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Abstract. In this paper we introduce and investigate a mathematically rigorous theory of learning curves that
is based on ideas from statistical mechanics. The advantage of our theory over the well-established Vapnik-
Chervonenkis theory is that our bounds can be considerably tighter in many cases, and are also more reflective c
the true behavior of learning curves. This behavior can often exhibit dramatic properties such as phase transitions
as well as power law asymptotics not explained by the VC theory. The disadvantages of our theory are that
its application requires knowledge of the input distribution, and it is limited so far to finite cardinality function
classes.

We illustrate our results with many concrete examples of learning curve bounds derived from our theory.
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1. Introduction

According to the Vapnik-Chervonenkis (VC) theory of learning curves (Vapnik, 1982;
Vapnik & Chervonenkis, 1971), minimizing empirical error within a function cl&dssn a
random sample ah examples leads to generalization error bounde@ty/ m) (in the case

that the target function is contained/ or O(,/d/m) plus the optimal generalization error
achievable withinF (in the general cast) These bounds are universal: they hold for any
class of hypothesis functioifs, for any input distribution, and for any target function. The
only problem-specific quantity remaining in these bounds is the VC dimedsemeasure
ofthe complexity of the function class. It has been shown that these bounds are essentially
the best distribution-independent bounds possible, in the sense that for any function class
there exists an input distribution for which matching lower bounds on the generalization
error can be given (Devroye & Lugosi, 1994; Ehrenfeucht et al., 1989; Simon, 1993).
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The universal VC bounds can give the impression thattthe behaviorof learning
curves is also universal, and essentially described by the functional égtmand./d/m.
However, it is becoming clear that learning curves exhibit a diversity of behaviors. For
instance, some researchers have attempted to fit learning curves from backpropagatio
experiments with a variety of functional forms, including exponentials (Cohn & Tesauro,
1992). Backpropagation experiments with handwritten digits and characters indicate that
good generalization error is sometimes obtained for sample sizes considerably smaller tha
the number of weights (presumed to be roughly the same as the VC dimension) (Martin &
Pittman, 1991), though the VC bounds are vacuousrf@maller thard. Discrepancies
between the VC bounds and actual learning curve behavior have also been pointed out an
analyzed in other machine learning work (Oblow, 1992; Sarrett & Pazzani, 1992).

Of course, the VC bounds might simply be inapplicable to these experiments, because
backpropagation is not equivalent to empirical error minimization. It has been conjectured
that backpropagation can access only a limited portion of the function space, so that the
“effective dimension” is much smaller than the VC dimension. According to this type of
reasoning, learning curves are heavily affected by the specifics of the algorithm. Another
possibility is that the VC bounds are applicable, but sometimes fail to capture the true
behavior of particular learning curves because of their independence from the distribution.
Hence some theorists have sought to preserve the functional form of the VC bounds, bu
to replace the VC dimension in this functional form by an appropriate distribution-specific
quantity, such as the VC entropy (which is the expectation of the logarithm of the number
of dichotomies realized by the function class) (Benedek & Itai, 1991; Haussler et al., 1991;
Vapnik, 1982). Work on the “empirical VC dimension” has tried to measure the depen-
dence of learning curves on both the algorithm and the distribution via backpropagation
experiments (Vapnik et al., 1994).

Perhaps the most striking evidence for the fact that the VC bounds can sometimes falil
to model the true behavior of learning curves has come from statistical physics. In recent
years, the tools of statistical mechanics have been applied to analyze learning curves witl
rather curious and dramatic behavior (see the survey of Watkin, Rau and Biehl and the
references therein (Watkin et al., 1993)). This has included learning curves exhibiting
“phase transitions” (sudden drops in the generalization error) at small sample sizes, a:
well as asymptotic power law behavidn which the power law exponent is neither 1 nor
1/2. Although these learning curves do not contradict the VC bounds, it seems fair to say
that their behavior is qualitatively different. The theoretical revisions of the VC theory
mentioned above cannot explain such behavior, because they conservatively modify only
with the constant factors of the same power laws.

In this paper, we show that ideas from statistical mechanics (namely, the annealed ap
proximation (Amari et al., 1992; Levin et al., 1989; Schwartz et al., 1990; Sompolinsky
et al., 1991) and the thermodynamic limit (Sompolinsky et al., 1991)) can be used as the
basis of a mathematically precise and rigorous theory of learning curvisis theory
will be distribution-specific, but will not attempt to force a power law form on learning
curves. Speaking coarsely, there are two main ideas behind our theory that are novel t
someone familiar with the VC theory. The first new idea is related to the annealed ap-
proximation. It is based on the simple observation that in the VC theory and its proposed
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distribution-dependent variants, all hypotheses of generalization error greater énan
treated equally by the analysis—for instance, by assigting ¢)™ to all such hypothe-

ses as an upper bound on the probability of being consistentrwithndom examples.

We undertake a more refined analysis that decomposes the function clasgontshells

that actually attribute the correct generalization error to each hypothesis, and give uniform
convergence bounds on each shell. The resulting bounds already predict learning curvi
behavior not explained by the VC theory, but are difficult to interpret.

The second new idea is to formalize a particular mathematical limit known to statistical
physicists as théhermodynamic limit The goal of this limit is to express the error shell
decomposition bounds in a form that is both useful and intuitive. The thermodynamic
limit accomplishes this goal by introducing the notion of the cormsaleat which to
analyze a learning curve, and by expressing the learning curve as a competition between a
entropy function (measuring the logarithm of number of hypotheses as a function of their
generalization erroe) and an energy function (measuring the probability of minimizing
the empirical error on a random sample as a function of generalization error).

The resulting theory provides a formalized variant of the statistical physics approach that
is able to predict and explain many nontrivial behavioral phenomena of learning curves,
including phase transitions. It is far from being the last word on learning curves, and in-
deed, the task of providing a truly universal theory of learning curves—one that applies
to all function classes, input distributions, and target functions, and is furtherigbte
in all cases—appears to be a daunting if not unreasonable task. Furthermore, this pape
concentrates on the case of finite cardinality function classes (although we provide some
discussion of possible extensions to the infinite case). For someone familiar with the VC
theory, it may be somewhat surprising that we devote so much effort to the finite case,
since in the VC theory a power law uniform convergence bound can be obtained trivially
for finite classes. Briefly, it turns out that in our formalism, it can be nontrivial to trans-
late a collection of separate uniform convergence bounds, one for each error shell, into
learning curve bound, even in the finite case. By concentrating on this translation step,
our methods can yield much tighter learning curve bounds than the VC theory in some
cases.

The reader should regard the current paper as having three primary goals. First, we ain
to derive from first principles a formal theory retaining the spirit of the statistical mechanics
approach. Second, we aim to provide evidence in the form of specific examples and a
general lower bound that the new theory truly is closer to modeling the actual behavior of
learning curves than the standard VC theory. Third, we aim to precisely relate the statistical
mechanics approach to the VC theory.

2. The finite and realizable case

We begin with the most basic model of learning an unknown boolean target function. We
assume that the target functidris chosen from a known clagsof {0, 1}-valued functions

over aninput spack. We refer to this as theealizablesetting, since the learning algorithm
knows a class of functions that containgealizesthe target function. We also assume that

F has finite cardinality.
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The learning process consists of giving a learning algorithm a fixed finite numiér
independentrandotraining examplesf f. Thus, letD be any fixed probability distribution
over X. The learning algorithm receives as input a training sarSgte{(x;, f (X))}1<i<m-

Each inputx; in the training sample is chosen randomly and independently according to
the fixed distributionD. For any boolean functioh, the generalization errorof h is the
probability of disagreement betwearand f : egen(h) = Prycp[h(x) # f(X)]. Note that

the training sampl& depends orf andm andegen(h) depends orf andD. Throughout

the paper we will consider these quantities as fixed and suppress such dependencies.

If we let h denote theéhypothesidunction output by a “reasonable” learning algorithm
following training onm examples, what is the behavior fen(h) as a function of the
sample sizen? In this paper, “reasonable” will essentially mean any algorithm that chooses
a hypothesis function that isonsistentwith the training sample (or one that chooses a
hypothesis with minimum empirical error on the sample in the unrealizable case). This
notion is both natural and mathematically convenient, because it allows us to give an
analysis of the behavior efen(h) that ignores the details of the learning algorithm, and to
instead concentrate exclusively on the expected error of any consistent hypothesis.

