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Abstract. In this paper we introduce and investigate a mathematically rigorous theory of learning curves that
is based on ideas from statistical mechanics. The advantage of our theory over the well-established Vapnik-
Chervonenkis theory is that our bounds can be considerably tighter in many cases, and are also more reflective of
the true behavior of learning curves. This behavior can often exhibit dramatic properties such as phase transitions,
as well as power law asymptotics not explained by the VC theory. The disadvantages of our theory are that
its application requires knowledge of the input distribution, and it is limited so far to finite cardinality function
classes.

We illustrate our results with many concrete examples of learning curve bounds derived from our theory.
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1. Introduction

According to the Vapnik-Chervonenkis (VC) theory of learning curves (Vapnik, 1982;
Vapnik & Chervonenkis, 1971), minimizing empirical error within a function classF on a
random sample ofmexamples leads to generalization error bounded byÕ(d/m) (in the case
that the target function is contained inF ) or Õ(

√
d/m) plus the optimal generalization error

achievable withinF (in the general case)1. These bounds are universal: they hold for any
class of hypothesis functionsF , for any input distribution, and for any target function. The
only problem-specific quantity remaining in these bounds is the VC dimensiond, a measure
of the complexity of the function classF . It has been shown that these bounds are essentially
the best distribution-independent bounds possible, in the sense that for any function class,
there exists an input distribution for which matching lower bounds on the generalization
error can be given (Devroye & Lugosi, 1994; Ehrenfeucht et al., 1989; Simon, 1993).
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The universal VC bounds can give the impression that thetrue behaviorof learning
curves is also universal, and essentially described by the functional formsd/m and

√
d/m.

However, it is becoming clear that learning curves exhibit a diversity of behaviors. For
instance, some researchers have attempted to fit learning curves from backpropagation
experiments with a variety of functional forms, including exponentials (Cohn & Tesauro,
1992). Backpropagation experiments with handwritten digits and characters indicate that
good generalization error is sometimes obtained for sample sizes considerably smaller than
the number of weights (presumed to be roughly the same as the VC dimension) (Martin &
Pittman, 1991), though the VC bounds are vacuous form smaller thand. Discrepancies
between the VC bounds and actual learning curve behavior have also been pointed out and
analyzed in other machine learning work (Oblow, 1992; Sarrett & Pazzani, 1992).

Of course, the VC bounds might simply be inapplicable to these experiments, because
backpropagation is not equivalent to empirical error minimization. It has been conjectured
that backpropagation can access only a limited portion of the function space, so that the
“effective dimension” is much smaller than the VC dimension. According to this type of
reasoning, learning curves are heavily affected by the specifics of the algorithm. Another
possibility is that the VC bounds are applicable, but sometimes fail to capture the true
behavior of particular learning curves because of their independence from the distribution.
Hence some theorists have sought to preserve the functional form of the VC bounds, but
to replace the VC dimension in this functional form by an appropriate distribution-specific
quantity, such as the VC entropy (which is the expectation of the logarithm of the number
of dichotomies realized by the function class) (Benedek & Itai, 1991; Haussler et al., 1991;
Vapnik, 1982). Work on the “empirical VC dimension” has tried to measure the depen-
dence of learning curves on both the algorithm and the distribution via backpropagation
experiments (Vapnik et al., 1994).

Perhaps the most striking evidence for the fact that the VC bounds can sometimes fail
to model the true behavior of learning curves has come from statistical physics. In recent
years, the tools of statistical mechanics have been applied to analyze learning curves with
rather curious and dramatic behavior (see the survey of Watkin, Rau and Biehl and the
references therein (Watkin et al., 1993)). This has included learning curves exhibiting
“phase transitions” (sudden drops in the generalization error) at small sample sizes, as
well as asymptotic power law behavior2 in which the power law exponent is neither 1 nor
1/2. Although these learning curves do not contradict the VC bounds, it seems fair to say
that their behavior is qualitatively different. The theoretical revisions of the VC theory
mentioned above cannot explain such behavior, because they conservatively modify only
with the constant factors of the same power laws.

In this paper, we show that ideas from statistical mechanics (namely, the annealed ap-
proximation (Amari et al., 1992; Levin et al., 1989; Schwartz et al., 1990; Sompolinsky
et al., 1991) and the thermodynamic limit (Sompolinsky et al., 1991)) can be used as the
basis of a mathematically precise and rigorous theory of learning curves3. This theory
will be distribution-specific, but will not attempt to force a power law form on learning
curves. Speaking coarsely, there are two main ideas behind our theory that are novel to
someone familiar with the VC theory. The first new idea is related to the annealed ap-
proximation. It is based on the simple observation that in the VC theory and its proposed



           

P1: rba

Machine Learning KL362˙04(Haus) October 10, 1996 14:3

RIGOROUS LEARNING CURVE BOUNDS 197

distribution-dependent variants, all hypotheses of generalization error greater thanε are
treated equally by the analysis—for instance, by assigning(1 − ε)m to all such hypothe-
ses as an upper bound on the probability of being consistent withm random examples.
We undertake a more refined analysis that decomposes the function class intoerror shells
that actually attribute the correct generalization error to each hypothesis, and give uniform
convergence bounds on each shell. The resulting bounds already predict learning curve
behavior not explained by the VC theory, but are difficult to interpret.

The second new idea is to formalize a particular mathematical limit known to statistical
physicists as thethermodynamic limit. The goal of this limit is to express the error shell
decomposition bounds in a form that is both useful and intuitive. The thermodynamic
limit accomplishes this goal by introducing the notion of the correctscaleat which to
analyze a learning curve, and by expressing the learning curve as a competition between an
entropy function (measuring the logarithm of number of hypotheses as a function of their
generalization errorε) and an energy function (measuring the probability of minimizing
the empirical error on a random sample as a function of generalization error).

The resulting theory provides a formalized variant of the statistical physics approach that
is able to predict and explain many nontrivial behavioral phenomena of learning curves,
including phase transitions. It is far from being the last word on learning curves, and in-
deed, the task of providing a truly universal theory of learning curves—one that applies
to all function classes, input distributions, and target functions, and is furthermoretight
in all cases—appears to be a daunting if not unreasonable task. Furthermore, this paper
concentrates on the case of finite cardinality function classes (although we provide some
discussion of possible extensions to the infinite case). For someone familiar with the VC
theory, it may be somewhat surprising that we devote so much effort to the finite case,
since in the VC theory a power law uniform convergence bound can be obtained trivially
for finite classes. Briefly, it turns out that in our formalism, it can be nontrivial to trans-
late a collection of separate uniform convergence bounds, one for each error shell, into a
learning curve bound, even in the finite case. By concentrating on this translation step,
our methods can yield much tighter learning curve bounds than the VC theory in some
cases.

The reader should regard the current paper as having three primary goals. First, we aim
to derive from first principles a formal theory retaining the spirit of the statistical mechanics
approach. Second, we aim to provide evidence in the form of specific examples and a
general lower bound that the new theory truly is closer to modeling the actual behavior of
learning curves than the standard VC theory. Third, we aim to precisely relate the statistical
mechanics approach to the VC theory.

2. The finite and realizable case

We begin with the most basic model of learning an unknown boolean target function. We
assume that the target functionf is chosen from a known classF of {0, 1}-valued functions
over an input spaceX. We refer to this as therealizablesetting, since the learning algorithm
knows a class of functions that contains orrealizesthe target function. We also assume that
F has finite cardinality.
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The learning process consists of giving a learning algorithm a fixed finite numberm of
independent randomtraining examplesof f . Thus, letD be any fixed probability distribution
overX. The learning algorithm receives as input a training sampleS = {〈xi , f (xi )〉}1≤i ≤m.
Each inputxi in the training sample is chosen randomly and independently according to
the fixed distributionD. For any boolean functionh, thegeneralization errorof h is the
probability of disagreement betweenh and f : εgen(h) = Prx∈D[h(x) 6= f (x)]. Note that
the training sampleS depends onf andm andεgen(h) depends onf andD. Throughout
the paper we will consider these quantities as fixed and suppress such dependencies.

If we let h denote thehypothesisfunction output by a “reasonable” learning algorithm
following training onm examples, what is the behavior ofεgen(h) as a function of the
sample sizem? In this paper, “reasonable” will essentially mean any algorithm that chooses
a hypothesis function that isconsistentwith the training sample (or one that chooses a
hypothesis with minimum empirical error on the sample in the unrealizable case). This
notion is both natural and mathematically convenient, because it allows us to give an
analysis of the behavior ofεgen(h) that ignores the details of the learning algorithm, and to
instead concentrate exclusively on the expected error of any consistent hypothesis.

2.1. Relating the version space to theε-ball

For any sampleS, we define theversion spaceby

VS(S) = {h ∈ F : ∀〈x, f (x)〉 ∈ S, h(x) = f (x)}.

Thus, VS(S) ⊆ F is simply the subclass of all functionsh that areconsistentwith the target
function f on the sampleS. Theε-ball about the target functionf is defined as the set of
all functions with generalization error not exceedingε:

B(ε) = {h ∈ F : εgen(h) ≤ ε}.

Thus, VS(S) is a sample-dependent subclass ofF , and B(ε) is a sample-independent
subclass ofF , and both contain the targetf .

The goal of this subsection is to examine the relationship between VS(S) and B(ε).
More specifically, for a sampleSof sizem, we would like to calculate the probability that
VS(S) is contained inB(ε). This probability is significant for learning, because it allows
us to bound the error of anyconsistentlearning algorithm: we can always assert that with
probability at leastPrS[VS(S) ⊆ B(ε)], any consistent hypothesis has generalization error
less thanε. Here the probability is taken over them independent draws fromD used to
obtainS. We now derive a lower bound onPrS[VS(S) ⊆ B(ε)], or equivalently, an upper
bound onPrS[VS(S) 6⊆ B(ε)].

The probability that a functionh of generalization errorεgen(h) remains in the version
space afterm examples decays exponentially withm:

PrS[h ∈ VS(S)] = (1 − εgen(h))m.
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Since the rate of decay is slower for smallεgen(h), the version space should consist only of
hypotheses with small generalization error. LetB(ε) = F − B(ε), the functions inF with
generalization error greater thanε. Since the probability of a disjunction of events is upper
bounded by the sum of the probabilities of the events, we find that

PrS[VS(S) 6⊆ B(ε)] = PrS[∃h ∈ B(ε) : h ∈ VS(S)] (1)

≤
∑

h∈B(ε)

PrS[h ∈ VS(S)] (2)

=
∑

h∈B(ε)

(1 − εgen(h))m (3)

which proves the following theorem.

Theorem 1. PrS[VS(S) ⊆ B(ε)] ≥ 1 − δ, where

δ =
∑

h∈B(ε)

(1 − εgen(h))m.

We will refer to Theorem 1 as theunion bound. It is closely related to the annealed
approximation, which has been used by physicists to study the performance of the Gibbs
learning algorithm. Note that the sum in the union bound has a direct interpretation, being
the average number of surviving hypotheses that lie outsideB(ε).

We can restate Theorem 1 in the following alternate form, in which we regardδ as given
and then bound the achievableε.

Corollary 2. Let F be any finite boolean function class. For any0 < δ ≤ 1, with
probability at least1 − δ any function h∈ F consistent with m random examples of a
target function inF obeysεgen(h) ≤ ε, whereε is the smallest value satisfying

∑
h∈B(ε)

(1 − εgen(h))m ≤ δ.

