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Summary

Drug design strategies based on Comparative Molecular Field Analysis (CoMFA) have been used to predict the activity of new
compounds. The major advantage of this approach is that it permits the analysis of a large number of quantitative descriptors
and uses chemometric methods such as partial least squares (PLS) to correlate changes in bioactivity with changes in chemical
structure. Because it is often difficult to rationalize all variables affecting the binding affinity of compounds using CoMFA
solely, the program GRID was used to describe ligands in terms of their molecular interaction fields, MIFs. The program
VolSurf that is able to compress the relevant information present in 3D maps into a few descriptors can treat these GRID
fields. The binding affinities of a new set of compounds consisting of 13 coumarins, for one of which the three-dimensional
ligand-enzyme bound structure is known, were studied. A final model based on the mentioned programs was independently
validated by synthesizing and testing new coumarin derivatives. By relying on our knowledge of the real physical data (i.e.,
combining crystallographic and binding affinity results), it is also shown that ligand-based design agrees with structure-based
design. The compound with the highest binding affinity was the coumarin chalepin, isolated from Rutaceae species, with an
ICsq value of 55.5 uM towards the enzyme glyceraldehyde-3-phosphate dehydrogenase (¢GAPDH) from glycosomes of the
parasite Trypanosoma cruzi, the causative agent of Chagas’ disease. The proposed models from GRID MIFs have revealed the
importance of lipophilic interactions in modulating the inhibition, but without excluding the dependence on stereo-electronic
properties as found from CoMFA fields.

Abbreviations: CAMD, Computer-Aided Molecular Design; CoMFA, Comparative Molecular Field Analysis;
CV, Cross-Validation; DALYs, disability-adjusted life years; FFD, Fractional Factorial Design; GOLPE, Gen-
erating Optimal Linear PLS Estimations; gGAPDH, glycosomal Glyceraldehyde-3-Phosphate DeHydrogenase;
MIFs, Molecular Interaction Fields; PC, Principal Component; PLS, Partial Least Squares; QSAR, Quantitative
Structure-Activity Relationships; SAMPLS, SAMple-distance Partial Least Squares; VRS, Virtual Receptor Site.

Introduction

Chagas’ disease is estimated to affect ca. 18 mil-
lion people, mostly from South and Central Amer-
ica, though increasing incidence has been reported in

*To whom correspondence should be addressed. E-mail:
montana@dedalus.Icc.ufmg.br

urban areas of North America. About 3 million of the
infected people develop severe complications, such
as chronic cardiopathy, digestive lesions and neuro-
logical disorders, causing 45,000 deaths per year and
a loss of ca. 3 million disability-adjusted life years
(DALY5) [1]. Blood transfusion and congenital trans-
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Figure 1. Structure of compounds used in the treatment of Chagas’ disease.

mission are currently the major causes of the spread of
the disease.

The available drugs, nifurtimox and benznidazole
have strong side effects [2]. Although administered
since the 1970s, [2], nifurtimox is no longer used
due to severe side effects [3]. Other important mo-
lecules for treatment of Chagas’ disease are allop-
urinol, ketoconazole, fluconazole and itraconazole [2].
Figure 1 shows their structures along with nifurtimox
and benznidazole.

We are focusing on the new glyceraldehyde-3-
phosphate dehydrogenase, gGAPDH, for the discov-
ery of drugs acting against 7. cruzi [4-6]. Since
intracellular amastigotes derive their energy mainly
from glycolysis, the inhibition of gGAPDH poten-
tially prevents 7. cruzi from being infective [2]. The
need for discovering bioactive new chemical entities,
BIONCE:S, against Chagas’ disease has stimulated our
group to begin a study of screening natural compounds
against recombinant 7. cruzi gGAPDH obtained in a
pET3a-Escherichia coli expression system [4, 7].