2.1. Relating the version space to théall

For any samplé&, we define theversion spacéy
VS(S)={he F:V{x, f(X)) € S, h(x) = f(X)}.

Thus, VSS) C Fis simply the subclass of all functiohghat areconsistentith the target
function f on the samplé&. Thee-ball about the target functioffi is defined as the set of
all functions with generalization error not exceeding

B(e) = {h € F : egen(h) < €}.

Thus, VSS) is a sample-dependent subclass’f and B(¢) is a sample-independent
subclass ofF, and both contain the targét

The goal of this subsection is to examine the relationship betwedi$)Vviéghd B(e).
More specifically, for a sampl8 of sizem, we would like to calculate the probability that
VS(S) is contained inB(e). This probability is significant for learning, because it allows
us to bound the error of argonsistentearning algorithm: we can always assert that with
probability at leasPrs[VS(S) € B(¢)], any consistent hypothesis has generalization error
less thare. Here the probability is taken over time independent draws fror® used to
obtainS. We now derive a lower bound d?rs[VS(S) € B(e)], or equivalently, an upper
bound onPrg[VS(S) € B(e)].

The probability that a functioh of generalization erro¢gen(h) remains in the version
space aftem examples decays exponentially with

Prsh € VS(S)] = (1 — egen(h)™.
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Since the rate of decay is slower for smgll(h), the version space should consist only of
hypotheses with small generalization error. Bg¢) = F — B(¢), the functions inF with
generalization error greater thanSince the probability of a disjunction of events is upper
bounded by the sum of the probabilities of the events, we find that

Prg[VS(S) € B(e)] = Prg[3h € B(e) : h € VS(S)] (1)
< Y PrgheVs(s)] 2

heB(e)
= > (1—egen(h)" (3)

heB(e)

which proves the following theorem.
Theorem 1. Prs[VSS) C B(e¢)] > 1 — 8, where

§= Z 1- 6gen(h))m~

heB(e)

We will refer to Theorem 1 as thenion bound It is closely related to the annealed
approximation, which has been used by physicists to study the performance of the Gibbs
learning algorithm. Note that the sum in the union bound has a direct interpretation, being
the average number of surviving hypotheses that lie ouBidg

We can restate Theorem 1 in the following alternate form, in which we regasdjiven
and then bound the achievalle

Corollary 2. Let F be any finite boolean function class. For aly< § < 1, with
probability at leastl — § any function he F consistent with m random examples of a
target function inF obeysegen(h) < €, wheree is the smallest value satisfyirﬁhe%
a- 6gen(h))m <.

2.2. The standard cardinality bound

Sinceegen(h) > € for all h € B(e), the union bound can be further transformed by

D A—egn)™ < Y A-o" < |FIA-™ (@)

heB(e) heB(e)

By applying Theorem 1 to this bound, we obtain the standard result that with probability
1 -4, any consistent hypothedisobeysegen(h) < (In(JF|/8))/m. Since the only depen-
dence of this bound on the learning problem is through the cardinality of the function class
F, we will refer to it as thecardinality bound In particular, it depends neither on the input
distribution D nor on the target functiorf .

Although this bound is powerful because of its generality, there is no reason to believe
that it is tight for specific distributions. Its tightness depends on the chain of inequalities
beginning with Eq. (1) and those given in Eq. (4), and any link in this chain can be weak.



200 D. HAUSSLER ET AL.

Most of the work of this paper will be directed toward finding tighter alternatives to
Eq. (4). We will sliceB(e) into many shells with different error levels rather than lump all
of them together at, as was done in Eq. (4). Furthermore, our calculations will make use
of all the shell cardinalities, not just the crude measure of total cardinality of the function
class. This morerefined bookkeeping canlead to learning curves that have radically differen
behavior than that predicted by the simple cardinality bound.

Onthe other hand, we will generally rely onthe union bound asiis. Itistightifthe survivals
of different hypotheses are mutually exclusive events. In fact, when hypotheses have smal
disagreement, their survivals are often positively correlated instead. Nevertheless, for the
finite function classes examined here, the crudeness of Eq. (1) will not weaken our bounds
too severely. In particular, we will exhibit examples of distribution-specific bounds that are
much tighter than the distribution-free VC bounds.

It is only for infinite function classes that the union bound fails spectacularly, for here
the bound diverges and becomes useless. The VC dimension, VC entropy, and randor
covering number (Dudley, 1978; Haussler, 1992; Pollard, 1984; Vapnik, 1982) are the
known tools for dealing with the correlations neglected by the union bound. These tools
have previously been applied to the function class as awhole. In our current research efforts
we are attempting to refine these tools by applying them to error shells. In Section 4 we
discuss an alternative approach that reduces the infinite case to a sequence of finite problen

2.3. Decomposition into error shells

Since we are assuminfg to be a finite class of functions, there are only a finite number of
possible values thaten(h) can assume. Let us name and order these possitolevalues
O=¢e1<er<---<¢g <1 Thusy < |F|,andforeach ki <r there exists ah; € F
such thakgen(hi) = €. Thenfor eachindex ¥ j <r we can define the cardinality of the
jtherror shellQ; = [{f' € F : €gen(f’) = €j}|. ThusQ); is thenumberof functions inF
whose generalization error is exactly, andzrj:1 Qj = |F|. Hence we arrive at thehell
decompositiorof the union bound:

> A —egen)™ =" QL —ep" (5)
heB(e) j=i

Together with Theorem 1, we can obtain the following boundegn(h) for consistent
learning algorithms.

Theorem 3. For any fixed sample size m and confidence v&weth probability at least
1 -6 any he VSS) obeysegen(h) < €, whereg; is the smallest error value satisfying
i Qil—epm <.

In other words, if we fix the confidendethen Theorem 3 provides the bound

eger() <minje Y Qil—e)m <6 (6)

=
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with probability at least & § for any consistertt. While this bound is clearly a function of

m, its behavior is not especially easy to understand in its current form. For this we rely on a
particular limit popular in the statistical mechanics literature known athérenodynamic

limit.

2.4. The thermodynamic limit method

There are two basic ideas or assumptions behind the thermodynamic limit method as we
formalize it. The firstideais that we are often interested in the learning curve of a parametric
class of functions, and in such cases the number of functions in the class at any given erro
value may have a limiting asymptotic behavior as the number of parameters becomes large
The second idea is to exploit this limiting behavior in order to describe learning curves
as a competition between the logarithm of the number of functions at a given error value
(anentropyterm) and the error value itself (@mergyterm).

As we shall see, the most important step in applying the thermodynamic limit method,
both technically and conceptually, is to find the rigiealingwith which to analyze the
learning curve, and to find the best entropy bound for this scaling. The thermodynamic
limit method assumes that an appropriate scaling and entropy bound are given, and the
provides a learning curve analysis for them, much in the same way that VC theory assume:
that the VC dimension is known and then provides learning curve upper bounds. Thus
the real work of the user in applying the thermodynamic limit method (which may be
considerable) lies in finding the best scaling and entropy bound.

In order to properly define and use the thermodynamic limit method, we cannot limit our
attention to a fixed finite clas’ of functions, but must instead assume an infisgquence
of finite function classes (of presumably increasing but always finite cardinality). As we
have already suggested, it will be convenient to think of this sequence as being obtainec
in some uniform manner by increasing the number of parameters in a parametric class o
functions. Thus, lef;, 7, ..., Fn, ..., be any infinite sequence of classes of functions,
where eaclFy, is a class of boolean functions over an input spégeand obeysFy | < 2N.

We may think ofN as just an abstract index obeyihg> log|Fy|, and thus representing
the number of bits or parameters required to encode functioffyinLet Dy be a fixed
probability distribution oveiXy. A typical example of these objects is where weXgt be
N-dimensional Euclidean spadey be the uniform distribution over the unit sphereXy,
and.Fy be the class of alN-dimensional perceptrons in which each weight is constrained
to be either 1 or-1.