2.2. The standard cardinality bound

Sinceεgen(h) > ε for all h ∈ B(ε), the union bound can be further transformed by∑
h∈B(ε)

(1 − εgen(h))m ≤
∑

h∈B(ε)

(1 − ε)m ≤ |F |(1 − ε)m. (4)

By applying Theorem 1 to this bound, we obtain the standard result that with probability
1 − δ, any consistent hypothesish obeysεgen(h) ≤ (ln(|F |/δ))/m. Since the only depen-
dence of this bound on the learning problem is through the cardinality of the function class
F , we will refer to it as thecardinality bound. In particular, it depends neither on the input
distributionD nor on the target functionf .

Although this bound is powerful because of its generality, there is no reason to believe
that it is tight for specific distributions. Its tightness depends on the chain of inequalities
beginning with Eq. (1) and those given in Eq. (4), and any link in this chain can be weak.
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Most of the work of this paper will be directed toward finding tighter alternatives to
Eq. (4). We will sliceB(ε) into many shells with different error levels rather than lump all
of them together atε, as was done in Eq. (4). Furthermore, our calculations will make use
of all the shell cardinalities, not just the crude measure of total cardinality of the function
class. This more refined bookkeeping can lead to learning curves that have radically different
behavior than that predicted by the simple cardinality bound.

On the other hand, we will generally rely on the union bound as is. It is tight if the survivals
of different hypotheses are mutually exclusive events. In fact, when hypotheses have small
disagreement, their survivals are often positively correlated instead. Nevertheless, for the
finite function classes examined here, the crudeness of Eq. (1) will not weaken our bounds
too severely. In particular, we will exhibit examples of distribution-specific bounds that are
much tighter than the distribution-free VC bounds.

It is only for infinite function classes that the union bound fails spectacularly, for here
the bound diverges and becomes useless. The VC dimension, VC entropy, and random
covering number (Dudley, 1978; Haussler, 1992; Pollard, 1984; Vapnik, 1982) are the
known tools for dealing with the correlations neglected by the union bound. These tools
have previously been applied to the function class as a whole. In our current research efforts,
we are attempting to refine these tools by applying them to error shells. In Section 4 we
discuss an alternative approach that reduces the infinite case to a sequence of finite problems.

2.3. Decomposition into error shells

Since we are assumingF to be a finite class of functions, there are only a finite number of
possible values thatεgen(h) can assume. Let us name and order these possibleerror values
0 = ε1 < ε2 < · · · < εr ≤ 1. Thus,r ≤ |F |, and for each 1≤ i ≤ r there exists anhi ∈ F
such thatεgen(hi ) = εi . Then for each index 1≤ j ≤ r we can define the cardinality of the
j th error shellQj = |{ f ′ ∈ F : εgen( f ′) = ε j }|. ThusQj is thenumberof functions inF
whose generalization error is exactlyε j , and

∑r
j =1 Qj = |F |. Hence we arrive at theshell

decompositionof the union bound:

∑
h∈B(εi )

(1 − εgen(h))m =
r∑

j =i

Q j (1 − ε j )
m (5)

Together with Theorem 1, we can obtain the following bound onεgen(h) for consistent
learning algorithms.

Theorem 3. For any fixed sample size m and confidence valueδ, with probability at least
1 − δ any h ∈ VS(S) obeysεgen(h) ≤ εi , whereεi is the smallest error value satisfying∑r

j =i Q j (1 − ε j )
m ≤ δ.

In other words, if we fix the confidenceδ then Theorem 3 provides the bound

εgen(h) ≤ min

{
εi :

r∑
j =i

Q j (1 − ε j )
m ≤ δ

}
(6)
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with probability at least 1− δ for any consistenth. While this bound is clearly a function of
m, its behavior is not especially easy to understand in its current form. For this we rely on a
particular limit popular in the statistical mechanics literature known as thethermodynamic
limit.

2.4. The thermodynamic limit method

There are two basic ideas or assumptions behind the thermodynamic limit method as we
formalize it. The first idea is that we are often interested in the learning curve of a parametric
class of functions, and in such cases the number of functions in the class at any given error
value may have a limiting asymptotic behavior as the number of parameters becomes large.
The second idea is to exploit this limiting behavior in order to describe learning curves
as a competition between the logarithm of the number of functions at a given error value
(anentropyterm) and the error value itself (anenergyterm).

As we shall see, the most important step in applying the thermodynamic limit method,
both technically and conceptually, is to find the rightscalingwith which to analyze the
learning curve, and to find the best entropy bound for this scaling. The thermodynamic
limit method assumes that an appropriate scaling and entropy bound are given, and then
provides a learning curve analysis for them, much in the same way that VC theory assumes
that the VC dimension is known and then provides learning curve upper bounds. Thus
the real work of the user in applying the thermodynamic limit method (which may be
considerable) lies in finding the best scaling and entropy bound.

In order to properly define and use the thermodynamic limit method, we cannot limit our
attention to a fixed finite classF of functions, but must instead assume an infinitesequence
of finite function classes (of presumably increasing but always finite cardinality). As we
have already suggested, it will be convenient to think of this sequence as being obtained
in some uniform manner by increasing the number of parameters in a parametric class of
functions. Thus, letF1,F2, . . . ,FN, . . . , be any infinite sequence of classes of functions,
where eachFN is a class of boolean functions over an input spaceXN and obeys|FN | ≤ 2N .
We may think ofN as just an abstract index obeyingN ≥ log |FN |, and thus representing
the number of bits or parameters required to encode functions inFN . Let DN be a fixed
probability distribution overXN . A typical example of these objects is where we letXN be
N-dimensional Euclidean space,DN be the uniform distribution over the unit sphere inXN ,
andFN be the class of allN-dimensional perceptrons in which each weight is constrained
to be either 1 or−1.

Now suppose that for each classFN we also choose a fixed target functionfN ∈ FN ,
thus yielding an infinite sequence of target functionsf1, f2, . . . , fN, . . . . Our goal now is to
provide a framework in which we can analyze the limiting generalization error, asN → ∞,
of any algorithm that always chooses a hypothesis consistent withm random examples of
fN drawn according toDN .

There are a number of problems with this proposal. Foremost among these is the question
of whether there actually exists any interesting limiting behavior. For instance, in our
discussion so far we have been suggesting that all the classesFN are “similar” in the sense
of being obtained through some nice uniform parametric process, with only the number
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of parameters varying. If this assumption is grossly violated, and eachFN looks radically
different than the last, it may be nonsensical to analyze the limiting behavior of a consistent
algorithm’s error. Similarly, even if theFN are generated in a uniform fashion, a highly
nonuniform sequence of target functionsfN may render the limit meaningless.

There is no definitive solution to such obstacles: there do exist function class, distri-
bution and target function sequences for which there is no limiting generalization error
for consistent algorithms, and obviously no theory can assign a tight asymptotic limit in
such cases. The thermodynamic limit method survives these problems by only providing an
upper bound on the asymptotic generalization error. In those cases where the limit does not
exist, this upper bound may be weak or even vacuous. However, we hope to show through
examples that in many natural cases the limiting behavior is both well-defined and captured
by our theory, and that the resulting upper bound correctly predicts learning curve behavior
that is radically different from that predicted by more standard methods.

A second and more technical objection to our proposal is that if wefix a sample sizem
and letN → ∞, we should not expect to obtain any nontrivial bound on the generalization
error, since the function classes are becoming larger but the sample size remains fixed. This
is exactly right, and for this reason the thermodynamic limit method examines the learning
curve behavior as bothm → ∞ and N → ∞, but at somefixed rate. This allows us to
meaningfully investigate, for instance, the asymptotic generalization error when the number
of examples is 1/2 the number of parameters, twice the number of parameters, 10 times the
number of parameters, and so on. This is frequently the language in which experimentalists
discuss learning curves.

Returning to the development, once we fix target function sequencefN ∈ FN , we can
again define the error levels 0= εN

1 < εN
2 < · · · < εN

r (N) ≤ 1 forFN with respect toDN ,
wherer (N) ≤ |FN | is the number of error levels for thisFN , DN and fN , and for clarity we
have included a superscript on the error levels indicatingN. Recall that by Theorem 3, we
can reduce the problem of bounding the error of a hypothesis fromFN consistent withm
examples offN drawn according toDN to the problem of finding the smallest error level
εN

i such that the right-hand sum in Eq. (6) is bounded byδ (where, in the thermodynamic
limit, δ will go to 0). The first step of the thermodynamic limit method is to simply rewrite
this sum in a more convenient but entirely equivalent exponential form:

r (N)∑
j =i

QN
j

(
1 − εN

j

)m =
r (N)∑
j =i

elog QN
j +m log(1−εN

j ). (7)

Notice that in each term of this sum, the exponent term logQN
j is positive, and the exponent

term m log(1 − εN
j ) is negative. Thus, informally speaking, the contribution of thej th

term in the sum is largely determined by the competition between these two quantities: if
log QN

j À −m log(1− εN
j ) then the contribution of thej th term is large (and thus, to make

the overall sum smaller thanδ, we must eliminate terms by increasingi and consequently
weakening our bound on the error), and if logQN

j ¿ −m log(1− εN
j ) then the contribution

of the j th term is negligible.
In particular, if the sample sizem is such that logQN

j À −m log(1 − εN
j ) for all j then

we cannot give a nontrivial bound on the error, and if logQN
j ¿ −m log(1− εN

j ) for all j ,
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andr (N) is not too large, then the error should be close to 0. Such cases are uninteresting.
In general, the values of the sample sizem for which it will be most interesting to analyze
the learning curve are those for which there is some real competition between the logQN

j
and the−m log(1 − εN

j ). Thus we need to find the rightscaleat which to examine the
learning curve. At the same time, we would like to replace the competition between these
two discrete quantities by the competition between two continuous functions of a single real
parameterε. The obvious choice for a continuous approximation to the−m log(1− εN

j ) is
simplym log(1− ε). The choice of a continuous approximation to the logQN

j depends on
their behavior, which may be quite complex, and which we now try to capture.

Thus the next and crucial step of the thermodynamic limit method is to choose the
appropriatescaling functionand to provide an associatedentropy bound. As mentioned
already, these are functions that are assumed to be given in the thermodynamic limit method.
Let t (N) be any mapping from the natural numbers to the natural numbers such that
t (N) → ∞ as N → ∞, and lets : [0, 1] → <+ be any continuous function. Then we
say thats(ε) is a permissible entropy bound with respect to t(N) if there exists a natural
numberN0 such that for allN ≥ N0 and for all 1≤ j ≤ r (N), (1/t (N)) log QN

j ≤ s(εN
j ).

We refer tot (N) as ascaling function. The intention is that whent (N) is properly chosen
it captures the scale at which the learning curve is most interesting, and that the entropy
bounds(ε) tightly captures the behavior of the(1/t (N)) log QN

j . We will see that we
obtain our best upper bounds on generalization error for a given scaling function when the
thermodynamic limit method is used with the smallest possible permissible entropy bound
for this scaling function.