Natural products derived from medicinal plants
represent a very powerful array of compounds that
can be used as ‘hit-to-lead’ candidates of interest in
medicinal chemistry [8]. The isolation and identifica-
tion of natural products candidates are widespread in
tropical Countries. Brazilian biodiversity is potentially
full of hits, which are just waiting to be leads. Nev-
ertheless, mass screening is not an easy task since it
can be quite expensive and time consuming. Chem-

ical diversity is buried throughout many laboratories
waiting to be discovered. In attempting to circumvent
the problem we have carried out a computer aided mo-
lecular design, CAMD, to perform virtual screening of
natural products [9, 10]. The joint tools of structure-
based design and classical or 3D QSAR studies can be
employed when structure of the receptor is known. Af-
finities can be improved in advance through CAMD.
After that, binding can be measured experimentally
and the system re-cycled to aid in the choice of only
a small number of molecules to be screened. At this
point, the medicinal chemistry project can be started
[8].

The Brazilian physician Carlos Chagas discovered
the disease in 1909. Though many years have past
since Dr. Chagas discovered the ethiology of the
disease no new drug has entered in the market to
help the myriad of patients who severely suffer from
it. The main objective of this study is to find new
natural product hits from Brazilian flora, which are
capable of acting against the 7. cruzi glycosomal
enzyme gGAPDH. Structure-Activity Relationships,
SAR, will be developed in order to help fulfil this goal.



Materials and methods

Computer hardware

All calculations presented were performed on a
R10000 O2 Silicon Graphics workstation.

In-house natural products database

The starting compounds analyzed in this study were
natural products, isolated and structurally identified,
in our on-going project of identifying molecules from
medicinal plants of tropical disease interest.

Molecular docking

A library of 93,000 compounds was ranked according
to DOCK3.5 scores [11], using the gGAPDH X-Ray
crystallographic structure as target [4, 12]. The bind-
ing site of the adenosine ring of the NAD* cofactor
and the catalytic site of gGAPDH possesses significant
differences between the parasite and the homologous
human enzyme [4], thereby being an attractive tar-
get for trypanocidal drug design [13]. The process
of using DOCK provided some new coumarin nat-
ural products highly ranked among many compounds
from the database. These well-scoring compounds,
isolated from several previous phytochemical studies
and available in our laboratories, were among others
screened against our recombinant 7. cruzi enzyme [7].

Receptor binding affinities

The ligands’ in vitro affinity for T. cruzi gGAPDH
receptor is the dependent variable considered in this
study. In the binding study, the affinity of the com-
pounds was determined by their ability to displace
NAD™ from the enzyme receptor site [7]. Receptor
binding affinities were expressed as 1Csyp (WM) val-
ues. The natural coumarin chalepin was selected for
determining the co-complex with gGAPDH [7, 12,
13] because it has the best inhibitory concentration
towards the enzyme.

X-Ray crystallographic data and structure
determination of chalepin bound to gGAPDH

The structure of the complex of T. cruzi gGAPDH
with chalepin has been reported [12]. The gGAPDH
receptor site was studied in order to compare its calcu-
lated GRID MIFs with those ones obtained for ligands
themselves, with the aim of establishing relationships
among them two.
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Molecular fields generated in the Sybyl/CoMFA and
GRID program

In both SYBYL/CoMFA [14] and GRID, [15-17] a
grid big enough to enclose all ligands was created.
The interaction energies between a probe (Csp>* for
CoMFA; OH2 and DRY for GRID), and the target
molecules were calculated, in each grid point.

Molecular modelling

Sybyl Tripos force field [18] was used for modelling
the 13 molecules found in Table 1. Derived partial
charges obtained from Gasteiger-Hiickel method to
calculate the electrostatic field interactions in CoMFA
were used throughout this work.

The starting chalepin conformation was the one
obtained from our X-Ray structure of the co-complex
between chalepin and gGAPDH, which has been taken
as a template to build all molecules in the set. The
conformational space, of all ligands, was explored by
a conformational search procedure using the system-
atic search method, as implemented in Sybyl. The
new minimized selected conformations were outside
5 kcal mol~! difference, whenever feasible.