Now suppose that for each clagy we also choose a fixed target functidp € Fy,
thus yielding an infinite sequence of target functidnsf,, ..., fy,.... Ourgoal nowisto
provide a framework in which we can analyze the limiting generalization erri\,as oo,
of any algorithm that always chooses a hypothesis consistennwitmdom examples of
fy drawn according t®y .

There are a number of problems with this proposal. Foremost among these is the questio
of whether there actually exists any interesting limiting behavior. For instance, in our
discussion so far we have been suggesting that all the clagsase “similar” in the sense
of being obtained through some nice uniform parametric process, with only the number
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of parameters varying. If this assumption is grossly violated, and 2gdooks radically
different than the last, it may be nonsensical to analyze the limiting behavior of a consistent
algorithm’s error. Similarly, even if thgy are generated in a uniform fashion, a highly
nonuniform sequence of target functiofig may render the limit meaningless.

There is no definitive solution to such obstacles: there do exist function class, distri-
bution and target function sequences for which there is no limiting generalization error
for consistent algorithms, and obviously no theory can assign a tight asymptotic limit in
such cases. The thermodynamic limit method survives these problems by only providing ar
upper bound on the asymptotic generalization error. In those cases where the limit does nc
exist, this upper bound may be weak or even vacuous. However, we hope to show througt
examples that in many natural cases the limiting behavior is both well-defined and capturec
by our theory, and that the resulting upper bound correctly predicts learning curve behavior
that is radically different from that predicted by more standard methods.

A second and more technical objection to our proposal is that fixxe sample sizen
and letN — oo, we should not expect to obtain any nontrivial bound on the generalization
error, since the function classes are becoming larger but the sample size remains fixed. Thi
is exactly right, and for this reason the thermodynamic limit method examines the learning
curve behavior as bottn — oo andN — oo, but at somdixed rate This allows us to
meaningfully investigate, for instance, the asymptotic generalization error when the number
of examples is 12 the number of parameters, twice the number of parameters, 10 times the
number of parameters, and so on. This is frequently the language in which experimentalist:
discuss learning curves.

Returning to the development, once we fix target function sequégce Fy, we can
again define the error levelsB e < ) < --- < ¢y, < 1 for Fy with respect tdDy;,
wherer (N) < |Fy|isthe number of error levels for thiSy, Dy and fy, and for clarity we
have included a superscript on the error levels indicalindrecall that by Theorem 3, we
can reduce the problem of bounding the error of a hypothesis ffQroonsistent withm
examples offy drawn according tdy to the problem of finding the smallest error level
eN such that the right-hand sum in Eq. (6) is bounded fwhere, in the thermodynamic
limit, § will go to 0). The first step of the thermodynamic limit method is to simply rewrite
this sum in a more convenient but entirely equivalent exponential form:

r(N) r(N)

Z QT‘(l _ EJN)m _ Z glog QjNerIog(lfeJ"‘). @)

= =

Notice that in each term of this sum, the exponent ternQ@g’s positive, and the exponent
term mlog(1l — eJN) is negative. Thus, informally speaking, the contribution of ilie
term in the sum is largely determined by the competition between these two quantities: if
log QjN > —mlog(1— ejN) then the contribution of theth term is large (and thus, to make
the overall sum smaller thah) we must eliminate terms by increasingnd consequently
weakening our bound on the error), and if @Q‘ < —mlog(1— ejN) then the contribution
of the jth term is negligible.

In particular, if the sample siza is such that lo®Q" > —mlog(1 — €M) for all j then
we cannot give a nontrivial bound on the error, and ifd@b <« —mlog(1— ejN) forall j,
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andr (N) is not too large, then the error should be close to 0. Such cases are uninteresting
In general, the values of the sample sizéor which it will be most interesting to analyze
the learning curve are those for which there is some real competition between tb?i log
and the—mlog(1 — e}\‘). Thus we need to find the riglstaleat which to examine the
learning curve. At the same time, we would like to replace the competition between these
two discrete quantities by the competition between two continuous functions of a single real
parametet. The obvious choice for a continuous approximation to-tinelog(1 — eN) is
simply mlog(1 — €). The choice of a continuous approximation to the@ﬁy depends on
their behavior, which may be quite complex, and which we now try to capture

Thus the next and crucial step of the thermodynamic limit method is to choose the
appropriatescaling functionand to provide an associatedtropy bound As mentioned
already, these are functions that are assumed to be given in the thermodynamic limit methoc
Let t(N) be any mapping from the natural numbers to the natural numbers such that
t(N) — co asN — oo, and lets: [0, 1] — R* be any continuous function. Then we
say thats(¢) is a permissible entropy bound with respect td) if there exists a natural
numberNo such that for alN > Ng and for all 1< j < r(N), (1/t(N))log QN < s(ejN).

We refer tat (N) as ascaling functionThe intention is that wher(N) is properly chosen
it captures the scale at which the learning curve is most interesting, and that the entropy
bounds(e) tightly captures the behavior of th@/t(N)) log QJ-N. We will see that we
obtain our best upper bounds on generalization error for a given scaling function when the
thermodynamic limit method is used with the smallest possible permissible entropy bound
for this scaling function.

Given a scaling functiom(N) and a permissible entropy bous¢), for N > Ny we
may now rewrite and bound our sum:

r(N)

Z gog Q) +mlog(1—e]) (8)
j=i
r(N) N N
— Z et(N)[(l/t(N))lf’Q Qj +(m/t(N)) log(1—€;)] (g)
]=l
r(N)
Z gt (N)[s(ef)+erlog(l—ef)] (10)

where we definee = m/t(N), and in taking our limim, N — oo, « will remain constant.
Before doing so, however, let us pause to notice the benefits of our definitions in the final
summation: each exponent’'s dependencéNohnas been isolated in the factoiN), and
the remaining factor is the continuous functi&f@) + « log(1 — ¢), evaluated at only the
discrete points .

Let us now letm, N — oo (and thust(N) — oo) but letm/t(N) = « > 0 remain
constant. Define* € [0, 1]to be the largest € [0, 1] suchthas(e) > —a log(1—e¢). Note
that boths(¢) and—« log(1— €) are non-negative functions, and0—a log(1—¢) < s(¢)
for e = 0. Thuse* is simply the rightmost crossing point of these functions (we define
e* =1 if s(e) stays above-alog(l — ¢) forall 0 < ¢ < 1). We wish to argue that
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provided we examine our sum only for terms in whick ¢*, then under certain conditions
the thermodynamic limit of the sumis 0. In other words, in the thermodynamic limit we can
bound the generalization error of any consistent hypothesis byntuitively, the reason
for this is that ifs(e) < —a log(1 — €) theng!(NIs@©+alogd-] _, 0 ast (N) — oo.

More precisely, let < (0, 1] be an arbitrarily small quantity, and for eabh define the
indexiy_ ; to be the smallest satisfyir’egﬁ =€+ Letus defineA by

A =min{—alog(l—¢€) —s(¢) : € € [¢" + 1, 1]}. (12)
Note thatA is well-defined since the quantify
—alog(l—e€) —s(e)

is strictly positive for alle € [¢* + T, 1]. We can now write

r(N)
Z et(N)[s(ej'\‘)Jrang(lfej"‘)] (12)
j=inr
r(N)
< ) ete (13)
J=IN
< (F(N) —in,)etthe (14)
<r(N)etta (15)

where the first inequality follows from the fact that forgll, < j < r(N) we havesjN €

[e* 41, 1]. The expression(N)e~t™N2 will go to 0 in the thermodynamic limit, as desired,

providedr (N) is o(e'\2) (this condition is easily met by all of the examples we shall

analyze, but for completeness its relaxation is discussed in the Appendix in Section A.1).
We have shown:

Theorem 4. Let 5(€) be any continuous function that is a permissible entropy bound with
respect to the scaling functioril), and suppose that(N) = o(e'N4) for any positive
constantA. Then as mN — oo bute = m/t(N) remains constanfor any positiver we
have

PrelVSS) C B(¢* + 1)] — 1. (16)

Here the probability is taken over all samples S of size-mt (N) for the target function
in f € Fn. ande* is the rightmost crossing point of® and —« log(1 — €). In other
words in the thermodynamic limit any hypothesis h consistent wiitN) examples will
have generalization erroggen(h) < €* + r with probability 1.