Given a scaling functiont (N) and a permissible entropy bounds(ε), for N ≥ N0 we
may now rewrite and bound our sum:

r (N)∑
j =i

elog QN
j +m log(1−εN

j ) (8)

=
r (N)∑
j =i

et (N)[(1/t (N)) log QN
j +(m/t (N)) log(1−εN

j )] (9)

≤
r (N)∑
j =i

et (N)[s(εN
j )+α log(1−εN

j )] (10)

where we defineα = m/t (N), and in taking our limitm, N → ∞, α will remain constant.
Before doing so, however, let us pause to notice the benefits of our definitions in the final
summation: each exponent’s dependence onN has been isolated in the factort (N), and
the remaining factor is the continuous functions(ε) + α log(1 − ε), evaluated at only the
discrete pointsεN

j .
Let us now letm, N → ∞ (and thust (N) → ∞) but let m/t (N) = α > 0 remain

constant. Defineε∗ ∈ [0, 1] to be the largestε ∈ [0, 1] such thats(ε) ≥ −α log(1−ε). Note
that boths(ε) and−α log(1−ε) are non-negative functions, and 0= −α log(1−ε) ≤ s(ε)
for ε = 0. Thusε∗ is simply the rightmost crossing point of these functions (we define
ε∗ = 1 if s(ε) stays above−α log(1 − ε) for all 0 ≤ ε < 1). We wish to argue that
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provided we examine our sum only for terms in whichε > ε∗, then under certain conditions
the thermodynamic limit of the sum is 0. In other words, in the thermodynamic limit we can
bound the generalization error of any consistent hypothesis byε∗. Intuitively, the reason
for this is that ifs(ε) < −α log(1 − ε) thenet (N)[s(ε)+α log(1−ε)] → 0 ast (N) → ∞.

More precisely, letτ ∈ (0, 1] be an arbitrarily small quantity, and for eachN, define the
index i N,τ to be the smallest satisfyingεN

i N,τ
≥ ε∗ + τ . Let us define1 by

1 = min{−α log(1 − ε) − s(ε) : ε ∈ [ε∗ + τ, 1]}. (11)

Note that1 is well-defined since the quantify

−α log(1 − ε) − s(ε)

is strictly positive for allε ∈ [ε∗ + τ, 1]. We can now write

r (N)∑
j =i N,τ

et (N)[s(εN
j )+α log(1−εN

j )] (12)

≤
r (N)∑
j =i N,τ

e−t (N)1 (13)

≤ (r (N) − i N,τ )e
−t (N)1 (14)

≤ r (N)e−t (N)1 (15)

where the first inequality follows from the fact that for alli N,τ ≤ j ≤ r (N) we haveεN
j ∈

[ε∗ +τ, 1]. The expressionr (N)e−t (N)1 will go to 0 in the thermodynamic limit, as desired,
providedr (N) is o(et (N)1) (this condition is easily met by all of the examples we shall
analyze, but for completeness its relaxation is discussed in the Appendix in Section A.1).

We have shown:

Theorem 4. Let s(ε) be any continuous function that is a permissible entropy bound with
respect to the scaling function t(N), and suppose that r(N) = o(et (N)1) for any positive
constant1. Then as m, N → ∞ butα = m/t (N) remains constant, for any positiveτ we
have

PrS[VS(S) ⊆ B(ε∗ + τ)] → 1. (16)

Here the probability is taken over all samples S of size m= αt (N) for the target function
in f ∈ FN . and ε∗ is the rightmost crossing point of s(ε) and −α log(1 − ε). In other
words, in the thermodynamic limit any hypothesis h consistent withαt (N) examples will
have generalization errorεgen(h) ≤ ε∗ + τ with probability1.

We can finally see in Theorem 4 the roles of the scaling functiont (N) and the entropy
bounds(ε). The scaling functiont (N) defines the units by which we shall measure learning
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curves, since the sample size in the thermodynamic limit is always a constant timest (N).
Given the scaling function, the smaller the entropy bounds(ε), the smaller the rightmost
crossingε∗ will be, and consequently the better the bound obtained from Theorem 4.

2.5. Extracting scaled learning curves from the thermodynamic limit method

Theorem 4 gives a bound on the limiting generalization error of consistent algorithms on
a sample sizem that is afixedconstantα times the scaling functiont (N). However, the
real value of the thermodynamic limit method emerges only when we now allow the value
of α to vary, taking the thermodynamic limit by applying Theorem 4 to each value, and
examine the learning curve as a function of increasingα. As we shall now see, it is in
suchscaled learning curves(we refer to them as scaled because they are expressed as a
function of the multipleα of t (N) rather than in the more traditional absolute number of
examples) that interesting behavior such as phase transitions appears. We shall also see that
the thermodynamic limit method permits an intuitive and highly visual derivation of scaled
learning curves.

We first illustrate the derivation of scaled learning curves using several artificial examples.
By artificial we mean that rather than defining natural function class, target function and dis-
tribution sequencesFN , fN andDN , and then deriving an appropriate scaling functiont (N)

and entropy bounds(ε), instead we will simply start with a givens(ε) and carry the analy-
sis forward. However, the lower bound provided in Section 2.8 demonstrates that there do
exist function class and distribution sequences whose true scaled learning curves match the
bounds we will give in this section. In the following sections, we give examples of complete
analyses (that is, beginning with givenFN , fN andDN) for some natural function classes.

To start, suppose that for some scaling functiont (N) we have the permissible entropy
bounds(ε) = 1 (a rather weak entropy bound). Then in figure 1, we have plotted both

Figure 1. Rightmost intersections for a constant entropy bounds(ε) = 1 and−α log(1 − ε) for three values
α = α1, α2, α3.
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Figure 2. Scaled learning curveε∗(α) corresponding to the entropy-energy competition of figure 1.

the constant entropy bounds(ε) = 1, and the function−α log(1 − ε) for three values
α = α1, α2, α3. The resulting rightmost intersectionsε1 = ε∗(α1), ε2 = ε∗(α2), ε3 =
ε∗(α3) are then identified on theε-axis. Here we now adopt the convention of writingε∗

as a function ofα, since we no longer regardα as a constant.
In figure 2, we then plot the rightmost crossingε∗(α) as a continuous function ofα

(and identify the points(αi , εi ) for i = 1, 2, 3 from figure 1). This plot is what we mean
by the scaled learning curve, and Theorem 4 tells us that in the limitN → ∞, this
scaled learning curve bounds the generalization error of consistent algorithms givenαt (N)

examples.
Note from figure 1 that−α log(1 − ε) is essentially linear with slopeα, and it is the

rightmost intersection of this roughly linear function withs(ε) that gives the corresponding
point on the scaled learning curve. Furthermore, the energy function is independent of
the learning problem in Theorem 4, and thus in general, for any entropy bounds(ε), to
get the scaled learning curve we will be looking at the leftward progress of the rightmost
intersectionε∗(α) between the nearly-linear energy ands(ε) asα grows. In the particular
examples(ε) = 1, this progress is quite uniform, resulting in the familiar power law scaled
learning curve of figure 2.

A less familiar and more interesting example occurs for the single-peak entropy bound
s(ε) shown in figure 34. We shall shortly see in Section 2.6 that this entropy bound actually
occurs for a natural and well-studied learning problem. In this example we see that for
smallα, the leftward progress ofε∗(α) is rather slow, due to the large negative slope ofs(ε)
on the right side of its peak. This for instance is the case forα near the plotted valueα1.
For some larger value ofα, ε∗(α) moves over the peak ofs(ε) and thus begins decreasing
more rapidly.

Then something interesting happens. There is acritical valueα2 that gives the intersection
ε∗(α2) = ε2. For this critical value, we see that the energy curve is barely intersecting the
entropy curve. Forα > α2 (for example, for the plotted valueα3), we see from figure 3 that
the rightmost intersection is 0! Theorem 4 can be applied to obtain the scaled learning curve
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Figure 3. Rightmost intersections for a single-peak entropy bound (for the Ising perceptron of Section 2.6) and
−α log(1 − ε). The curves corresponding to the three valuesα1 = 0.7, α2 = 1.448 andα3 = 2.5 are plotted.
The resulting three intersections areε1 = 0.6011, ε2 = 0.2543 and 0. The valueα2 = 1.448 is a critical value,
resulting in the phase transition seen in figure 4.

Figure 4. Scaled learning curveε∗(α) corresponding to the entropy-energy competition of figure 3 (Ising per-
ceptron), showing a phase transition to zero error at the critical valueα2 = 1.448.

bound of figure 4, which exhibits aphase transitionfrom errorε2 to perfect generalization
(error 0) atα = α2.

A similar but more subtle example is shown for another single-peaks(ε) in figures 5
and 6. Here again, leftward progress ofε∗(α) for smallerα is slow due to the large negative
slope ofs(ε) on the right-hand side of its peak (for instance, atα = α1). Again, there is a
critical valueα2 which results in an intersection atε+

2 = ε∗(α2), slightly to the left of the
peak ofs(ε). However, forα just larger thanα2 we donot transition to perfect learning,
but to errorε−

2 . The difference between this example and that of figures 3 and 4 is that this
time the entropy curve is sufficiently large nearε−

2 to “catch”ε∗(α) for α above the critical
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Figure 5. Rightmost intersections for a single-peak entropy bound and−α log(1 − ε), showing a critical value
α2.

Figure 6. Scaled learning curveε∗(α) corresponding to the entropy-energy competition of figure 5, showing a
phase transition to nonzero error at the critical valueα2.

value. Following the transition, the decrease ofε∗(α) resumes rather gradual behavior (for
instance, nearα3). This is all clearly seen in the scaled learning curve of figure 6.

As our next example we consider a double-peak entropy bound in figures 7 and 8. Here
we see there are two critical values,α2 andα4. Initial progress ofε∗(α) occurs at a steady
but controlled rate, for instance atα1. As α becomes larger thanα2, there is a sudden burst
of generalization (a phase transition), not to perfect generalization, but from errorε+

2 to ε−
2

on the right side of the left peak ofs(ε). Then progress is slow, for instance atα3, until α
becomes larger thanα4, at which point we have a transition to perfect generalization (so
for α5 the error is 0). One aspect of this example worth noting is the fact that although the
energy may intersects(ε) many times, we are interested only in the rightmost intersection.
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Figure 7. Rightmost intersection for a double-peak entropy bound and−α log(1 − ε), showing critical values
α2 andα4.

Figure 8. Scaled learning curveε∗(α) corresponding to the entropy-energy competition of figure 7, showing a
phase transition to nonzero error at the critical valueα2, and a phase transition to 0 error at the critical valueα4.

As our final artificial example, we consider a three-peak entropy bound in figures 9 and
10. This example demonstrates the interesting phenomenon ofshadowingpredicted by our
theory, because despite the change ins(ε) from our last example, we see that the scaled
learning curve of figure 10 is quite similar in form to that of figure 8. Figure 9 shows the
reason for this: by the timeα becomes larger than the first critical valueα2, the energy
curve is already above the small middle peak ofs(ε), and thus the phase transition is from
ε+

2 to ε−
2 , completely bypassing the middle peak. Thus, the small middle peak ofs(ε)

is in the “shadow” of the large rightmost peak. There is an intuitive explanation for this
phenomenon. Despite the fact that (relative to the scaling function) there are a significant
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Figure 9. Rightmost intersections for a triple-peak entropy bound and−α log(1− ε), showing critical values at
α2 andα4 and demonstrating the phenomenon of shadowing.

Figure 10. Scaled learning curveε∗(α) corresponding to the entropy-energy competition of figure 9, showing a
phase transition to nonzero error at the critical valueα2, and a phase transition to 0 error at the critical valueα4.

number of functions of generalization error approximatelyε′ (resulting in the middle peak of
s(ε) centered atε′), by the time the sample size is large enough to eliminate the considerably
larger number of functions of generalization error approximatelyε+

2 from the version space,
the functions at generalization errorε′ are already eliminated from the version space. Note
that if this middle peak were higher, there would be a brief transition fromε+

2 to nearε′,
and then from there to a value on the right side of the left peak.