The steric and electrostatic potential energies were
calculated with the standard CoMFA procedure. The
SAMPLS algorithm implemented in Sybyl6.5 was
used to perform the cross-validation analyses. The
non-cross-validated data were used in the analysis of
the field results, calculations and the predictions.

Molecular interaction fields, MIF's

MIFs were obtained using the program GRID version
20. Computed on gGAPDH receptor site, the MIFs
identified regions where water and DRY probes in-
teracted favourably, suggesting positions where func-
tional groups should be placed in ligands.

MIFs were also computed for the ligands them-
selves. In this case, the regions showing favourable
energy of interaction represent positions where groups
of the receptor interact with the ligands. Using dif-
ferent probes, we can obtain for a certain ligand
a set of such positions, which characterizes a ‘Vir-
tual Receptor Site’ (VRS). This abstract entity defines
an ideal complementary site for a certain chemical
compound and represents its potential ability to bind
¢GAPDH. The regions defined in its VRS overlap
groups of the real receptor site where at least a sub-
set of the VRS is relevant for representing the binding
properties of the ligands.
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VolSurf descriptors

The GRID-VolSurf [19] procedure is completely auto-
mated. Firstly, it generates MIFs by using GRID20.
Then, it treats the fields accordingly by producing
descriptors that encode the information content from
the used probes. VolSurf has the advantage of produ-
cing descriptors using the 3D information embedded
in any map. VolSurf is also alignment independent and
conformation insensitive (independent, in this study).
The VolSurf transformation is fast and its results are
usually easy to interpret. The descriptors have a clear
chemical meaning and are lattice-independent.

The GRID-VolSurf descriptors [19] (water and hy-
drophobic DRY based probes) on studied coumarins
exported to GOLPE program were treated by the vari-
able selection method of Fractional Factorial Design,
FFD, [20]. The FFD variable selection procedure was
applied in two runs, but only the first one yielded the
appropriate model (active variables: 56, Dummies: 15,
X-comb.: 256, SDEP = 0.190, 12, (Q%) = 0.610, Max.
dimensionality: 1, Validation Mode: LOO, Recalcu-
late weights: yes, Comb./Var. ratio: 2.0). After the
FFED run, the final number of X-variables was reduced
to 28.

The partial least squares (PLS) model

In the context of 3D-QSAR, the biological activity
may be seen as a function of the physiochemical char-
acteristics (such as electronic properties or energies
of interaction within a given force field) of the com-
pounds of interest. The need to convert such numerical
data to useful information has led to the development
of methodologies that rely on statistics and applied
mathematics. The PLS model [21] is a two-block pro-
jection method that relates a matrix X (containing the
chemical descriptors) to a matrix Y (containing the
biological activities) with the aim of predicting the val-
ues in Y from the information contained in X. This has
been the method used in CoMFA and Volsurf analyses.

Generating optimal linear PLS estimation (GOLPE)

GOLPE [22] is defined as an advanced variable se-
lection procedure aimed at obtaining PLS regression
models with the highest prediction capability, which
relies on the validation of a number of reduced mod-
els on variable combinations, selected according to a
factorial design strategy. The power of a GOLPE pro-
cedure will depend on some method of pre-treatment

of the data. In this paper, descriptors generated via
VolSurf analysis were the input.

Results and discussion

From our natural products program on the identific-
ation, isolation, and structure elucidation of small
molecules relating to drug design, coumarins obtained
from Rutaceae species [7], were found to be hits for
the key enzyme gGAPDH from T. cruzi, through a
virtual screening procedure. The study molecules were
docked in the receptor site of gGAPDH. The interac-
tion energies ranked according to the scoring function
of DOCKZ3.5, which allowed them to be selected for
the screening assay against the enzyme. Sampling the
coordinate space of the binding site and scoring each
possible ligand according to the interaction energies,
resulted in the predicted binding mode for that com-
pound. The whole procedure is described elsewhere
[23].