We can finally see in Theorem 4 the roles of the scaling fundtidf) and the entropy
bounds(¢). The scaling function(N) defines the units by which we shall measure learning
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curves, since the sample size in the thermodynamic limit is always a constant ¢ies
Given the scaling function, the smaller the entropy bost, the smaller the rightmost
crossinge* will be, and consequently the better the bound obtained from Theorem 4.

2.5. Extracting scaled learning curves from the thermodynamic limit method

Theorem 4 gives a bound on the limiting generalization error of consistent algorithms on
a sample sizen that is afixed constantx times the scaling function(N). However, the

real value of the thermodynamic limit method emerges only when we now allow the value
of a to vary, taking the thermodynamic limit by applying Theorem 4 to each value, and
examine the learning curve as a function of increasind\s we shall now see, it is in
suchscaled learning curveéwe refer to them as scaled because they are expressed as a
function of the multiplex of t(N) rather than in the more traditional absolute number of
examples) that interesting behavior such as phase transitions appears. We shall also see tt
the thermodynamic limit method permits an intuitive and highly visual derivation of scaled
learning curves.

We firstillustrate the derivation of scaled learning curves using several artificial examples.
By artificial we mean that rather than defining natural function class, target function and dis-
tribution sequencesy, fy andDy, and then deriving an appropriate scaling functiod)
and entropy bound(e), instead we will simply start with a gives(¢) and carry the analy-
sis forward. However, the lower bound provided in Section 2.8 demonstrates that there dc
exist function class and distribution sequences whose true scaled learning curves match th
bounds we will give in this section. In the following sections, we give examples of complete
analyses (that is, beginning with givéry, fy andDy) for some natural function classes.

To start, suppose that for some scaling functioN) we have the permissible entropy
bounds(e) = 1 (a rather weak entropy bound). Then in figure 1, we have plotted both

[/ /

€

Figure 1 Rightmost intersections for a constant entropy bosd = 1 and—« log(1 — ¢) for three values
o =o1,02,03.
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a

Figure 2 Scaled learning curve®(«) corresponding to the entropy-energy competition of figure 1.

the constant entropy boursde) = 1, and the function-« log(1 — ¢) for three values
a = a1, a2, a3. The resulting rightmost intersections = €*(a1), €2 = €*(ay), €3 =
€*(a3) are then identified on the-axis. Here we now adopt the convention of writiig
as a function ofr, since we no longer regardas a constant.

In figure 2, we then plot the rightmost crossiatf«) as a continuous function ef
(and identify the pointsw;, ) fori = 1, 2, 3 from figure 1). This plot is what we mean
by the scaled learning curve, and Theorem 4 tells us that in the Nmit> oo, this
scaled learning curve bounds the generalization error of consistent algorithmsgiten
examples.

Note from figure 1 that-« log(1 — ¢€) is essentially linear with slope, and it is the
rightmost intersection of this roughly linear function wétz) that gives the corresponding
point on the scaled learning curve. Furthermore, the energy function is independent of
the learning problem in Theorem 4, and thus in general, for any entropy Isgando
get the scaled learning curve we will be looking at the leftward progress of the rightmost
intersectiore*(«) between the nearly-linear energy as(d) asa grows. In the particular
examples(e) = 1, this progress is quite uniform, resulting in the familiar power law scaled
learning curve of figure 2.

A less familiar and more interesting example occurs for the single-peak entropy bound
s(e) shown in figure 3. We shall shortly see in Section 2.6 that this entropy bound actually
occurs for a natural and well-studied learning problem. In this example we see that for
smalle, the leftward progress ef*(«) is rather slow, due to the large negative slops(ej
on the right side of its peak. This for instance is the casefoear the plotted value;.

For some larger value of, e*(a) moves over the peak afe) and thus begins decreasing
more rapidly.

Then something interesting happens. Thereritizal valuew, that gives the intersection
€*(a2) = €. For this critical value, we see that the energy curve is barely intersecting the
entropy curve. Fow > o (for example, for the plotted valug), we see from figure 3 that
the rightmost intersection is 0! Theorem 4 can be applied to obtain the scaled learning curve
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Figure 3 Rightmost intersections for a single-peak entropy bound (for the Ising perceptron of Section 2.6) and
—alog(l — €). The curves corresponding to the three valwes= 0.7, «p = 1.448 andwz = 2.5 are plotted.

The resulting three intersections afe= 0.6011, ¢; = 0.2543 and 0. The valug, = 1.448 is a critical value,
resulting in the phase transition seen in figure 4.

€l =======ccmmcaa==

€2

o

Figure 4  Scaled learning curve*(«) corresponding to the entropy-energy competition of figure 3 (Ising per-
ceptron), showing a phase transition to zero error at the critical value 1.448.

bound of figure 4, which exhibitsghase transitiorfrom errore, to perfect generalization
(error 0) ate = ap.

A similar but more subtle example is shown for another single-mgakin figures 5
and 6. Here again, leftward progress tfo) for smallera is slow due to the large negative
slope ofs(¢) on the right-hand side of its peak (for instancey at «1). Again, there is a
critical valuea, which results in an intersection & = €*(a), slightly to the left of the
peak ofs(e). However, fora just larger tharw, we donot transition to perfect learning,
but to errore; . The difference between this example and that of figures 3 and 4 is that this
time the entropy curve is sufficiently large nearto “catch”e*(«) for o above the critical
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Figure 5 Rightmost intersections for a single-peak entropy bound-amtbg(1 — ¢), showing a critical value
ar.

! \
€24 | -~ .
1
€2—
€3 == T
0 al a? a3

o

Figure 6. Scaled learning curve® («) corresponding to the entropy-energy competition of figure 5, showing a
phase transition to nonzero error at the critical valpe

value. Following the transition, the decreasetx) resumes rather gradual behavior (for
instance, neaxs). This is all clearly seen in the scaled learning curve of figure 6.

As our next example we consider a double-peak entropy bound in figures 7 and 8. Here
we see there are two critical values,andwy. Initial progress ot*(«) occurs at a steady
but controlled rate, for instance @. As o becomes larger thawy, there is a sudden burst
of generalization (a phase transition), not to perfect generalization, but fromegrtoe,
on the right side of the left peak afe). Then progress is slow, for instancengt until «
becomes larger thamy, at which point we have a transition to perfect generalization (so
for as the error is 0). One aspect of this example worth noting is the fact that although the
energy may intersesfe) many times, we are interested only in the rightmost intersection.
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Figure 7. Rightmost intersection for a double-peak entropy bound-asadbg(1 — ¢), showing critical values
ap andag.
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Figure 8 Scaled learning curve* («) corresponding to the entropy-energy competition of figure 7, showing a
phase transition to nonzero error at the critical valpgand a phase transition to O error at the critical valye

As our final artificial example, we consider a three-peak entropy bound in figures 9 and
10. This example demonstrates the interesting phenomerstradbwingoredicted by our
theory, because despite the changs(i#) from our last example, we see that the scaled
learning curve of figure 10 is quite similar in form to that of figure 8. Figure 9 shows the
reason for this: by the time becomes larger than the first critical valug the energy
curve is already above the small middle peak(@f, and thus the phase transition is from
€5 to €,, completely bypassing the middle peak. Thus, the small middle peakepf
is in the “shadow” of the large rightmost peak. There is an intuitive explanation for this
phenomenon. Despite the fact that (relative to the scaling function) there are a significan
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Figure 9 Rightmost intersections for a triple-peak entropy bound-aadog(1 — €), showing critical values at
a2 anday and demonstrating the phenomenon of shadowing.
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Figure 10 Scaled learning curwe" () corresponding to the entropy-energy competition of figure 9, showing a
phase transition to nonzero error at the critical valpgand a phase transition to O error at the critical valye

number of functions of generalization error approximaté(yesulting in the middle peak of

s(e) centered at’), by the time the sample size is large enough to eliminate the considerably
larger number of functions of generalization error approximatgffrom the version space,

the functions at generalization errdrare already eliminated from the version space. Note
that if this middle peak were higher, there would be a brief transition &§nto neare’,

and then from there to a value on the right side of the left peak.