In all of these examples, we have concentrated on the qualitative behavior (including
coarse phenomena such as phase transitions) of scaled learning curves at moderate values
of α. Also of interest are the largeα asymptotics of the scaled learning curve, that is, the
asymptotic rate of approach to generalization error 0. In our theory this rate is obviously
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determined by the behavior of the entropy bounds(ε) for ε ≈ 0. It turns out that many
natural examples ofs(ε) fall into a few broad categories of behavior near 0, and this is
discussed in Section 3.5.

2.6. Analysis of the Ising perceptron

We now tackle some real examples of the application of our theory, complete with deter-
mination of the appropriate scaling function and a permissible entropy bound.

We first consider the class of Ising perceptrons (Gardner & Derrida, 1989; Gy¨orgyi, 1990;
Sompolinsky et al., 1990). Suppose that the function classFN consists of all homogeneous
perceptrons in which the weights are constrained to be±15. Let the distributionDN be any
spherically symmetric distribution on<N , and let the target functionfN ∈ FN be arbitrary.
It will turn out that for this problem, the appropriate scaling function is simplyt (N) = N.
We now derive a permissible entropy bound for this scaling function, and then extract the
associated scaled learning curve.

An Ising perceptron is parametrized by a weight vectorw in the hypercube{−1, 1}N , and
mapsx ∈ <N to sgn(w ·x). For a spherically symmetric distributionDN , the probability of
disagreement between two perceptrons is proportional to the angle between them. Hence
if w0 is the weight vector of the target function,

εgen(w) = 1

π
cos−1 w · w0

N
= 1

π
cos−1

(
1 − 2dH (w, w0)

N

)
(17)

wheredH denotes the Hamming distance. The Hamming distance layers the function class
like an onion withN error shells surrounding the target at the center. The number of
perceptrons at Hamming distancej from the target isQN

j = ( N
j ), and they all have

generalization errorεN
j = (1/π) cos−1(1 − 2 j/N). Since the binomial coefficients are

bounded by

1

N
log QN

j ≤ H
(

j

N

)
= H(

sin2
(
πεN

j

/
2
))

(18)

whereH(p) ≡ −p log p − (1 − p) log(1 − p), a permissible entropy bound for scaling
functiont (N) = N is

s(ε) = H(sin2(πε/2)). (19)

We have actually already discussed the resulting entropy-energy competition for this
problem in Section 2.5. Recall that in figure 3 we graph the competition, and in figure 4
we graph the scaled learning curve obtained by applying Theorem 4. Thus for this problem
our theory predicts slow initial learning, followed by a phase transition to perfect gener-
alization atα2 = 1.448. We remind the reader that a sudden transition in our bound does
not necessarily imply a sudden transition in the true behavior of any consistent learning
algorithm. However, this bound does show that any consistent learning algorithm must have
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Figure 11. The functions(ε) + α log(1 − ε) for the Ising perceptron, plotted for the same values ofα1, α2, α3

as in figure 3.

reached zero error with probability approaching 1 in the thermodynamic limit for scaled
sample size greater than 1.448. This bound on the critical value was known from the work
of Gardner and Derrida (1989), and extended to the case of boolean inputs by Baum, Lyuu
and Rivin (1991; 1992). Here we are actually giving a bound on the entire learning curve,
and the behavior of our bound is very similar in shape to learning curves obtained in both
simulations and non-rigorous replica calculations from statistical physics (Engel & Fink,
1993; Györgyi, 1990; Seung et al., 1992; Sompolinsky et al., 1990)6.

In figure 11, we graph thedifferenceof the entropy and energy curves shown in figure 3,
that is, we plots(ε) + α log(1 − ε) for the three values ofα. This plot is simply another
way of visualizing the entropy-energy competition. The zero crossings of the graphs in
figure 11 correspond to the intersections of the entropy and energy curves in figure 3, and
thus it is now the leftward progress of the rightmost zero crossing ofs(ε)+α log(1−ε) that
yields the scaled learning curve asα increases. The quantityN[s(ε) + α log(1− ε)] is the
logarithm of the average number of surviving hypotheses at distanceε from the target, and
is the exponent in the sum of Eq. (10). Forα < α2, there are two zero crossings. The right
zero crossing yields the upper bound on generalization error of Theorem 4. The left zero
crossing also has a meaning. With high probability, there are no hypotheses in the version
space with error less than this left crossing except for the target itself. So the version space
minus the target is contained within an annulus (Engel & Fink, 1993) whose inner and outer
limits are the left and right zero crossings.

It is instructive to compare our bounds with the cardinality and VC bounds for this
problem. Since both of these latter bounds go likeN/m, and the lowest error shell is at
ε1 ∼ 1/

√
N, the criticalm for perfect learning ism ∼ N3/2, rather thanm ∼ N.

2.7. Analysis of monotone boolean conjunctions

In this example, the input spaceXN is the boolean hypercube{0, 1}N . The classFN

consists of the 2N functions computed by the conjunction of a subset of the input variables
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x1, . . . , xN , along with the empty (always 0) function∅ and the universal (always 1) function
{0, 1}N . The input distributionDN is uniform over{0, 1}N . A similar scenario has also
been analyzed in the machine learning literature (Oblow, 1992; Sarrett & Pazzani, 1992).

We will examine the thermodynamic limit for two different choices of target functions
fN . We begin with the target functionf = {0, 1}N , in which every input is a positive
example. Any conjunctionh of exactlyi variables fromx1, . . . , xN has generalization error

εgen(h) = PrEx∈DN [h(Ex) = 0] = 1 − 1/2i .

Hence the error shells are 1/2 = εN
1 < εN

2 < · · · < εN
N = 1− 1/2N , whereεN

i = 1− 1/2i .
The number of conjunctions in thei th shell isQN

i = ( N
i ) ≤ Ni . Since

ln QN
i

log2 N
≤ i ln 2 = − ln

(
1 − εN

i

)
(20)

we choose the scaling function to bet (N) = log N and thus the sample size is written as
m = α log N. A permissible entropy bound fort (N) is s(ε) = − ln(1 − ε).

The competition betweens(ε) and−α log(1 − ε) results in a scaled learning curve that
exhibits a sudden transition: for any 0≤ α < 1, the rightmost crossingε∗(α) does not
exist and our bound on the generalization error is 1. But forα ≥ 1, s(ε) is dominated by
−α log(1 − ε), soε∗(α) makes a sudden transition to 0. In summary, our theory predicts
that in the thermodynamic limit, forα < 1 there is no generalization, but forα > 1 there
is perfect generalization.

Our bound can be checked by deriving the exact learning behavior. In the problem
described, every random example is positive forfN , and every positive exampleEx eliminates
from the version space any conjunction containing a variable that is set to 0 inEx. Since half
of the remaining variables is eliminated by each example, it should take roughly log2 N
examples to eliminate allN variables and hence all conjunctions, leaving only the target
function.

A more precise calculation goes as follows. Since each variable has probability 2−m of
survivingm examples, the numberj of surviving variables obeys a binomial distribution:

P( j ) =
(

N

j

)(
1

2m

) j (
1 − 1

2m

)N− j

(21)

The function with maximum generalization error in the version space is a conjunction of
all j surviving variables, so that maxh∈VS(S) εgen(h) = εN

j . Then Chernoff bounds on the
fluctuations inj yield

1 − 2−N2−m(1−τ) ≤ max
h∈VS(S)

εgen(h) ≤ 1 − 2−N2−m(1+τ) (22)

with confidence greater than 1− 2e−Nτ 2/3. Taking the thermodynamic limit with
m = α log2 N, thenε → 1 for anyα > 1, andε → 0 for anyα < 1 with confidence
approaching 1.
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For this model, the cardinality and VC bounds give a learning curve of orderN/m, which
drops below the lowest error levelεN

1 = 1/2 for m of orderN. Hence these bounds also
predict perfect generalization, but with a bound on the criticalm of order N rather than
log N.

Now let the target function be the empty functionfN = ∅. Since a conjunctionh
of i variables hasεgen(h) = 1/2i , the error shells are 1/2N = εN

1 < εN
2 < · · · <

εN
N = 1/2, whereεN

i = 1/2N−i +1. The number of conjunctions in thei th shell is
QN

i = ( N
N − i ) ≤ NN−i . We again chooset (N) = log N as the scaling function. Then

ln QN
i

log2 N
≤ (N − i ) ln 2 = − ln 2εN

i (23)

so thats(ε) = − ln 2ε is a permissible entropy bound fort (N). The rightmost zero crossing
of s(ε) and−α log(1 − ε) gives the scaled learning curveε ∼ O(logα/α).

One interesting aspect of this learning problem is that the scaled learning curve is highly
dependent on the target function. Whereas learning the target functionsfN = {0, 1}N led
to a sudden transition in generalization, learning the empty functionfN = ∅ led to a slow
power law decrease. This is in marked contrast to the Ising perceptron problem, where the
learning curve is independent of which weight vector is the target function.

2.8. The thermodynamic limit lower bound

In this section, we give a theorem demonstrating that Theorem 4 is tight in a fairly general
sense (modulo the given entropy bound). More precisely, for any functions(ε) meeting
certain mild conditions, we construct a family of function classesF = {FN} such thats(ε)
is a permissible entropy bound for the scaling functiont (N) = N, and in the thermody-
namic limit the rightmost crossing of the functionss(ε) and 2αε is a lower bound on the
generalization error of worst hypothesis in the version space. Note that although this does
not exactly match Theorem 4, which gives as an upper bound the rightmost crossing of
s(ε) and−α log(1 − ε), the qualitative behavior of the scaled learning curves obtained by
intersecting with 2αε and−α log(1 − ε) is essentially the same. In particular, our lower
bound shows that the various scaled learning curve phenomena examined in Section 2.5
(such as phase transitions and shadowing) can actually occur for certain function classes
and distributions.

In the same way that lower bounds for the VC theory show that if the only parameter
of the learning problem we consider is the VC dimension, then the existing learning curve
upper bounds based on the VC dimension are essentially the best possible, Theorem 5 shows
that if the only parameter of the learning problem we use is a given entropy bounds(ε),
then Theorem 4 gives essentially the best possible learning curve upper bound. Thus, in
the absence of further information about the function class, distribution and target function
sequences, the scaled learning curves derived in Section 2.5 are essentially the best possible.
Similarly, the lower bound shows that better learning curves for the Ising perceptron and
boolean conjunction problems that depend only on the entropy bound cannot be obtained.
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Theorem 5. Let s : [0, 1/2] → [0, 1] be any continuous function bounded away from1
and such that s(0) = s(1) = 0. Then there exists a function class sequenceFN over XN

(where|FN | = 2N), a distribution sequence DN over XN, and a target function sequence
fN ∈ FN such that: (1) s(ε) is a permissible entropy bound with respect to the scaling
function t(N) = N, and(2) For anyα > 0, if ε∗ ∈ [0, 1/2] is the largest value satisfying
2αε∗ ≥ s(ε∗), then as N→ ∞ there is constant probability that there exists a function
h ∈ FN consistent with m= αN random examples satisfyingεgen(h) ≥ ε∗.

Proof: (Sketch) For everyN, the classFN will contain the functionfN which is identically
0 on all inputs. For the lower bound argument, for every value ofN, fN will always be the
target function against which we measure generalization error. The distributionDN will
always be uniform over the domainXN , which will always consist of 2N discrete points,
so XN = {1, 2, . . . , 2N}.