A defined protocol [7] was conducted for measur-
ing their inhibitory concentrations. The binding affin-
ity data of the 13 chosen coumarin compounds can be
found in Table 1, along with their chemical structures,
and the calculated binding affinities.

Two different computer aided molecular design
methods were applied to describe the binding affinit-
ies of chalepin analogues towards gGAPDH, namely
CoMFA and GRID. These two methods were chosen
because together they can incorporate information on
binding affinities according to electrostatic, steric and
hydrophobic fields.

From the rigid docking analyses [23], no ligand
flexibility was taken into consideration. The con-
formation of a compound bound to the receptor site
might be different from the conformation of the un-
bound form in solution. Hence, having started with
CoMFA analysis of coumarin ligands shown in Table
1, we generated and relaxed conformations from a
systematic conformational search of coumarin flexible
moieties, as available in Sybyl6.5. The bound con-
formation of chalepin to gGAPDH was also tested as
the pharmacophoric one in obtaining CoMFA fields.
The needed similar analogue conformations were gen-
erated as described elsewhere [24]. All compounds
were then aligned atom-by-atom as follows: (i) over
compound 1(TC_cum_1), chalepin, as obtained from
the receptor site, (ii) over the lowest energy conforma-
tion of all compounds, and (iii) over the highest energy
conformation; but all sharing the core of coumarin
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Table 1. Coumarins assayed and their binding affinities (actual/calculated) toward gGAPDH.

1

Compounds ~ Name Structures Actual? CoMFA3 CoMFA

(logl /ICs0)  calculated  Residual

1 Chalepin ~ TC_cum_1 HOW 4.26* 426 0.0022
o0
MeC. N

2 TC_cum_10 O 359 355 0.04
HO io) Q

Me

3 TC_cum_11 4 N 3.46 3.43 0.03
o o7 o

4 TC_cum_12 m 321 3.5 —0.04
HO o) 0

5 TC_cum_13 @\/1 3.16 3.16 —0.002
o] [¢]

6 tCam2 L 384 3.88 ~0.04
O’ o
3 R

7 TC_cum_3 371% 371 ~0.0039
[¢) (e} o]

8 TC_cum_4 4.13* 4.12 0.01

9 TC_cum_5 3.91 3.92 ~0.01

10 TC_cum_6 /@\/ﬁ/ 3.89 3.88 0.01
HO' O [o]

OH

11 TC_cum_7 = 3.79 3.82 —0.03
o oo

12 TC_cum_8 372 3.69 0.03

13 TC_cum_9 > 3.68 3.68 —0.005
MeO' O (o]

Chemical structures of selected coumarin natural products from virtual screening of DOCK3.5.
References [7, 23].
2Binding affinity magnitude values obtained from in vitro study of the T. cruzi gGAPDH inhib-
ition. Values are taken as log1/ICs, in uM, [7]. Marked values (*) were corrected before being
applied in this work.
3CoMFA internal calculated binding affinities, according to steric and electrostatic molecular

fields.
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Figure 2. Coumarin atom-by-atom superposition used for CoOMFA
analysis.

rings. Thirty percent of coumarin compounds listed
in the Table 1 was dropped from the analysis to act
as test compounds. By using the standard Tripos force
field from Sybyl version 6.5 program [18], we calcu-
lated the electrostatic and steric fields. Figure 2 shows
the structures and the alignment used for all phar-
macophoric (bound) conformations as obtained from
receptor site.

The results shown in Table 2 do reveal relation-
ships between steric and electrostatic molecular fields
calculated from CoMFA.

The optimum number of components was found
to be two (Table 2). Those values were sufficient for
a 3D QSAR model. Furthermore, the corresponding
non-cross-validated QSAR model has a good fit with
2 (0.99) and a small s value, and with reasonable F
value. The model also suggests there is a major steric
contribution of binding affinity towards gGAPDH.

