.In summary, the Gaussian models based on intensity features outperformthe Gabor BNTs in segmentation. Moreover, the latter have shown to beuseful only for edge and the narrow slik detetion.To enode Gabor WTC and a low-pass �lter oeÆient together, theGaussian models (A)/(B) have been ombined with the texture models(C)/(D), respetively. The ombined model's probabilities are a diret pixel-wise produt of the probabilities assigned to the image pixels by the twomodels enoding the tonal intensity and texture features. This means thatthe smoothed intensity and GW oeÆients are assumed to be independent.The ombined models may be also interpreted as a mixture of two experts.The log-likelihoods of the image pixels assigned by the ombined models(Figure 6a.) are very similar to the log-likelihoods assigned by the Gaussianmodels. Novelty detetion by the ombined model for the wave region (Fig-ure 6b.) is similar to detetion with the Gaussian model (A) (ompare with(Figure 4e.), unless edge regions start to appear better as novel regions. Thesame happens in segmentation with the ombined model for the slik region.It may be bene�ial to properly weight the log-likelihoods of the mixturemodels (Gabor BNTs need more weight), but this issue is beyond the sopeof our paper.Results with the extended version of the novelty detetion approah withthree GMM omponents for the ombined model enoding the wave regionis presented in Figure 6. As an be seen, a new additional luster inludesboth slik regions and, unfortunately, the remote wave region; moreover,the image region orresponding to this luster is identi�ed as more familiarthan the sky. We get the same result for Gaussian models (A) and (B).So far additional disrimination of the novelty regions into di�erent novelty(familiarity) levels is quite reasonable.In summary, the introdued texture models for sea surfae slik seg-mentation allow us to �nd a narrow slik region, but are not satisfatoryin general. This also means that tonal information is the most importantlue for slik detetion than texture features. An example onsidered inthe next setion, in ontrast, demonstrates the e�etiveness of the proposedprobabilisti models. 17



a b 
Figure 6: Combined Gaussian and BNT model for the wave region:a Log-likelihood of the image pixels assigned by the joint models (produt ofexperts (A) and (C)); Brighter intensity values orrespond to larger valuesof the log-likelihood; b Conventional novelty detetion based on the jointmodel;  An extended novelty detetion based on the joint model with threeGaussian omponents; White, grey and blak shades stand for regions withhigh, intermediate and small log-likelihoods, respetively.4.2 Texture DetetionThis setion presents segmentation of a still image with varying illuminationaross the sene and textured objet/bakground (see Figure 7a). Part ofan animal body was ropped to build the Gabor BNT. The following GaborWT parameters have been used: N = 32 pixels, sale j = 2; : : : ; 4 and 4orientations. The Gabor WT oeÆients are presented in Figure 7-d; andthe output oeÆients of the orresponding ompensating low-pass �lter arepresented in Figure 7b. The log-likelihood of the image pixels assigned byGaussian probabilisti model for the low-pass �lter oeÆients is presentedin Figure 7e. The Gaussian probabilisti model has been onstruted for agrass region (the Gaussian model for an animal body region leads to evenworse results as this region does not appear homogeneous). This learlyindiates that smoothed intensity is not a good feature for segmentation ofthis image.At the same time, an animal body after the Gabor WT appears as a ho-mogeneous blob. Log-likelihood of the image pixels assigned by the GaborBNT learned on the ropped part of the animal body is presented in Fig-ure 7d. The log-likelihood has been smoothed to satisfy a priori ontinuityassumption about it12. A result of the log-likelihood smoothing with a uni-form mask of size 7� 7 pixels is presented in Figure 7g and a segmentationresult in Figure 7h.12This averaging roughly orresponds to a produt of experts18
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Figure 7: a. Original image. b. Output of the GWT ompensating low-pass�lter. . The GWT oeÆient (j = 1 and k = 1) as an image. d. The GWToeÆient (j = 3 and k = 3) as an image. e. Log-likelihood of the imagepixels assigned by Gaussian distribution of the smoothed intensity of thegrass region. f. Log-likelihood of the image pixels assigned by Gabor BNTlearned on the ropped part of the animal body. g. Smoothed log-likelihood.h. Segmentation of the image by thresholding the smoothed log-likelihood.5 Conlusion and disussionWe have introdued the generative probabilisti oriented wavelet model andhave shown that it may be used for texture lassi�ation and detetion. Theintrodued model has been ompared using ross-validation with the jointGaussian probabilisti model for several textures from the Brodatz album[1℄. Our model is superior to the jointly Gaussian probabilisti model inthe Gaborian spae, espeially when additive noise is added. However, theGabor BNT training and lassi�ation based on it are slower than with thejoint Gaussian probabilisti model.We have studied the feasibility of the introdued generative model forimage segmentation in the novelty detetion framework [2℄. Two exampleshave been onsidered: (i) sea surfae pollution detetion from intensity im-ages and (ii) image segmentation of still images with varying illuminationaross the sene. The novelty detetion framework has been extended byproposing to disriminate the novelty regions into di�erent levels of famil-iarity based on the GMM operating on the log-likelihood.19
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