A high-level sketch of the main ideas follows. For anyN, the classFN will be constructed
so that there are exactlyN/2 error levels, namelyεN

j = j/N for 1 ≤ j ≤ N/2. Now
let s : [0, 1/2] → [0, 1] beanycontinuous function bounded away from 1 and satisfying
s(0) = s(1/2) = 0. The idea is that for anyN and any 1≤ j ≤ N/2, FN will contain
exactly 2s( j/N)·N functions whose error with respect tofN is j/N. Thus, for anyε, as
N → ∞, there will eventually be arbitrarily close to 2s(ε)·N functions of error arbitrarily
close toε. This ensures thats(ε) will be a permissible entropy bound with respect to the
scaling functiont (N) = N. Furthermore, these functions will be specially chosen to force
the claimed lower bound.

In more detail, for everyN and every 1≤ j ≤ N/2, FN will contain a subclass of
functionsF j

N , where|F j
N | = 2s( j/N)·N . Note that this implies|FN | < (N/2)2N since

s(ε) < 1. For everyh ∈ F j
N and every(2 j /N)2N < x ≤ 2N , h(x) = 0. In other words, on

a fraction 1− (2 j /N) of the input space, all theh ∈ F j
N agree with the target functionfN .

However, on the points{1, 2, . . . , (2 j /N)2N} eachh ∈ F j
N will behave as a unique parity

function on a domain of size(2 j /N)2N . More precisely, we can define an isomorphism
between{1, 2, . . . , (2i /N)2N} and the hypercube of the same size, and let each function
in F j

N (when restricted to{1, 2, . . . , (2 j /N)2N}) be isomorphic to a unique parity function
on this hypercube. (Note thats(ε) must obey 2s(ε)·N ≤ 2ε · 2N in order to ensure there are
enough unique parity functions. The conditions(ε) < 1 is sufficient to give this asymptot-
ically.) Thus, eachh ∈ F j

N hasεgen(h) = j/N since each parity function outputs 1 on half
of the hypercube inputs andfN is identically 0.

Now let us analyze, in the thermodynamic limit, the largest generalization error of any
function in the version space of the constructed familyFN (for target functionsfN and
uniform distributionsDN). By our construction, for anyε, asN → ∞ there are eventually
2s(ε)·N functions inFN of generalization error arbitrarily close toε (namely,ε ± 1/N).
Let the sample sizem = αN. As N → ∞, the number of sample points falling in the set
{1, 2, . . . , 2ε ·2N} becomes sharply peaked at(2ε)αN. The remaining sample points fail to
eliminate any of the functions of generalization errorε since they all agree with the target
function fN on the remaining points.

Now it is known (Goldman, Kearns, & Schapire, 1990) that in order to eliminate 2s(ε)·N

parity functions over a uniform distribution, the sample sizem must obeym ≥ s(ε) · N;
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for smallerm, there is a constant probability that at least one parity function remains in the
version space. Thus, we obtain that if(2ε)αN ≤ s(ε)N then there is constant probability
that the version space contains a function of generalization error at leastε. In other words,
2αε ≥ s(ε) is a condition for eliminating all functions of generalization errorε from the
version space, thus proving the theorem. 2

3. The finite and unrealizable case

One highly restrictive aspect of all of our analysis so far is the assumption that the labels of
the examples are generated by some target function inF , and hence it is always possible
to obtain zero generalization error. We now consider the relaxation of this restriction to the
case where there may exist no function inF with zero generalization error. We call this
case theunrealizabletarget case. This actually covers two cases. In the first, the labels of
the examples are generated by some target function that is not inF . In the second, and more
general case, each labeled example〈xi , yi 〉 in S, 1 ≤ i ≤ m is generated independently
according to a distributionDN on XN × {0, 1}, which plays the role that was played jointly
by the distributionDN and the target function in the realizable case. HereDN can model
noise in the examples as well. We pursue this second, more general case here.

In analogy with the realizable case, for any functionh ∈ FN , εgen(h) = Pr〈x,y〉∈DN

[h(x) 6= y]. For simplicity we will assume that there is a unique best hypothesis inFN

h∗ = argmin
h∈F

εgen(h), (24)

although it is easy to generalize the arguments to handle cases where there is a tie. (Since
FN is finite, we need not worry about there being an infinite sequence of better and better
hypothesis, with no best hypothesis inFN .) Our goal in this section is to analyze the
learning curve for this unrealizable case in the same manner as for the realizable case,
providing a thermodynamic limit method and extracting scaled learning curves. Of course,
now the learning curve approachesεmin = εgen(h∗) rather than 0 as the number of examples
is increased. We shall see that interesting technical differences from the realizable case are
also forced upon us in the analysis.

Recall that in the realizable case, we focused on bounding the error of any consistent
algorithm. In the unrealizable case, we analyze an empirical error minimization algorithm.
We define thetraining error or empirical error of a hypothesish to be the frequency of
disagreement on a sampleS:

εtrn(h, S) = 1

m

m∑
i =1

χ [h(xi ) 6= yi ] (25)

where the indicator functionχ is 1 when its argument is true and zero otherwise. An
empirical error minimization algorithm chooses a hypothesis from the version space, which
we now redefine to be the set of all functions that minimize the training errorεtrn(h, S):

VS(S) =
{
h ∈ F : εtrn(h, S) = min

h′∈F
εtrn(h

′, S)
}
. (26)
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3.1. Energy functions

One of the main differences between the unrealizable and realizable cases is the form of the
bound we can obtain on the probability that a fixed functionh ∈ F “survives” m random
examples, that is, remains in the version space and hence is eligible to be chosen by an
empirical error minimization algorithm. Recall that in the realizable case, this probability
was exactly(1 − εgen(h))m sinceεmin = 0 and minimum empirical error is equivalent to
consistency. In the unrealizable case, the situation is more complicated: we will only
be able to upper bound this survival probability. Unlike the realizable case, where the
exact expression(1− εgen(h))m for the survival probability was eventually translated in the
thermodynamic limit method to a function−α log(1−ε) in the exponent that wasuniversal
for all problems (the specifics of the problem affecting only the scaling function and entropy
bound), in the unrealizable case we may sometimes need to use energy bounds that depend
on the problem specifics. Furthermore, the quality of bound we use can have significant
effects on the behavior of the resulting scaled learning curve, especially in the largeα limit.

We will treat this bound on the survival probability as a parameter of the analysis. More
precisely, let us refer to a functionu(ε) as apermissible energy bound(with respect toF ,
D and the target function) if for anyh ∈ F and any sample sizem we may write

PrS[h ∈ VS(S)] ≤ e−u(εgen(h))m. (27)

In other words, we imagine thatu(εgen(h)) assesses a penalty toεgen(h) that increases with
largerεgen(h), and the probability thath survives to be in the version space (and thus the
probability that an empirical minimization algorithm may chooseh) decreases exponentially
in m times this penalty.

Permissible energy bounds will all be derived from the following chain of inequalities:

PrS[h ∈ VS(S)] (28)

≤ PrS[εtrn(h, S) ≤ εtrn(h
∗, S)] (29)

≤
[
1 − ε(h, h∗) +

√
ε(h, h∗)2 − (εgen(h) − εmin)2

]m

(30)

whereε(h1, h2) is the probability of disagreement betweenh1 andh2 on the label of a
random example drawn according toDN . The first inequality follows from the fact that the
training error of any hypothesish in the version space must be no greater than the training
error of any other hypothesis in the class, includingh∗ in particular. The second follows
from Sanov’s theorem on large deviations (Cover & Thomas, 1991) (see Section A.2 of the
Appendix).

For the realizable case we haveεmin = 0 andε(h, h∗) = εgen(h), soPrS[h ∈ VS(S)] ≤
(1 − εgen(h))m already follows from the second inequality. To obtain an energy bound in
the unrealizable case, we must somehow relateε(h, h∗) to εgen(h). If v(ε) is a function that
satisfies

ε(h, h∗) ≤ v(εgen(h)) (31)
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then from Eq. (30)

u(ε) = − ln
(
1 − v(ε) +

√
v2(ε) − (ε − εmin)2

)
(32)

is a permissible energy bound. In our theory, learning curves are determined by the com-
petition between energy and entropy, with the best bounds being obtained for the largest
energy bound (which corresponds to the most rapidly decaying bound on the survival prob-
ability as a function ofm). For this reason, we see that smallerv(ε) is, the better the
resulting energy bound. Now by the triangle inequality, we can always findv(ε) such
thatε − εmin ≤ v(ε) ≤ min{ε + εmin, 1}, and cannot find a smallerv(ε). Since the choice
v(ε) = ε+εmin is always possible, plugging this into Eq. (32) gives a universally permissible
energy bound. After a little algebra, this bound reduces to

u(ε) = − ln
(
1 − (

√
ε − √

εmin)
2
)

(33)

However, betterv(ε) may be obtained in certain cases. For instance, if we are fortunate
enough to havev(ε) = ε − εmin for some problem, thenu(ε) = − ln(1 − ε + εmin) is a
permissible energy bound, which is essentially linear inε and thus nearly the same as for the
realizable case. We now sketch the technical development for the unrealizable case using
a generic permissible energy boundu(ε), occasionally pointing out the effects of specific
energy bounds on learning curves. We examine these effects more closely in Section 3.5.

3.2. Technical development for the unrealizable case

As was done for the realizable case in Section 2.1, we can write a union bound on the
probability that VS(S) is contained inB(ε). This enables us to bound the error of all
empirical error minimization algorithms. For with confidencePrS[VS(S) ⊆ B(ε)], we can
assert that the hypothesis with minimal training error has generalization error less thanε.

Let ε > εmin be given. Then any permissible energy boundu(ε) can be used to lower
bound the probability that every function outsideB(ε) has training error larger than the
training error ofh∗:

Theorem 6. Let u(ε) be a permissible energy bound. ThenPrS[VS(S) ⊆ B(ε)] ≥ 1− δ,

where

δ =
∑

h∈B(ε)

e−u(εgen(h))m (34)

Theorem 1 is a special case withu(ε) = − log(1 − ε).
With the universally permissible energy functionu(ε) = − ln(1 − (

√
ε − √

εmin)
2), the

standard cardinality bound becomes∑
h∈B(ε)

e−u(εgen(h))m ≤ |F |(1 − (
√

ε − √
εmin)

2
)m

(35)

≤ |F |e−(
√

ε−√
εmin)

2m (36)
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becauseεgen(h) > ε for all h ∈ B(ε). Setting the latter quantity toδ and solving forε
yields

ε = εmin + 2

√
εmin ln(|F |/δ)

m
+ ln(|F |/δ)

m
. (37)

Hence in analogy with Section 2.2 for the realizable case, it follows that for any empirical
error minimization algorithm, with confidence 1− δ the hypothesish it produces satisfies

εgen(h) ≤ εmin + 2

√
εmin ln(|F |/δ)

m
+ ln(|F |/δ)

m
, (38)

giving the same bound we obtained in the realizable case whenεmin = 0.
This worst case bound already has some interesting behavior in the thermodynamic

limit. To see this, let assume thatFN = 2N , as large as we allow, and further that the best
entropy function that we can obtain is the trivial functions(ε) = 1. Let t (N) = N. Then
ln |FN |/m = 1/α. Hence, from Eq. (38), in the thermodynamic limit we obtain the scaled
learning curve

ε − εmin ≤ 2

√
εmin

α
+ 1

α
. (39)

This curve exhibits a faster learning rate, scaling roughly like 1/α in the early stages of
learning, untilα ≈ 1/4εmin, the point at which both terms in the bound are equal, then it
begins to scale more like 2

√
εmin/α asα gets larger and the first term in the bound begins

to dominate. This behavior has also been noted by Vapnik (1982).
Returning to the general development, just as in the realizable case we can refine the union

bound of Theorem 6 via a shell decomposition. Still more improvement may come from
finding a better energy function of the form in Eq. (32). Addressing the first improvement,
just as in the realizable case in Section 2.3, we proceed to slice the function class into error
shells. Letεmin = ε1 < ε2 < · · · < εr be all of the possible values for the generalization
error for functions inF , and letQi be the number of functionsh ∈ F satisfyingεgen(h) = εi .
The analog of Theorem 3 in the unrealizable case is:

Theorem 7. Let u(ε) be a permissible energy bound. Then for any fixed sample size m
and confidence valueδ, with probability at least1 − δ any h∈ VS(S) obeysεgen(h) ≤ εi ,

whereεi ≥ εmin is the smallest error level satisfying

r∑
j =i

Q j e
−u(ε j )m ≤ δ. (40)

In other words, for anyδ we may write

εgen(h) ≤ min

{
εi :

r∑
j =i

Q j e
−u(ε j )m ≤ δ

}
(41)
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with probability at least 1− δ. Thus we have a bound onεgen(h) that implicitly depends on
m, but as in the realizable case, this bound is more easily understood in a thermodynamic
limit.