The CoMFA coefficient map for the model was
contoured around chalepin, with the highest affinity
towards gGAPDH (Figure 3) to illustrate the locations
that affect binding. Both steric and electrostatic fields
are displayed at the same location. They were con-
toured as follows: the contours of the steric map are
shown in yellow; those of the electrostatic map are
shown in blue. Greater values of binding affinities are
correlated with less bulk near yellow, more positive
charge near blue. The steric maps (Figure 3) indicate
that less bulk constituents at the both ends of chalepin
are favourable for increasing binding affinities.

Conducting predictions on the internal test set val-
idated the predictive capability of the CoMFA model.
As a result, by using the contour maps from Fig-
ure 3, we have investigated new derivatives to be
synthesized. This has been done by changing the 1,1-

dimethylallyl moiety of chalepin with bulkier groups,
since synthetic efforts were firstly made possible
through modifications of the double bond. Of course,
with the CoMFA prediction, chalepin derivatives were
not better then the chalepin itself. Nevertheless, this
negative result is enough to validate externally our
CoMFA model, because predicted bulkier groups at
the 1,1-dimethylallyl moiety to be detrimental for
binding to gGAPDH.

The designed new molecules with better calculated
binding affinities based on coumarin 8(TC_cum_4)
are not yet synthetically feasible in our laboratories.
Since we would like to have molecules with higher
affinities toward gGAPDH, and make them synthet-
ically possible, we decided to attempt incorporation of
new molecular interaction fields, MIFs, in the model.
For this reason, we have included hydrophobic fields
from GRID, because these fields are needed to keep
chalepin at the receptor site, (see below).

GRID-VolSurf

The existence of H-bonding and hydrophobic pock-
ets in the receptor site may be investigated through a
new procedure called VolSurf [25, 26]. This approach
has been used to correlate 3D molecular interaction
fields, MIFs, with physico-chemical and pharma-
cokinetic properties, plasticization [27], bioactivities
[28], chemical space navigation [29]. To date the
main use of VolSurf is related to structure-property re-
lationships, albeit structure-activity relationships and
structure-binding affinities should be possible. During
the preparation of this manuscript, the use of VolSurf
to calculate surface descriptors for protein-ligand af-
finity was published [30].

Hydrogen bonding and hydrophobicity, duly cal-
culated by GRID force field [15-17], mediate some
important interactions between chalepin and its re-
ceptor site. Figure 4 shows chalepin calculated MIFs
for water and DRY (the hydrophobic probe).

The coloured regions represent where the inter-
action between the ligand and the (a) water and (b)
DRY probes are highly favourable. The contour en-
closes regions where the target molecule can make
(a) hydrogen bonds and (b) lipophilic interactions.
The interaction energy moments, red arrows in Fig-
ure 4, referring to (a) hydrophilic regions, are vectors
pointing from the centre of mass to the centre of the
hydrophilic regions; (b) hydrophobic regions, measure
the unbalance between the centre of mass of a mo-
lecule and the barycentre of the hydrophobic regions.
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Table 2. PLS results of COMFA model for 13 coumarin binding affinities toward gGAPDH.

Property Cross-validated r%v Non-cross-validated Steric Field (%)  Electrostatic Field (%)
LOO*  Components  r2 S F
log 1/ICsg  0.547 2 0994 0.035 16635 643 35.7

*Leave-one-out.

Figure 3. Contour maps of COMFA StDev*Coeff around chalepin.
The yellow maps favour less bulk groups with higher affinity
towards gGAPDH.

The interaction energies are depicted in the same dir-
ection as the one found for chalepin in the receptor
site, which is for hydrophilic regions needed for H-
Bonding to water molecules, whereas the lipophilic
ones are directed to the hydrophobic regions of the
gGAPDH pocket (see Figure 8).