In all of these examples, we have concentrated on the qualitative behavior (including
coarse phenomena such as phase transitions) of scaled learning curves at moderate valt
of «. Also of interest are the large asymptotics of the scaled learning curve, that is, the
asymptotic rate of approach to generalization error 0. In our theory this rate is obviously



RIGOROUS LEARNING CURVE BOUNDS 211

determined by the behavior of the entropy bowte) for ¢ ~ 0. It turns out that many
natural examples dod(e¢) fall into a few broad categories of behavior near 0, and this is
discussed in Section 3.5.

2.6. Analysis of the Ising perceptron

We now tackle some real examples of the application of our theory, complete with deter-
mination of the appropriate scaling function and a permissible entropy bound.

We first consider the class of Ising perceptrons (Gardner & Derrida, 198899y 1990;
Sompolinsky et al., 1990). Suppose that the function clagsonsists of all homogeneous
perceptrons in which the weights are constrained t&be Let the distributiorDy be any
spherically symmetric distribution dhN, and let the target functiofy € Fy be arbitrary.

It will turn out that for this problem, the appropriate scaling function is simipy) = N.
We now derive a permissible entropy bound for this scaling function, and then extract the
associated scaled learning curve.

An Ising perceptron is parametrized by a weight veatan the hypercubé—1, 1}N, and
mapsx € RN to sgrw - x). For a spherically symmetric distributiddy, the probability of
disagreement between two perceptrons is proportional to the angle between them. Henc
if wg is the weight vector of the target function,

1 w-wo 1 2dy (W, w,
€gen(W) = = COS = 0 _ Zcost(1- 20n (W, Wo) 17)
4 N T N

wheredy denotes the Hamming distance. The Hamming distance layers the function class
like an onion withN error shells surrounding the target at the center. The number of
perceptrons at Hamming distangefrom the target isQJ-N = (’}‘), and they all have
generalization erro&;jN = (1/m)cos (1 — 2j/N). Since the binomial coefficients are
bounded by

1
N log Q}' < H(ﬁ) = H(sir? (ze}' /2)) (18)
where’H(p) = —plogp — (1 — p)log(1 — p), a permissible entropy bound for scaling
functiont(N) = N is

s(e) = H(sir(me/2)). (19)

We have actually already discussed the resulting entropy-energy competition for this
problem in Section 2.5. Recall that in figure 3 we graph the competition, and in figure 4
we graph the scaled learning curve obtained by applying Theorem 4. Thus for this problem
our theory predicts slow initial learning, followed by a phase transition to perfect gener-
alization atw, = 1.448. We remind the reader that a sudden transition in our bound does
not necessarily imply a sudden transition in the true behavior of any consistent learning
algorithm. However, this bound does show that any consistent learning algorithm must have
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Figure 11 The functions(e) + « log(1 — €) for the Ising perceptron, plotted for the same valuesQtrz, a3
as in figure 3.

reached zero error with probability approaching 1 in the thermodynamic limit for scaled
sample size greater tham#18. This bound on the critical value was known from the work
of Gardner and Derrida (1989), and extended to the case of boolean inputs by Baum, Lyut
and Rivin (1991; 1992). Here we are actually giving a bound on the entire learning curve,
and the behavior of our bound is very similar in shape to learning curves obtained in both
simulations and non-rigorous replica calculations from statistical physics (Engel & Fink,
1993; Gyrgyi, 1990; Seung et al., 1992; Sompolinsky et al., 18990)

In figure 11, we graph thdifferenceof the entropy and energy curves shown in figure 3,
that is, we plots(e) + « log(1 — ¢) for the three values af. This plot is simply another
way of visualizing the entropy-energy competition. The zero crossings of the graphs in
figure 11 correspond to the intersections of the entropy and energy curves in figure 3, anc
thus it is now the leftward progress of the rightmost zero crossisgoft « log(1— ¢) that
yields the scaled learning curve@increases. The quantity[s(¢) + o log(1 — ¢)] is the
logarithm of the average number of surviving hypotheses at distaftoen the target, and
is the exponent in the sum of Eq. (10). Ok o5, there are two zero crossings. The right
zero crossing yields the upper bound on generalization error of Theorem 4. The left zero
crossing also has a meaning. With high probability, there are no hypotheses in the versior
space with error less than this left crossing except for the target itself. So the version spac
minus the target is contained within an annulus (Engel & Fink, 1993) whose inner and outer
limits are the left and right zero crossings.

It is instructive to compare our bounds with the cardinality and VC bounds for this
problem. Since both of these latter bounds go kém, and the lowest error shell is at
€1 ~ 1/+/N, the criticalm for perfect learning isn ~ N%2, rather tharm ~ N.

2.7. Analysis of monotone boolean conjunctions

In this example, the input spacéy is the boolean hypercub@®, 1}N. The classFy
consists of the ® functions computed by the conjunction of a subset of the input variables
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X1, . . . » XN, @long with the empty (always 0) functigrand the universal (always 1) function

{0, 4N, The input distributionDy is uniform over{0, 1}N. A similar scenario has also

been analyzed in the machine learning literature (Oblow, 1992; Sarrett & Pazzani, 1992).
We will examine the thermodynamic limit for two different choices of target functions

fn. We begin with the target functiof = {0, 1}V, in which every input is a positive

example. Any conjunctioh of exactlyi variables fromxg, ..., Xy has generalization error

€gen(n) = Przep, [N(X) =01 =1-1/2".

Hencethe error shells arg2d= e} <€) <... < el =1-1/2N, wheree =1-1/2',
The number of conjunctions in théh shellisQN = (V) < N. Since

In QN
log, N

<iln2=-In(1-¢") (20)

we choose the scaling function to b@\N) = log N and thus the sample size is written as
m = « log N. A permissible entropy bound fotN) is s(e) = — In(1 — ¢).

The competition betwees(e) and—a« log(1 — ¢€) results in a scaled learning curve that
exhibits a sudden transition: for any® o« < 1, the rightmost crossing*(«) does not
exist and our bound on the generalization error is 1. Butrfor 1, s(¢) is dominated by
—alog(l — €), soe*(a) makes a sudden transition to 0. In summary, our theory predicts
that in the thermodynamic limit, far < 1 there is no generalization, but fer> 1 there
is perfect generalization.

Our bound can be checked by deriving the exact learning behavior. In the problem
described, every random example is positivefigrand every positive exampkeeliminates
from the version space any conjunction containing a variable that is set t Gince half
of the remaining variables is eliminated by each example, it should take roughliNlog
examples to eliminate al variables and hence all conjunctions, leaving only the target
function.

A more precise calculation goes as follows. Since each variable has probabflityf 2
survivingm examples, the numbgrof surviving variables obeys a binomial distribution:

. NY/ 1Y) 1\
"= (3)(z) (%) @

The function with maximum generalization error in the version space is a conjunction of
all j surviving variables, so that max/s(s) €gen(n) = eJN. Then Chernoff bounds on the
fluctuations inj yield

_ o-N2M(1-17) _ 5—N2M(147)
1-2 < hg]/g()é) Ggen(h) <1-2 (22)

with confidence greater than 4 2e~N™/3, Taking the thermodynamic limit with
m = «alog, N, thene — 1 for anye > 1, ande — O for anye < 1 with confidence
approaching 1.
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For this model, the cardinality and VC bounds give a learning curve of dtder, which
drops below the lowest error leve} = 1/2 for m of orderN. Hence these bounds also
predict perfect generalization, but with a bound on the critmadf order N rather than
logN.

Now let the target function be the empty functidy = @. Since a conjunctior
of i variables haggen(h) = 1/2', the error shells are/2N = €} < &) < ... <
eN = 1/2, whereeN = 1/2N-1+1 The number of conjunctions in thgh shell is

QN = (Vi) < NN, We again choose(N) = log N as the scaling function. Then

In QN .
Iogle <(N-=i)In2=—In2eN (23)
sothats(e) = —In 2¢ is a permissible entropy bound foiN). The rightmost zero crossing

of s(¢) and—a log(1 — ¢) gives the scaled learning curge~ O(logo/«).

One interesting aspect of this learning problem is that the scaled learning curve is highly
dependent on the target function. Whereas learning the target fundiiors{0, 1}N led
to a sudden transition in generalization, learning the empty fundtios: ¢ led to a slow
power law decrease. This is in marked contrast to the Ising perceptron problem, where the
learning curve is independent of which weight vector is the target function.