Towards this goal, in analogy with Section 2.4 for the realizable case, we again can
rewrite the summation obtained by shell decomposition in a convenient exponential form.

r∑
j =i

Q j e
−u(ε j )m (42)

=
r∑

j =i

elog Qj −u(ε j )m (43)

=
r∑

j =i

et (N)[(1/t (N)) log Qj −(m/t (N))u(ε j )] (44)

wheret (N) is a scaling function of our choice. Thus we see that in the unrealizable case, the
bound on generalization error again involves a competition between the entropic expression
(1/t (N)) log Qj and the energetic expression(m/t (N))u(ε j ). Using the same definition
of the permissible entropy functions(ε) as in the realizable case, we obtain the following
theorem, whose proof is entirely analogous to the realizable setting.

Theorem 8. Let u(ε) be a permissible energy bound. Let s(ε) be any continuous function
that is a permissible entropy bound with respect to the scaling function t(N), and suppose
that r(N) = o(et (N)1) for any positive constant1. Then as m, N → ∞ butα = m/t (N)

remains constant, for any positiveτ we have

PrS[VS(S) ⊆ B(ε∗ + τ)] → 1. (45)

Here the probability is taken over all samples S of size m= αt (N), where each example
is drawn independently according to DN, and ε∗ is the rightmost crossing point of s(ε)

andαu(ε). In other words, in the thermodynamic limit any hypothesis h with the minimum
number(overF)of observed disagreements on theαt (N)examples will have generalization
error εgen(h) ≤ ε∗ + τ with probability1.

Just as in the realizable case, Theorem 8 allows us to extract scaled learning curves
that express generalization error as a function ofα. It is also easily verified that the
thermodynamic limit lower bound of Theorem 5 translates unchanged to the unrealizable
setting.

In summary, for the unrealizable case in the thermodynamic limit, the generalization error
can be upper bounded by the rightmost crossing ofs(ε) and a competing energy function of
the form in Eq. (32) timesα. Thus the basic theory derived for the realizable case survives
relatively nicely. Furthermore, we will shortly see that while the overall picture is described
by this competition, slight changes to simple models of unrealizability can yield important
changes tos(ε) and the energy function, and thus to the resulting learning curve.
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3.3. Analysis of an unrealizable Ising perceptron

We now illustrate the use of the thermodynamic limit method in the unrealizable case by con-
sidering an unrealizable variant of the Ising perceptron problem considered in Section 2.6.
Let the target functionfN be the perceptron in which every weight is+1, and let the func-
tion classFN consist of all Ising perceptrons which haveat leastγ N weights (γ ∈ [0, 1])
that are−1. (Note that unlike the realizable Ising perceptron case, here the choice of target
function matters.) Again let the distributionDN be any spherically symmetric distribution
on <N . Thus, the target function is not contained inFN , and the minimum errorεmin(γ )

is given by applying Eq. (17), soεmin(γ ) = (1/π) cos−1(1 − 2γ ). This minimum error
is achieved by all of those functions inFN with the minimum allowed numberγ N of −1
weights, of which there are exactly( N

γ N ). We shall regardγ as a parameter measuring the
extent of the unrealizability.

The correct scaling function for this problem is againt (N) = N, and it is easy to see
the effects of the unrealizability parameterγ on this problem. The resulting permissible
entropy boundsγ (ε) is identically 0 in the range [0, εmin(γ )], as there are no functions inFN

at these generalization errors. In the range [0, εmin(γ )], however,sγ (ε) = s(ε), wheres(ε)
is simply the entropy bound for the realizable Ising perceptron given by Eq. (19). Thus our
entropy bound in the unrealizable case is simply that of the realizable case, but truncated
to the left ofεmin(γ ).

The effects of this truncation on the predicted scaled learning as a function ofγ turn out
to be quite interesting. If we use the universally permissible energy bound given by Eq. (32)
then figures 12, 13 and 14 show the resulting entropy-energy competition for three different
degrees of unrealizability (that is, three values ofεmin(γ )) by plotting s(ε) − αu(ε). In
each case ofεmin(γ ), we plots(ε) − αu(ε) for three different values ofα. Whenεmin(γ )

is small (thus, the target function is nearly realized by the function class), the behavior is
quite similar to that of the realizable case in figure 11. By the timeεmin(γ ) is as large as

Figure 12. The functions(ε) − αu(ε) for the unrealizable Ising perceptron discussed in Section 3.3, with
εmin(γ ) = 0.005. The function is plotted for the valuesα = 2.0, 2.063, 2.1 (top to bottom).
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Figure 13. The functions(ε) − αu(ε) for the unrealizable Ising perceptron discussed in Section 3.3, with
εmin(γ ) = 0.01224. This value forεmin(γ ) is a critical value, in the sense that the learning curve phase transition
disappears for largerεmin(γ ). The function is plotted for the valuesα = 2.5, 2.659, 2.8 (top to bottom).

Figure 14. The functions(ε) − αu(ε) for the unrealizable Ising perceptron discussed in Section 3.3, with
εmin(γ ) = 0.05. The function is plotted for the valuesα = 10, 11, 12 (top to bottom).

0.05 in figure 14, we can see that the leftward progress of the zero crossing asα increases
is quite uniform—the unrealizability has thus erased all traces of a phase transition. The
intermediate valueεmin(γ ) = 0.01224 is the boundary between these two behaviors: for
smallerεmin(γ ), the resulting learning curve will still exhibit some phase transition, while
for largerεmin(γ ), the transition is erased (although there may still be some trace of a phase
transition in the form of accelerated generalization). This can all be clearly seen in figure 15,
which shows the resulting scaled learning curves for these values ofεmin(γ ). Thus we see
that the increase ofγ not only increases the best errorεmin(γ ), it affects the very form of
the learning curve. In particular, asγ increases the asymptotic rate of approach toεmin(γ )

becomes slower. Figure 16 shows aphase diagramthat plots the critical value ofα for
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Figure 15. The scaled learning curvesε∗
γ (α) for the unrealizable Ising perceptron discussed in Section 3.3, for

the three valuesεmin(γ ) = 0.005, 0.01224, 0.05 (bottom to top).

Figure 16. Phase diagram showing line of first-order transitions beginning atα = 1.448 forεmin(γ ) = 0 and
terminating atα = 2.659 forεmin(γ ) = 0.01224.

which the learning curve experiences a phase transition as a function ofεmin(γ )—thus,
as we have already mentioned, no value is plotted forεmin(γ ) > 0.01224 since no phase
transition occurs in this case.

3.4. Analysis of the Ising perceptron with input noise

Here we consider the case whenDN is obtained by applying a target function consisting of
an Ising perceptronw∗ to inputs corrupted by additive Gaussian noiseξ . Thus in a random
training example〈x, y〉 from DN ,

y = f (x, ξ) = sgn(w∗ · (x + ξ)). (46)
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The distribution of inputsx is Gaussian, with unit variance on each component. The dis-
tribution of noiseξ is also Gaussian, with varianceγ 2 − 1 on each component. A similar
problem was examined by Gy¨orgyi and Tishby (1990).

In this case, one can show that

εgen(w) = 1

π
cos−1(R/γ ) (47)

εmin(γ ) = εgen(w∗) = 1

π
cos−1(1/γ ) (48)

εgen(w, w∗) = 1

π
cos−1 R (49)

whereR = w · w∗/N.
The entropy function takes the form

sγ (ε) = H((1 − cosπε/cosπεmin(γ ))/2). (50)

To derive the energy function, we use

vγ (ε) = 1

π
cos−1(cosπε/cosπεmin(γ )) (51)

and plug into Eq. (32) to obtainuγ (ε). Our error bound is then the rightmost solution of
sγ (ε) = αuγ (ε). The entropysγ (ε) is a single hump, as in the zero noise case. However,
the edges of the hump are atε = εmin(γ ) andε = 1− εmin(γ ), outside of which the entropy
is zero. At the edges, the entropy rises like1ε log1ε (where1ε = ε − εmin(γ )), and
thus has infinite slope. In contrast the energy has zero slope, since it behaves like(1ε)3/2.
Hence the asymptotic behavior must be

ε − εmin(γ ) = O

(
logα

α

)2

(52)

However, the largeα asymptotics are not the whole story. Forεmin(γ ) < 0.01969, the
error bound undergoes a first order transition to nonzero error. In other words, although the
input noise prevents a transition to perfect learning, when it is small it does not erase all
traces of the transition.

Plots ofs(ε) − αu(ε) for three different values ofεmin(γ ) are given in figures 17, 18 and
19, and the corresponding learning curves in figure 20. The phase diagram indicating the
critical value ofα for each value ofεmin(γ ) is plotted in figure 21.

As an illuminating exercise, we note that four different bounds can be written using the
tools of this paper. For the entropy there are two choices, the simple cardinality bound
s(ε) = 1 and the tighter bound above. For the energy there are two choices, given by
Eqs. (32) and (33), corresponding to the choices ofv(ε) as above andv(ε) = ε + εmin.
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Figure 17. The functions(ε) − αu(ε) for the unrealizable Ising perceptron discussed in Section 3.4, with
εmin(γ ) = 0.01. The function is plotted for the valuesα = 2.0, 2.1184, 2.2 (top to bottom).

Figure 18. The functions(ε) − αu(ε) for the unrealizable Ising perceptron discussed in Section 3.4, with
εmin(γ ) = 0.01969. This value forεmin(γ ) is a critical value, in the sense that the learning curve phase transition
disappears for largerεmin(γ ). The function is plotted for the valuesα = 2.5, 2.6136, 2.7 (top to bottom).

These four possibilities give the bounds exhibited below:

cardinality entropy
v(ε) = ε + εmin α−1/2 (logα)/α

v(ε) ∼ √
1ε α−2/3 ((logα)/α)2

(53)

Note how much weaker some of the bounds are than others.
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Figure 19. The functions(ε) − αu(ε) for the unrealizable Ising perceptron discussed in Section 3.4, with
εmin(γ ) = 0.03. The function is plotted for the valuesα = 2, 3, 4 (top to bottom).