A PLS-CV analysis is also of high importance
when affinities have to be considered. From PLS cal-
culations available in VolSurf program, the binding
affinity fit of the data was r* = 0.800, whereas
the prediction r%v = 0.602, and SDEC = 0.136,
SDEP = 0.192, respectively. These results, when
compared to the ones obtained from CoMFA PLS
analysis were only slightly better for the prediction
power. Consequently, we have used GOLPE to re-
calculate them (Table 3). The squared cross-validated
term has risen to 0.749 with only one component. In
addition, we have tested different manners of cross-
validating the data. All of them are consistent with
results shown in Figure 5, which shows the PLS plot

Figure 4. GRID 3D molecular fields of chalepin calculated
with (a) water and (b) DRY probes, contoured at —3.5 and
—1.25 keal mol 1, respectively. The red arrows represent the integy
moment.

for all calculated binding affinities. Table 4 shows cal-
culated affinity values, and Figure 5 shows that com-
pounds 1(TC_cum_1) chalepin, and 8(TC_cum_4)
have the highest affinities towards gGAPDH, while
4(TC_cum_12) and 5(TC_cum_13) have the lowest.

It is worth mentioning the calculated GOLPE-
VolSurf values shown in Table 4 come from a few
vectors of variables (see methods), whereas CoOMFA
calculated values found in Table 1 were developed
from thousands. This is important for the evaluation
of the performance of both methods.

Figure 6 shows the PLS coefficients for PC1
VolSurf descriptors. Variables representing the hydro-
phobic regions are important to keep coumarins in
the receptor site. Since they have positive magnitude
values, we would expect the increase of the DRY
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Table 3. PLS results of GOLPE model, based on GRID/VolSurf MIFs and descriptors.

Property Cross-validated (12,) Non-cross-validated
LOO! LTO? 5 random groups out  Components SDEP? 2 SDEC*
log 1/IC50  0.758  0.746  0.746 1 0.192 0.838  0.122

11 eave-one-out.

2L eave-two-out.

3Standard Deviation of Estimated Prediction.
4 Standard Deviation of Estimated Calculation.

Table 4. GOLPE-VolSurf calculated binding affinities for
study coumarins.

Compounds!  GOLPE-VolSurf2  GOLPE-VolSurf
calculated residual

1 Chalepin 4.16 0.1

2 3.66 —0.07

3 3.73 —0.27
4 3.46 —0.25

5 3.27 —0.11
6 3.67 0.17
7 3.66 0.05

8 4.03 0.1

9 3.57 0.34
10 3.65 0.24
11 3.87 —0.08
12 3.79 —0.07
13 3.75 —0.07

I'See Table 1 for structures.

2GOLPE calculated values of binding affinities, according
toVolSurf descriptor calculations.

See text for explanation.

Figure 5. PLS plot of T versus U, for one component only.

volumes in molecules to increase affinities. However,
the hydrophilic-lipophilic regions, albeit a bit lower
in height as compared to the hydrophobic peaks, ex-
hibit the same trend. On the other hand, the integy
moments are negatively related to binding affinities,
and thus we would expect as they increase the binding
would decrease. These high integy moments represent
strong polar regions concentrated in few regions of the
molecular surface. This can be seen from Figure 4
where the polar regions are within specific parts of
the molecule. Size and shapes can be used for similar
interpretation of binding affinities. These observations
are essentially the same as found from PLS partial
weights plot (not shown).

From these models, we designed synthetically
feasible new coumarin derivatives in order to validate
them now externally.

Considering that steric, electrostatic and hydro-
phobic requirements for the new structures in the 3D
MIFs were used to account for coumarin gGAPDH
binding affinities, we tailored the ligands with syn-
thetic feasibility in mind. However, this time focus-
ing on molecular modifications of the coumarin at
positions X,Y,Z (Figure 7).

Introducing different groups at positions 3 and
6 of the coumarin ring (Z = H), and calculating
their binding affinities via both of the proposed mod-
els (CoMFA and VolSurf) resulted in the structures
shown in Table 5. Firstly, by analogy to early pub-
lished flavones [31], with affinities toward gGAPDH,
a piperonyl group was linked to position 3 of the
coumarin ring. Functionality at position 6 was ac-
cessed by the existence of nitro and hydroxyl groups.
Reduction of the first to the amino group is appropri-
ate for imino-de-oxo-bisubstitutions, yielding stable
Schiff bases, whereas the second one is suitable for
acid esterifications, for instance.