2.8. The thermodynamic limit lower bound

In this section, we give a theorem demonstrating that Theorem 4 is tight in a fairly general
sense (modulo the given entropy bound). More precisely, for any funstignrmeeting
certain mild conditions, we construct a family of function clasges {F\} such thas(e)

is a permissible entropy bound for the scaling functioN) = N, and in the thermody-
namic limit the rightmost crossing of the functios&) and 2xe is a lower bound on the
generalization error of worst hypothesis in the version space. Note that although this does
not exactly match Theorem 4, which gives as an upper bound the rightmost crossing of
s(e) and—a log(1 — ¢), the qualitative behavior of the scaled learning curves obtained by
intersecting with 2¢ and—a log(1 — ¢) is essentially the same. In particular, our lower
bound shows that the various scaled learning curve phenomena examined in Section 2.
(such as phase transitions and shadowing) can actually occur for certain function classe
and distributions.

In the same way that lower bounds for the VC theory show that if the only parameter
of the learning problem we consider is the VC dimension, then the existing learning curve
upper bounds based on the VC dimension are essentially the best possible, Theorem 5 show
that if the only parameter of the learning problem we use is a given entropy sgend
then Theorem 4 gives essentially the best possible learning curve upper bound. Thus, i
the absence of further information about the function class, distribution and target function
sequences, the scaled learning curves derived in Section 2.5 are essentially the best possib
Similarly, the lower bound shows that better learning curves for the Ising perceptron and
boolean conjunction problems that depend only on the entropy bound cannot be obtained
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Theorem 5. Lets: [0, 1/2] — [0, 1] be any continuous function bounded away frbm
and such that @) = s(1) = 0. Then there exists a function class sequefgeover Xy
(where| Fy| = 2V), a distribution sequence pover Xy, and a target function sequence
fn € Fn such that: (1) s(e) is a permissible entropy bound with respect to the scaling
function tN) = N, and(2) For anya > 0, if ¢* € [0, 1/2] is the largest value satisfying
2ae* > s(e*), then as N— oo there is constant probability that there exists a function
h € Fn consistent with m= N random examples satisfyilagey(h) > €*.

Proof: (Sketch) For everil, the classFy will contain the functionfy which isidentically
0 on all inputs. For the lower bound argument, for every valul of y will always be the
target function against which we measure generalization error. The distridDgjowill
always be uniform over the domalky, which will always consist of ® discrete points,
soXy ={L12,...,2N.

A high-level sketch of the main ideas follows. For asythe classFy will be constructed
so that there are exact /2 error levels, namelyjN = j/Nforl < j < N/2. Now
lets: [0, 1/2] — [0, 1] be any continuous function bounded away from 1 and satisfying
s(0) = s(1/2) = 0. The idea is that for ani{ and any 1< j < N/2, Fy will contain
exactly 20/NN functions whose error with respect fg is j/N. Thus, for anye, as
N — oo, there will eventually be arbitrarily close t62N functions of error arbitrarily
close toe. This ensures that(e) will be a permissible entropy bound with respect to the
scaling functiort (N) = N. Furthermore, these functions will be specially chosen to force
the claimed lower bound.

In more detail, for everyN and every 1< j < N/2, Fy will contain a subclass of
functions 7}, where|F),| = 250/N:N_ Note that this impliegFy| < (N/2)2N since
s(e) < 1. Forevenh e 7}, and every2j /N)2N < x < 2N, h(x) = 0. In other words, on
a fraction 1— (2j /N) of the input space, all the € ]—‘,{, agree with the target functiofy.

However, on the pointdl, 2, ..., (2j /N)2N} eachh € ]-‘,’“ will behave as a unique parity
function on a domain of siz€j/N)2N. More precisely, we can define an isomorphism
between{1, 2, ..., (2 /N)2N} and the hypercube of the same size, and let each function
in 7Y, (when restricted t¢1, 2, ... ., (2j /N)2V}) be isomorphic to a unique parity function
on this hypercube. (Note thate) must obey 2N < 2¢ . 2V in order to ensure there are
enough unique parity functions. The conditi(a) < 1 is sufficient to give this asymptot-
ically.) Thus, eaclh € ]-'ﬂ, hasegen(h) = j/N since each parity function outputs 1 on half
of the hypercube inputs anfy, is identically 0.

Now let us analyze, in the thermodynamic limit, the largest generalization error of any
function in the version space of the constructed fanfily (for target functionsfy and
uniform distributionsDy). By our construction, for any, asN — oo there are eventually
25N functions inFy of generalization error arbitrarily close to(namely,e & 1/N).

Let the sample sizen = aN. As N — oo, the number of sample points falling in the set
(1,2, ...,2¢-2N) becomes sharply peaked(@¢t)aN. The remaining sample points fail to

eliminate any of the functions of generalization er@ince they all agree with the target
function fy on the remaining points.

Now it is known (Goldman, Kearns, & Schapire, 1990) that in order to elimin¥te’2
parity functions over a uniform distribution, the sample sizenust obeym > s(¢) - N;
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for smallerm, there is a constant probability that at least one parity function remains in the
version space. Thus, we obtain that2t)aN < s(¢)N then there is constant probability
that the version space contains a function of generalization error atlelasbther words,

2ae > s(¢) is a condition for eliminating all functions of generalization errdrom the
version space, thus proving the theorem. ]

3. The finite and unrealizable case

One highly restrictive aspect of all of our analysis so far is the assumption that the labels of
the examples are generated by some target functidf, iand hence it is always possible
to obtain zero generalization error. We now consider the relaxation of this restriction to the
case where there may exist no functionfirwith zero generalization error. We call this
case thainrealizabletarget case. This actually covers two cases. In the first, the labels of
the examples are generated by some target function that is Aotimthe second, and more
general case, each labeled exampleyi) in S, 1 < i < m s generated independently
according to a distributio®y on Xy x {0, 1}, which plays the role that was played jointly
by the distributionDy and the target function in the realizable case. Hagecan model
noise in the examples as well. We pursue this second, more general case here.

In analogy with the realizable case, for any functiore Fy, €gen(h) = Prix y)epy
[h(x) # y]. For simplicity we will assume that there is a unique best hypothesigin

h* = argminegen(h), (24)
heF

although it is easy to generalize the arguments to handle cases where there is a tie. (Sinc
Fn is finite, we need not worry about there being an infinite sequence of better and better
hypothesis, with no best hypothesis#y.) Our goal in this section is to analyze the
learning curve for this unrealizable case in the same manner as for the realizable case
providing a thermodynamic limit method and extracting scaled learning curves. Of course,
now the learning curve approach&s, = egen(h*) rather than 0 as the number of examples

is increased. We shall see that interesting technical differences from the realizable case at
also forced upon us in the analysis.

Recall that in the realizable case, we focused on bounding the error of any consisten
algorithm. In the unrealizable case, we analyze an empirical error minimization algorithm.
We define thdraining error or empirical error of a hypothesis to be the frequency of
disagreement on a sampie

1 m
én(h, 9 = — 3 x[h(x) # ] (25)
i=1

where the indicator functiory is 1 when its argument is true and zero otherwise. An
empirical error minimization algorithm chooses a hypothesis from the version space, which
we now redefine to be the set of all functions that minimize the training eggdn, S):

VS(S) = {h € F : em(h, S) = mineun(n’, S)}. (26)
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3.1. Energy functions

One of the main differences between the unrealizable and realizable cases is the form of th
bound we can obtain on the probability that a fixed functioa F “survives” m random
examples, that is, remains in the version space and hence is eligible to be chosen by a
empirical error minimization algorithm. Recall that in the realizable case, this probability
was exactly(1 — egen(h))™ sinceemin = 0 and minimum empirical error is equivalent to
consistency. In the unrealizable case, the situation is more complicated: we will only
be able to upper bound this survival probability. Unlike the realizable case, where the
exact expressio(l — egen(h))™ for the survival probability was eventually translated in the
thermodynamic limit method to a functiernx log(1— ¢) in the exponent that wasniversal
for all problems (the specifics of the problem affecting only the scaling function and entropy
bound), in the unrealizable case we may sometimes need to use energy bounds that depe
on the problem specifics. Furthermore, the quality of bound we use can have significant
effects on the behavior of the resulting scaled learning curve, especially in the lmge

We will treat this bound on the survival probability as a parameter of the analysis. More
precisely, let us refer to a functian(¢) as apermissible energy boun@vith respect tar,
D and the target function) if for anly € F and any sample siza we may write

Prg[h € VS(S)] < g U(Cerm, o

In other words, we imagine thategen(h)) assesses a penaltydgq(h) that increases with
largeregen(h), and the probability that survives to be in the version space (and thus the
probability that an empirical minimization algorithm may chob¥decreases exponentially
in m times this penalty.