Figure 20. The scaled learning curvesε∗
γ (α) for the unrealizable Ising perceptron discussed in Section 3.4, for

the three valuesεmin(γ ) = 0.01, 0.01969, 0.03 (bottom to top).

3.5. Large-α asymptotics of scaled learning curves

Our formalism can be used to give a classification of the large-α asymptotics of scaled
learning curves7, thus completing a classification program that has been suggested by
several researchers (Amari et al., 1992; Schwartz et al., 1990; Seung et al., 1992). From
Eq. (32) and Lemma 9, the weaker form

u(ε) = (ε − εmin)
2

2v(ε)
(54)
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Figure 21. Phase diagram showing line of first-order transitions beginning atα = 1.448 forεmin(γ ) = 0 and
terminating atα = 2.6136 forεmin(γ ) = 0.01969.

is derived as a permissible energy bound in the Appendix in Section A.2. The entropy-
energy competition then takes the form

s(1ε) = αu(1ε) = α
(1ε)2

2v(1ε)
(55)

where we have rewritten all functions ofε as functions of the difference1ε = ε − εmin.
Since the only model-dependent quantities ares(1ε) andv(1ε), we can classify the

largeα asymptotics of scaled learning curves. In fact, the only model-dependent quantity
that need enter is a single exponentx, defined by

s(1ε)v(1ε) ∼ (1ε)x (56)

near1ε = 0. This yields the following cases:

• If x > 2, there is a first-order (sudden) phase transition to perfect learning. This is
assuming thats(0) = 0, so that1ε = 0 is always a solution of Eq. (55), if not the rightmost
solution. This is the generic case, unless there are exponentially many functions with
ε = εmin.

• If 1 < x < 2, the error decays as a power law, 1/α2−x.
• In the marginal casex = 2, the behavior can be affected by logarithmic corrections

to the power law of Eq. (56). In the absence of such corrections, there is a second-
order (continuous) transition to perfect learning in which the error drops to zero like
ε ∼ αc −α. In the presence of a logarithmic correction,s(1ε)v(1ε) ∼ −(1ε)2 log1ε,
the error bound decays exponentially withα.

This classification scheme is a generalization of that of Sompolinsky and his colleagues to
include unrealizable rules (Seung, et al., 1992).
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4. The infinite case

The final generalization of our theory that needs to be discussed is to the frequent case
in which the function classF (whether it realizes the target function or not) has infinite
cardinality. Unfortunately, while there are certainly several plausible directions we can
take to adapt our theory to this case, none of these has emerged as definitively the best
choice for handling the infinite case. This is partially due to the lack of known natural
examples of infinite classes that lead to learning curve behavior other than a power law
(thus suggesting that the extremely general VC dimension-based approach is sufficient for
analyzing most classes), and partially due to the difficulty of the calculations required by
the various approaches. Thus, by necessity our examination of the infinite case will be
considerably more open-ended than for the finite case.

We begin by noting that practically every step of our analysis for the finite case was
based on computing the (finite) cardinality of some subclass ofF . This began with the
shell decomposition ofF to obtain the subclass cardinalitiesQj , whose logarithms were
eventually bounded by the entropy functions(ε) in the thermodynamic limit method. Ob-
viously, new ideas will be required in order to carry out a similar analysis in the infinite
case. Our eventual goal should be to preserve the essentials of our theory: namely, to again
describe learning curves as a competition between “entropy” and “energy”, with the largest
value for which energy dominates entropy being a bound on the generalization error of
empirical minimization algorithms. However, there are now several distinct candidates for
our entropic measure. We now discuss in some detail just one of these candidates, which
essentially attempts to reduce the infinite case to a series of finite problems. In Section 6,
we briefly mention alternative approaches that are the focus of our current research.

4.1. The covering approach

In the covering approach, we reduce an infinite cardinality function class to a series of finite
classes, and perform our analysis for the finite case on each of these classes in order to
obtain a bound on the learning curve.

For any fixed function classF (of possibly infinite cardinality), any distributionD, and
any valueγ ∈ [0, 1], a subclassF [γ ] ⊆ F is called aγ -coverof F with respect toD if for
every f ∈ F there exists anf ′ ∈ F [γ ] such thatε( f, f ′) ≤ γ . In other words, while there
may be functions inF that are not realizable inF [γ ], the extent of this unrealizability is
bounded by the parameterγ .

There is a canonical greedy construction ofγ -covers that will be particularly helpful to
keep in mind. Thus, throughout this section, for any fixed valueγ , we assume thatF [γ ]
is a γ -cover ofF with respect toD obtained by initially choosing any function inF ,
then inductively adding toF [γ ] at each step anyf ∈ F that is distance at leastγ (with
respect toD) from all h ∈ F [γ ]. This process is repeated until no more functions can
be added. It is easy to see that the resulting setF [γ ] does indeed form aγ -cover, and it
is known that thisγ -cover is in fact at most twice the cardinality of thesmallestpossible
γ -cover. Furthermore, supposeγ ′ < γ . Then we can extendF [γ ] to obtain aγ ′-cover
F [γ ′] ⊇ F [γ ] by again greedily adding toF [γ ] functions that are at distance at leastγ ′
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until no such function exists. The resulting coverF [γ ′] will again have cardinality at most
twice the smallestγ ′-cover. In this way we can obtain for any sequenceγ1 > γ2 > γ3 > · · ·
a sequence ofnestedcoversF [γ1] ⊆ F [γ2] ⊆ F [γ3] ⊆ · · ·.

Let us fixγ ∈ [0, 1], and assume thatF has a finiteγ -cover with respect toD. This is not
as severe an assumption as it might initially seem. For instance, it is well-known that any
class of VC dimensiond has aγ -cover of cardinality at mostO(1/γ d) with respect to any
distribution and for everyγ . Furthermore, if a class is not finitelyγ -coverable with respect
to D, then the generalization error cannot be made less thanγ in any finite number of
examples. Thus, we see that finite coverability is really a minimal assumption for attaining
small generalization error.

With a fixedγ -coverF [γ ] of F with respect toD in mind, it is a straightforward appli-
cation of our theory for the finite unrealizable case to analyze the algorithm that performs
empirical error minimization with respect toF [γ ]. Givenm examples, this algorithm out-
puts anyh ∈ F [γ ] with minimum empirical error on the sample. Note that this algorithm
explicitly doesnot choose from the full classF , but limits its search to the fixed finite
subclassF [γ ]. For a fixed target function (contained inF or not), the thermodynamic limit
method applied toF [γ ] results in a bound on the error ofε∗

γ , whereε∗
γ is the rightmost

crossing function of a permissible entropy boundsγ (ε) for F [γ ] and an energy function
αuγ (ε), where as beforeεmin(γ ) ≤ γ is the smallest possible generalization error achievable
in F [γ ]. The idea of using empirical minimization over a finite cover for an infinite class
has also been investigated by Benedek and Itai (1991) in their investigation of distribution-
specific sample complexity, and also by Vapnik (1982).

Things become more interesting when we take the natural step of analyzing the algorithm
that first chooses an advantageous value for the realizability parameterγ and then performs
empirical minimization usingF [γ ]. More precisely, if we assume that the algorithm has
knowledge ofsγ (ε) for eachγ 8, and is givenm = αt (N) examples of the target function,
then the algorithm will explicitly chooseγ to minimize the resulting rightmost crossingε∗

γ .
It is worth mentioning at this point that while such an algorithm may be difficult or

impossible to implement (requiring the possibly difficult choice ofγ and knowledge of
the finite coversF [γ ]), it is worth study for at least two reasons. First, the algorithm is of
some theoretical interest since it explicitly considers the potential trade-off between the best
error achievable in the chosen coverF [γ ] (which improves asγ → 0), and thesizeofF [γ ]
(which increases asγ → 0). Second, although one might not implement such an algorithm
in practice, any bound we can provide on its generalization error can provide bounds on
the generalization error of optimal algorithms (such as the Bayes or Gibbs algorithms in a
Bayesian framework (Haussler et al., 1991)).

In the thermodynamic limit, we may upper bound the generalization error of this algo-
rithm by

ε∗ = min
γ∈[0,1]

ε∗
γ . (57)

Let us interpret this bound. For each fixedγ , we are computing the rightmost crossingε∗
γ

of sγ (ε) andαuγ (ε). What is the expected behavior of this crossing asγ → 0? Well, as
γ → 0 the coversF [γ ] are becoming larger (since we require more functions to achieve the
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greater realizability), and we thus expectsγ (ε) to increase. Indeed, if we use the nested cover
construction suggested at the beginning of this section, then for anyγ ′ ≤ γ we will have
sγ ′(ε) ≥ sγ (ε) for everyε. Thus, decreasingγ has the effect of “lifting”sγ (ε) (although
perhaps in a very nonuniform and complex manner). Ifuγ (ε) remained unchanged asγ
decreased, then the lift tosγ (ε) could only cause the crossingε∗

γ to increase, thus predicting
that decreasingγ could never help.

However,uγ (ε) doesnot remain unchanged asγ decreases. Rather, smallerγ results in
a smaller value for the optimal errorεmin(γ ) ≤ γ , thus shifting the energy curveuγ (ε) to
the left. If sγ (ε) remained unchanged asγ → 0, we would predict that decreasingγ could
never hurt, and would chooseγ = 0.

Thus in general, the covering analysis predicts that while for each fixedγ , the best error
for resolutionγ is determined by the competition betweensγ (ε) andαuγ (ε), the overall
best error is governed by the competition between the lift tosγ (ε) and the leftward shift to
uγ (ε) asγ → 0.

5. Generalization of the theory to distribution learning

We believe that the basic components of the theory outlined here—namely, the identification
of the appropriate entropy and energy bounds, and the resulting bound on the learning curve
in terms of their competition—should generalize considerably beyond the basic model of
supervised learning of boolean functions examined in this paper. By this we mean the theory
should generalize to cover many different models of learning from random independent
observations, using a variety of loss functions. To demonstrate this, we now informally work
out a simple example in which we calculate learning curve bounds, in the thermodynamic
limit, for a certain class of probability distributions with respect to the well-known Kullback-
Leibler divergence.

Let the target distributionD over{0, 1}N be defined as follows: for each 1≤ i ≤ N, we
let thei th bit of the output vector be 0 with probability(1 − p) and 1 with probabilityp.
Here p is a parameter in [0, 1/2] that will remain fixed for the ensuing discussion. Thus,
the distributionD can be regarded as outputting a random vector obtained by corrupting
each bit of the vectorE0 = 00· · · 0 with independent probabilityp.

Let the class of hypothesis distributions be similarly defined by all the possible “center”
vectorsEv ∈ {0, 1}N . Thus, the vectorEv represents the distributionDEv obtained by corrupting
each bit ofEv with independent probabilityp, and the targetD ≡ DE0. It should be clear that
the Kullback-Leibler divergence ofDEv from the targetD depends only on the Hamming
distance betweenEv andE0, which is just the number of 1’s appearing in the vectorEv.