The introduction of the groups at positions 3 and
6 reinforced the need for diminishing the strength of
integy moments found in compounds with lower affin-
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Figure 6. PLS coefficients for PC1 VolSurf descriptors.

ities towards gGAPDH (e.g. compounds TC_cum_12 Y 8 \3 X
and TC_cum_13). Accordingly, compounds with
higher affinities have negligible integy moments (e.g.
chalepin and compound TC_cum_4), as found for the 8 () 9]

3 new coumarin derivatives herein proposed. This can
be easily seen from the high negative values of integy
moments in Figure 6, which are detrimental to binding
affinities.

Out of many searched sub-structures from our
database, using the featured VolSurf descriptors, the
3 reported herein were properly validated in accord-
ance with the model depicted at Figure 5 (also from
the CoMFA model).

In a joint collaboration project, Pupo and co-
workers [32] have synthesized and tested the three
new coumarin analogues. Table 5 shows the results
of binding affinities towards gGAPDH, along with
our CAMD predictions. The CoMFA results are also
shown to allow a comparison between all values.

4

Figure 7. Coumarin template used for molecular modifications.

As can be seen from Table 5 all 3 newly synthes-
ized and tested coumarin analogues against gGAPDH
have similar binding affinities with chalepin, hence
validating externally our models. Consequently, we
are now building up a focused combinatorial library
with the available VolSurf descriptors in order to fur-
ther search the chemical space, synthesize new cou-
marins and test them against gGAPDH. The results of
these studies shall be published elsewhere in due time.
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Figure 8. T. cruzi gGAPDH-chalepin H-bond interactions.

Ligand-based design agrees with X-Ray
crystallographic complex between chalepin and
¢GAPDH

Although the above results are sufficient to understand
the major reasons for binding of chalepin analogues
towards gGAPDH, one further question has arisen:
how do we know there is a relationship between
(Q)SARs for ligands and their role in the receptor site?
This is a key question because we need to be sure they
are binding in the same way to the receptor site. By
studying the receptor site itself, we concluded that all
the above results agree with the co-complex between
chalepin and gGAPDH. This kind of validation [33] is
very important and we have been using it with success
[24, 34].

There are two water molecules in the site (upheld
by our GRID20 calculations), Figure 8: one is W739,
at 2.72 A from chalepin and 2.62, 2.65 A from Thr167
residue, whilst the second one W813 bridges between
chalepin and Arg249, with H-bonding system at 3.02,
3.06 and 3.09 A. The 1-hydroxy-1-methylethyl group
interacts weakly with the residue Asp210 by hydro-
gen bond mediated by a third water molecule W812.
The close contact of chalepin 1,1-dimethylallyl moi-
ety with Cys166 at ca. 2.9 A is in agreement with our
CoMFA results, where bulkily substitutions would not
be favourable.

Figure 9 shows the GRID plots for gGAPDH site
with (a) water, (b) DRY and (c) Csp2 probes, con-
toured at —7.0, —0.5 and —3.0 kcal mol—!, respect-
ively. Figure 9(a) shows water fields (WO) located at
the same region of the X-Ray crystallographic struc-
ture (W739, W812 and W813). The first field is
bridged between Thr167 and chalepin itself, BRZ960,
(shown in Figure 9 for clarity), which identifies the in-
teractions found so far in the X-Ray complex structure,
while the second one is H-bonding to the chalepin O
atom from the benzo-dihydrofuran group. The third
one is in contact with the 1-hydroxy-1-methylethyl
group of chalepin. Figure 9(b) shows the field for
DRY probe. The lipophilic pocket that can properly
accommodate the ligand is contoured just above the
coumarin moiety. Due to the finding of this hydro-
phobic pocket and also to the postulated interaction
between Cys166 and the 1,1-dimethylallyl moiety of
chalepin, at 2.9 A (Figure 8), we also investigated the
possibility of any m-stacking or H interaction between
—SH and the chalepin double bond. Figure 9(c) shows
the Csp? field clearly located in this region, which cor-
roborates such interaction. This does resemble a two-
dimensional structural interaction [35, 36]Sbetween the