Permissible energy bounds will all be derived from the following chain of inequalities:

Prg[h € VS(9)] (28)
< Prglem(h, S) < em(h™, 9)] (29)
= [1 —e(h,h*) + \/e(hs h*)2 — ('Egen(h) - Gmin)2i| (30)

wheree(hy, hy) is the probability of disagreement betwelenandh, on the label of a
random example drawn according®y. The firstinequality follows from the fact that the
training error of any hypothesfsin the version space must be no greater than the training
error of any other hypothesis in the class, includirign particular. The second follows
from Sanov’s theorem on large deviations (Cover & Thomas, 1991) (see Section A.2 of the
Appendix).

For the realizable case we hasgn, = 0 ande(h, h*) = egen(h), SOPrglh € VS(9)] <
(1 — egen(h))™ already follows from the second inequality. To obtain an energy bound in
the unrealizable case, we must somehow rel@teh*) to egen(h). If v(€) is a function that
satisfies

e(h, h*) < v(egen(h)) (32)
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then from Eqg. (30)

ue) = —In (1 - v(e) + vVv2(€) — (€ — emin)?) (32

is a permissible energy bound. In our theory, learning curves are determined by the com
petition between energy and entropy, with the best bounds being obtained for the larges
energy bound (which corresponds to the most rapidly decaying bound on the survival prob-
ability as a function ofm). For this reason, we see that smalige) is, the better the
resulting energy bound. Now by the triangle inequality, we can alwaysfiag such

thate — emin < v(€) < Min{e + emin, 1}, and cannot find a smallee). Since the choice

v(€) = e+eminis always possible, plugging this into Eq. (32) gives a universally permissible
energy bound. After a little algebra, this bound reduces to

uce) = —In (1 - (Ve — emin)?) (33)
However, bettew(¢) may be obtained in certain cases. For instance, if we are fortunate
enough to have(e) = € — emin for some problem, then(e) = —In(1 — € + enin) IS @

permissible energy bound, which is essentially linearand thus nearly the same as for the
realizable case. We now sketch the technical development for the unrealizable case usin
a generic permissible energy boun@), occasionally pointing out the effects of specific
energy bounds on learning curves. We examine these effects more closely in Section 3.5.

3.2. Technical development for the unrealizable case

As was done for the realizable case in Section 2.1, we can write a union bound on the
probability that VS) is contained inB(¢). This enables us to bound the error of all
empirical error minimization algorithms. For with confiderRig[VS(S) C B(e)], we can
assert that the hypothesis with minimal training error has generalization error less than

Lete > emin be given. Then any permissible energy bourie) can be used to lower
bound the probability that every function outsiBge) has training error larger than the
training error ofh*:

Theorem 6. Let u(¢) be a permissible energy bound. THery[VS(S) C B(e)] > 136,
where

§ = Z e—U(fgen(h))m (34)
heB(e)
Theorem 1 is a special case witke) = —log(1 — ¢).

With the universally permissible energy functiote) = — In(1 — (/€ — /eémn)?), the
standard cardinality bound becomes

Z efu(égen(h))m < |F] (1 _ (\/g _ /—Gmin)z)m (35)
heB(e)
< |Fle" Ve m (36)
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becausegen(h) > € for all h € B(e). Setting the latter quantity td and solving fore
yields

€ = €min + 2 Emin Inr(TL]:'/B) + In(|i|/8). (37)

Hence in analogy with Section 2.2 for the realizable case, it follows that for any empirical
error minimization algorithm, with confidence-15 the hypothesi$ it produces satisfies

egen() < €min+ 2 /éminlnr(Tl]fl/(?) . ln(lﬂ/&’ (38)

giving the same bound we obtained in the realizable case whgs- O.

This worst case bound already has some interesting behavior in the thermodynamic
limit. To see this, let assume th#&, = 2N, as large as we allow, and further that the best
entropy function that we can obtain is the trivial funct®@) = 1. Lett(N) = N. Then
In|Fn|/m = 1/a. Hence, from Eq. (38), in the thermodynamic limit we obtain the scaled
learning curve

[ €mi 1
€ — €min < 2 ﬂ‘i‘—. (39)
o o

This curve exhibits a faster learning rate, scaling roughly like ih the early stages of
learning, untile ~ 1/4emin, the point at which both terms in the bound are equal, then it
begins to scale more like Zemin/a asa gets larger and the first term in the bound begins
to dominate. This behavior has also been noted by Vapnik (1982).

Returning to the general development, just as in the realizable case we can refine the unio
bound of Theorem 6 via a shell decomposition. Still more improvement may come from
finding a better energy function of the form in Eq. (32). Addressing the first improvement,
just as in the realizable case in Section 2.3, we proceed to slice the function class into erro
shells. Letemin = €1 < €2 < --- < ¢ be all of the possible values for the generalization
error for functions i, and letQ; be the number of functiortse F satisfyingegen(h) = €.

The analog of Theorem 3 in the unrealizable case is:

Theorem 7. Let u(e) be a permissible energy bound. Then for any fixed sample size m
and confidence valug with probability at leastl — § any he VS(S) obeysegen(h) < €,
wheree; > emin is the smallest error level satisfying

;
Z Qe uem < 5. (40)
j=i

In other words, for any we may write

r
€gen(N) < min i ¢ : Z Qe M <5 (41)

=
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with probability at least + §. Thus we have a bound egen(h) that implicitly depends on
m, but as in the realizable case, this bound is more easily understood in a thermodynamic
limit.

Towards this goal, in analogy with Section 2.4 for the realizable case, we again can
rewrite the summation obtained by shell decomposition in a convenient exponential form.

r
Do Qe (42)
=
r
— Z eIOg Qj—u(ej)m (43)
j=i
r
— Zet(N)[(l/t(N)HOg Qj—(M/t(N))u(ej)] (44)

=

wheret (N) is a scaling function of our choice. Thus we see that in the unrealizable case, the
bound on generalization error again involves a competition between the entropic expressiol
(1/t(N)) log Q; and the energetic expressiom/t (N))u(e;). Using the same definition

of the permissible entropy functi®ie) as in the realizable case, we obtain the following
theorem, whose proof is entirely analogous to the realizable setting.

Theorem 8. Let u(e) be a permissible energy bound. Létsbe any continuous function
that is a permissible entropy bound with respect to the scaling functidi, tand suppose
that r(N) = o(e'™™2) for any positive constank. Then as MmN — oo buta = m/t(N)
remains constanfor any positiver we have

Prs[VS(S) C B(e* + 1)] — 1. (45)

Here the probability is taken over all samples S of size-mat(N), where each example
is drawn independently according tonD and €* is the rightmost crossing point ofe)
andau(e). In other wordsin the thermodynamic limit any hypothesis h with the minimum
numberoverF) of observed disagreements on#hiéN) examples will have generalization
error egen(h) < €* 4 t with probability 1.

Just as in the realizable case, Theorem 8 allows us to extract scaled learning curve
that express generalization error as a functiorwof It is also easily verified that the
thermodynamic limit lower bound of Theorem 5 translates unchanged to the unrealizable
setting.