We now undertake an analysis of the Kullback-Leibler divergence, as a function of the
sample sizem, of the hypothesisDEv minimizing the empirical log-loss

loss(DEv, S) =
∑
Ey∈S

log(1/DEv[ Ey]). (58)

HereS consists ofm independent random draws from the target distributionD. Thus, we
are simply analyzing in our theory the learning curve of the maximum-likelihood approach
to this problem.
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Now it is not hard to show that ifEv is a vector with exactlyr 1’s in it, then the Kullback-
Leibler divergence ofDEv to D is

r

(
p log

1

1 − p
+ (1 − p) log

1

p
− H(p)

)
(59)

where H(p) is the usual binary entropy ofp. Note that the divergence is 0 whenr =
0 (the divergence of the target from itself is 0), and it is also 0 whenp = 1/2 (since
then everyEv generates the uniform distribution on{0, 1}N). Since p is fixed, let us use
Cp = p log(1/(1 − p)) + (1 − p) log(1/p) − H(p) to denote the constant inside the
parentheses above. For convenience, we also divide the Kullback-Leibler divergence byN
just to make our measure of generalization error an order 1 quantity. Then we see that our
error levels are justεN

r = r (Cp/N) for 0 ≤ r ≤ N, and the number of distributions in the
class that are at divergenceεN

r from the target isQN
r = ( N

r ).
We now turn to the problem of finding a suitable energy function. In other words, suppose

that Ev is a fixed vector with exactlyr 1’s, and suppose we draw a sampleS of m vectors
from the target distributionD. Then what isPrS∈Dm[loss(DEv, S) ≤ loss(D, S)]?

To bound this probability, note that the difference in the log-loss incurred by the two
distributions on any fixed vectorEy depends only on the setting inEy of ther bits whereEv and
E0 disagree (which we may assume without loss of generality are the firstr bits). On a 0 in
bits 1 throughr , the target pays log(1/(1− p)) andDEv pays log(1/p), and on a 1, the costs
are reversed. Thus our problem simply reduces to the following: we havem · r Bernoulli
trials, each with probabilityp of tails. What is the probability that we have a majority of
tails? Now we can just use standard Chernoff bounds to obtain the following bound:

PrS∈Dm[loss(DEv, S) ≤ loss(D, S)] ≤ e−(mr/3)(1−2p)2/(4p). (60)

Thus when we write out our summation of entropy times energy (corresponding to Eq. (7)
in the boolean function learning setting), ther th term is( N

r )e−(mr/3)(1−2p)2/(4p). Using the
bound( N

r ) ≤ Nr we can bound ther th term byer log N−(mr/3)(1−2p)2/(4p). Factoring out
the scaling factort (N) = log N, we rewrite thiselog N(r −(αr/3)(1−2p)2/(4p)) where we define
α = m/log N. In the thermodynamic limit, this predicts a phase transition to perfect
generalization forα proportional top/(1−2p)2. This makes some sense, in that the critical
α goes to infinity asp approaches 1/2.

6. Conclusion

Two questions have often been raised in the computational learning theory community
regarding the statistical physics approach to learning curves. Can it be made rigorous?
Does it give any results that can not be derived from the VC theory? In this paper, we have
shown that for finite function classes and excluding replica calculations, the answer to both
questions is affirmative. Under certain circumstances, our theory provides much tighter
bounds than the VC theory, best illustrated in our examples exhibiting phase transitions.
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Our theory gives tighter bounds than the VC theory at the expense of increasing the
number of problem-dependent quantities. Since the computation of the entropy bounds(ε)
requires knowledge of the input distribution, it is considerably more difficult than the
computation of the VC dimension, which requires knowledge of only the function class.
For this reason, applications of our theory to real problems may be difficult. Thus, our
theory is descriptive rather than prescriptive at this point: it should be regarded more as
an attempt to come to a theoretical understanding of the true behavior of learning curves,
rather than as a tool for application.

There is obviously still much work to do in our theory, and we now list some of the
research directions we are pursuing.

• The infinite case. The most glaring weakness of our theory, especially in comparison
to the VC theory, is that we have developed and analyzed it only for finite cardinality
concept classes. We are currently investigating extensions to the infinite case that are
more refined than the covering approach discussed in Section 4.1, and are based on
combining the shell decomposition with the VC dimension, VC entropy and random
covering numbers (Dudley, 1978; Haussler, 1992; Pollard, 1984; Vapnik, 1982).

• Expressing our bounds as penalty functions.One of the most interesting aspects of
the VC theory is Vapnik’s explicit prescription in the unrealizable setting for trading off
hypothesis class complexity (and therefore, ability to realize the target function) against
empirical error (Vapnik, 1982). This prescription is known asstructural risk minimiza-
tion, and the form it takes can be directly traced to the form of the VC bounds on learning
curves. The fact that we now have learning curve bounds whose functional form can
differ radically from the VC bounds opens the possibility for structural risk minimization
prescriptions that are different from Vapnik’s. Although possibly difficult to apply, such
prescriptions may have interesting theoretical interpretations and consequences.

• Alternatives to the computation of s(ε). We mentioned above that at this point our
theory is descriptive rather than prescriptive. It would be nice to at least partially remedy
this situation. The main barrier is our assumption thats(ε) is known to the designer of
a learning algorithm, which in turn implies knowledge of the input distribution. Might
it be possible to estimates(ε) from data, even for special function classes of interest?
If one has only partial information about the input distribution, can this be translated
into useful partial information abouts(ε). Note that such considerations must be central
to any attempt to apply our theory in a practical manner, for instance to structural risk
minimization.

A. Technical appendix

A.1. Relaxing the bound on the number of error levels

One undesirable aspect of the statement of Theorem 4 is the demand thatr (N) = o(et (N)1)

for all values1 > 0, that is, the insistence that the number of error levelsr (N) be a
strictly subexponential function of chosen scaling functiont (N). In this section we briefly
show how this condition can be sidestepped without changing the essential character of the
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thermodynamic limit method. The basic idea is this: if the true number of error levelsr (N)

is too large to apply Theorem 4, we can instead apply the theorem using a smaller number
of error levels of our own choosing.

More precisely, rather than using the error levelsεN
j , 1 ≤ j ≤ r (N), that are determined

by the definition of theFN , fN andDN , let us instead letr (N) beanyfunction meeting the
conditionr (N) = o(et (N)1) for all values1 > 0, and let theεN

j beanysequence of error
values that we choose. Thus, now there may in fact beno functions inF at generalization
errorεN

j . We now redefineQN
j to be all those functions inFN whose generalization error

falls in the interval [εN
j , εN

j +1). The intuition is that we are first putting functions of nearby
generalization error in the same “bin”, and assuming (pessimistically) that all functions in
the same bin have the smallest possible generalization error for this bin.

The definition of a permissible entropy bounds(ε) with respect to the scaling function
t (N) remains unaltered, and it can be verified that under the new definitions, Theorem 4
still holds. Given a scaling functiont (N), the number and spacing of the error levels we
should choose to obtain the best analysis depends on the problem. A natural choice is to
space the error levels evenly over [0, 1], but this is not the only possibility and may not be
the best one for certain problems.

A.2. Derivation of general energy bound form

Here we show how Eqs. (30) and (54) can be derived.

Lemma 9. (Sanov) Let Z1, . . . , Zm be i.i.d. random variables taking on the values
{−1, 0, 1} with probabilities{p−1, p0, p1}, resp. If the mean p1 − p−1 of Zi is positive,
then the probability that the empirical mean is nonpositive is bounded by

Pr

[
1

m

m∑
i =1

Zi ≤ 0

]
≤ (

1 − (
√

p1 − √
p−1)

2
)m

(61)

≤ exp

(
− m(p1 − p−1)

2

2(p1 + p−1)

)
(62)

Proof: Let T = 1
m

∑m
i =1 Zi be the empirical mean. Then from Markov’s inequality it

follows that

Pr[T ≤ 0] = Pr[e−mλT ≥ 1] (63)

≤ E[e−mλT ] (64)

=
m∏

i =1

E[e−λZi ] (65)

= (p1e−λ + p0 + p−1eλ)m, (66)

for any positiveλ. In particular, it is true for theλ∗ satisfyinge−λ∗ = √
p−1/p1. Making

this substitution and usingp0 = 1 − p1 − p−1, we find the first inequality of the lemma.
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The second inequality follows from

(p1 − p−1)
2

p1 + p−1
= (

√
p1 − √

p−1)
2 (

√
p1 + √

p−1)
2

p1 + p−1
(67)

≤ 2(
√

p1 − √
p−1)

2 (68)

≤ −2 log(1 − (
√

p1 − √
p−1)

2) (69)

2

To prove Eq. (30) using this lemma, we note that the random variableεtrn(h, S) −
εtrn(h∗, S) is precisely the empirical mean of the random variables

Zi = χ [h(xi ) 6= yi ] − χ [h∗(xi ) 6= yi ], (70)

where each〈xi , yi 〉 is an example drawn independently fromDN . EachZi takes on the
values{−1, 0, 1} with probabilities

p1 = Pr[(h(x) 6= y) ∧ (h∗(x) = y)] (71)

p0 = Pr[(h(x) 6= y) ∧ (h∗(x) 6= y)]

+ Pr[(h(x) = y) ∧ (h∗(x) = y)] (72)

p−1 = Pr[(h(x) = y) ∧ (h∗(x) 6= y)] (73)

where〈x, y〉 is an example drawn randomly fromDN . These are related to probabilities of
disagreement via

ε(h, h∗) = p1 + p−1 (74)

ε(h) − ε(h∗) = p1 − p−1 (75)

Making the appropriate substitutions in Eq. (62) yields the desired result.
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Notes

1. Here for simplicity we are using thẽO(·) notation, which hides logarithmic factors in the same way theO(·)
notation hides constant factors.

2. By a power law, we mean the functional form(a/m)b, wherea, b > 0 are constants.
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3. Aside to the statistical physicist: the annealed approximation was previously used to approximate the learning
curve of a Gibbs learner, which chooses a hypothesis from a Gibbs distribution with the empirical error as
energy. Here we adopt a microcanonical rather than a canonical ensemble, enabling us to obtain rigorous
upper bounds from the annealed theory, rather than approximations. These bounds hold for all empirical error
minimization algorithms, including the zero temperature limit of the Gibbs algorithm. Because of our desire
for rigor, we have not used the replica method (Gardner, 1988) in this paper. Engel, van den Broeck, and Fink
have used the replica method to calculate the maximum deviation between empirical and generalization error
in the function class, and the maximum generalization error in the version space (Engel & Fink, 1993; Engel
& Broeck, 1993). Although the replica method produces exact results when used correctly, it rests upon an
interchange of limits for which no rigorous justification has been found.

4. Throughout this section, we will refrain from giving the explicit functionss(ε) used to generate the plots, since
some of them are rather complicated, and it is their shape rather than their mathematical definitions that are of
interest here.

5. The designation “Ising” refers to the±1 constraint, which is present in the original Ising model of magnetism
with N interacting spins.

6. According to calculations using the replica method of statistical physics, for this problem the true scaled learning
curve of the Gibbs learning algorithm (which chooses a random consistent hypothesis from the version space)
exhibits a phase transition to perfect generalization atα = 1.245. This picture is consistent with the results of
exhaustive enumeration by computer for up toN = 32.

7. Note that the large-α asymptotics, which by definition invoke a thermodynamic limit, may be different from
the largem asymptotics for a fixed function class.

8. This is a nontrivial assumption, since in many of the examples we have examined, the entropy bound depends
strongly on the target function, which we of course assume is unknown. Thus, we are really assuming here
that eithersγ (ε) is invariant to the target function (as in the realizable Ising perceptron), or that is a worst-case
entropy bound over all target functions.
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