chalepin 1 bond and sulphur atom, S, ) l ( ,not SH

[37, 38]. It is of Lennard-Jones type and at the site dis-
closes 0.3 kcal.mol ! of favourable energy. This result
is also in agreement with our CoMFA model: substi-
tution at the 1,1-dimethylallyl moiety would prevent
this interaction site to be of any importance for the
co-complex between chalepin and gGAPDH.

The above discussion is coherent with the CoMFA
and VolSurf analyses. Through the first method, the
steric molecular fields were unveiled to be important
in modifying the chalepin structure, while the VolSurf
method has shed light on the way coumarin analogues
bind to the receptor site. All results are consistent with



Table 5. CAMD prediction results and binding affinities for some newly designed and synthesized
coumarin analogues. External validation of the proposed CoMFA and VolSurf predictions.

Test of new coumarin analogues log 1/IC5¢ (pLM)1 CAMD
Similar CAMD CAMD
R X affinity higher higher
analogues affinity affinity
0 To analogues analogues
chalepin (VolSurf) (CoMFA)

pred2. R = OAc

R=

7

J

=N

AN

pred7. x = NH
pred9. X =0

TC_cum_pred2:
4.194

TC_cum_pred7:
4.252

TC_cum_pred9:
4.252

TC_cum_pred2:

4.544

TC_cum_pred7:

4.552

TC_cum_pred9:

4.537

TC_cum_pred2:
4.546

TC_cum_pred7:
4518

TC_cum_pred9:
4.442

IExperimentally obtained through the same binding affinities protocol, as from those found in Table 1.
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Figure 9. GRID plots for gGAPDH site with (a) water, (b) DRY and (c) Csp2 probes, contoured at —7.0, —0.5 and —3.0 kcal mol~ 1,

respectively.
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Figure 9. Continued.

the major interactions identified by the X-ray data.
Joining the ligand-based design with data from X-
ray crystallographic information represents the bridge
between the ligand structure and the receptor site.

Conclusions

From binding affinity data and crystallographic know-
ledge of the 3D structure of the chalepin-gGAPDH
complex, we have obtained a 3D QSAR model for a
series of 13 coumarin analogues isolated from Ruta-
ceae species. These ligands were described quantit-
atively with CoMFA and GRID molecular interaction
fields. The small number of variables to optimize
the information content on VolSurf descriptors, gen-
erated results that can be considered sufficient for a
3D QSAR model. The final CoOMFA model (obtained
with thousands of vectors of variables) had a 12, of
0.55, whereas from the GOLPE analysis it ranged

from 0.72 to 0.74. The model makes sense regard-
ing the predictability (r2,) and the graphics reliability
(grid plots). This model has not only been valid-
ated internally, but we have investigated its predictive
ability by synthesizing new coumarin analogues, and
compared predicted affinities to experimental ones.
CoMFA analyses were insensitive to the generated
conformations, but not to alignments. On the other
hand, VolSurf was independent of both conforma-
tions and alignment. Yet, both methods have predicted
binding affinity values in the same magnitude order.

Taken together, the results from our CoMFA
and GRID/VolSurf/GOLPE studies afford coherent in-
formation about the nature and spatial location of the
main interactions underlying the potency of gGAPDH
inhibitors. The main features required for binding
are the lipophilic character of coumarin ring and
the presence of focused polar regions with low bulk
substituents at the terminals of chalepin.
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Figure 9. Continued.

The first coordinated application of 3D-QSAR
methods with crystallographic data yields significant
and complementary insights into SARs and offers
a clear three-dimensional level picture of the main
forces modulating these interactions.
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