In summary, for the unrealizable case in the thermodynamic limit, the generalization error
can be upper bounded by the rightmost crossirgf©fand a competing energy function of
the form in Eq. (32) timee&. Thus the basic theory derived for the realizable case survives
relatively nicely. Furthermore, we will shortly see that while the overall picture is described
by this competition, slight changes to simple models of unrealizability can yield important
changes t®@(¢) and the energy function, and thus to the resulting learning curve.
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3.3. Analysis of an unrealizable Ising perceptron

We now illustrate the use of the thermodynamic limit method in the unrealizable case by con-
sidering an unrealizable variant of the Ising perceptron problem considered in Section 2.6.
Let the target functiorfy be the perceptron in which every weightiid, and let the func-

tion classFy consist of all Ising perceptrons which haaeleasty N weights ¢ € [0, 1])

that are—1. (Note that unlike the realizable Ising perceptron case, here the choice of target
function matters.) Again let the distributiddy be any spherically symmetric distribution

on RN, Thus, the target function is not containedZq, and the minimum errogmin(y)

is given by applying Eq. (17), Sémin(y) = (1/7) cos (1 — 2y). This minimum error

is achieved by all of those functions iy with the minimum allowed numberN of —1
weights, of which there are exacWNN ). We shall regargr as a parameter measuring the

extent of the unrealizability.

The correct scaling function for this problem is aggiiN) = N, and it is easy to see
the effects of the unrealizability parameteron this problem. The resulting permissible
entropy bounda, (¢) is identically O in the range [@&min ()], as there are no functions i
at these generalization errors. In the rangefh(y)], howevers, (¢) = s(e), wheres(e)
is simply the entropy bound for the realizable Ising perceptron given by Eq. (19). Thus our
entropy bound in the unrealizable case is simply that of the realizable case, but truncatec
to the left ofemin(y).

The effects of this truncation on the predicted scaled learning as a functjotuaf out
to be quite interesting. If we use the universally permissible energy bound given by Eq. (32)
then figures 12, 13 and 14 show the resulting entropy-energy competition for three different
degrees of unrealizability (that is, three valuesgf(y)) by plottings(e) — au(e). In
each case ofmin(y), we plots(e) — au(e) for three different values af. Whenenmin(y)
is small (thus, the target function is nearly realized by the function class), the behavior is
quite similar to that of the realizable case in figure 11. By the timg(y) is as large as

001}
0 N \
-0.01
-0.02
-0.03}
0.05 0.1 0.15 02 0.25
€

Figure 12 The functions(e) — au(e) for the unrealizable Ising perceptron discussed in Section 3.3, with
emin(y) = 0.005. The function is plotted for the values= 2.0, 2.063 2.1 (top to bottom).
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Figure 13 The functions(e) — au(e) for the unrealizable Ising perceptron discussed in Section 3.3, with
emin(y) = 0.01224. This value foemin(y) is a critical value, in the sense that the learning curve phase transition
disappears for largesmin(y). The function is plotted for the values= 2.5, 2.659, 2.8 (top to bottom).

0.1

0.05 0.1 0.15 0.2 0.25
€

Figure 14 The functions(e) — au(e) for the unrealizable Ising perceptron discussed in Section 3.3, with
emin(y) = 0.05. The function is plotted for the values= 10, 11, 12 (top to bottom).

0.05 in figure 14, we can see that the leftward progress of the zero crossingagases

is quite uniform—the unrealizability has thus erased all traces of a phase transition. The
intermediate valuenmin(y) = 0.01224 is the boundary between these two behaviors: for
smalleremin(y), the resulting learning curve will still exhibit some phase transition, while
for largerenmin(y ), the transition is erased (although there may still be some trace of a phase
transition in the form of accelerated generalization). This can all be clearly seenin figure 15,
which shows the resulting scaled learning curves for these valugs,0f). Thus we see

that the increase gf not only increases the best eregtin(y), it affects the very form of

the learning curve. In particular, asincreases the asymptotic rate of approachig(y)
becomes slower. Figure 16 showplaase diagranthat plots the critical value ok for
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Figure 15 The scaled learning curve$ () for the unrealizable Ising perceptron discussed in Section 3.3, for
the three valuesnin(y) = 0.005 0.01224 0.05 (bottom to top).
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Figure 16 Phase diagram showing line of first-order transitions beginning-at1.448 foremin(y) = 0 and
terminating atx = 2.659 foremin(y) = 0.01224.

which the learning curve experiences a phase transition as a functigg,6f )—thus,
as we have already mentioned, no value is plottedf@(y) > 0.01224 since no phase
transition occurs in this case.

3.4. Analysis of the Ising perceptron with input noise
Here we consider the case whBg, is obtained by applying a target function consisting of

an Ising perceptrow* to inputs corrupted by additive Gaussian ndis@ hus in a random
training examplgx, y) from Dy,

y = f(x,&) =sgnw* - (X +£)). (46)



224 D. HAUSSLER ET AL.

The distribution of inputx is Gaussian, with unit variance on each component. The dis-
tribution of noisez is also Gaussian, with variangé — 1 on each component. A similar
problem was examined by @ygyi and Tishby (1990).

In this case, one can show that

1
€gen(W) = p COS_l(R/j/) 47)

1
€min(y) = 6gen(W*) = ; COS_l(l/]/) (48)
€gen(W, W*) = L cos 'R (49)

T

whereR =w - w*/N.
The entropy function takes the form

S, (€) = H((1 — cosme/cOSmemin(y))/2). (50)

To derive the energy function, we use
1 ~1
vy (€) = - COS ~(COSme/COSTemin(y)) (52)

and plug into Eq. (32) to obtain, (¢). Our error bound is then the rightmost solution of
s, (€) = au, (¢). The entropys, (¢) is a single hump, as in the zero noise case. However,
the edges of the hump aresat= eqin(y) ande = 1 — emin(y), outside of which the entropy

is zero. At the edges, the entropy rises likelog Ae (whereAe = € — emin(y)), and
thus has infinite slope. In contrast the energy has zero slope, since it behaves:iké.
Hence the asymptotic behavior must be

2
€ —emin(y) =0 (IO%> (52)

However, the larger asymptotics are not the whole story. Fgyin(y) < 0.01969, the
error bound undergoes a first order transition to nonzero error. In other words, although the
input noise prevents a transition to perfect learning, when it is small it does not erase all
traces of the transition.

Plots ofs(e) — au(e) for three different values af,in(y) are given in figures 17, 18 and
19, and the corresponding learning curves in figure 20. The phase diagram indicating the
critical value ofa for each value oénin(y) is plotted in figure 21.

As an illuminating exercise, we note that four different bounds can be written using the
tools of this paper. For the entropy there are two choices, the simple cardinality bound
s(e) = 1 and the tighter bound above. For the energy there are two choices, given by
Egs. (32) and (33), corresponding to the choices(ef as above and(¢) = € + emin.
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Figure 17 The functions(e) — au(e) for the unrealizable Ising perceptron discussed in Section 3.4, with
emin(y) = 0.01. The function is plotted for the values= 2.0, 2.1184 2.2 (top to bottom).
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€
Figure 18 The functions(e) — au(e) for the unrealizable Ising perceptron discussed in Section 3.4, with

emin(y) = 0.01969. This value foemin(y) is a critical value, in the sense that the learning curve phase transition
disappears for largemin(y). The function is plotted for the values= 2.5, 2.6136 2.7 (top to bottom).

These four possibilities give the bounds exhibited below:

cardinality entropy
v(€) = € + €min a2 (loga)/a (53)
v(e) ~ /A€ a8 ((log) /a)?

Note how much weaker some of the bounds are than others.
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Figure 19 The functions(e) — au(e) for the unrealizable Ising perceptron discussed in Section 3.4, with
emin(y) = 0.03. The function is plotted for the values= 2, 3, 4 (top to bottom).
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Figure 20 The scaled learning curve$ () for the unrealizable Ising perceptron discussed in Section 3.4, for
the three valuesnmin(y) = 0.01, 0.01969 0.03 (bottom to top).

3.5. Largea asymptotics of scaled learning curves

Our formalism can be used to give a classification of the largesymptotics of scaled
learning curve§ thus completing a classification program that has been suggested by
several researchers (Amari et al., 1992; Schwartz et al., 1990; Seung et al., 1992). Fron
Eqg. (32) and Lemma 9, the weaker form

_ . \2
(€ — €min) (54)

ue = e
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Figure 21 Phase diagram showing line of first-order transitions beginnirg-at1.448 foremin(y) = 0 and
terminating atx = 2.6136 foremin(y) = 0.01969.

is derived as a permissible energy bound in the Appendix in Section A.2. The entropy-
energy competition then takes the form

(Ae)?

2v(A€) (55)

S(A€) = aU(Ae) = a

where we have rewritten all functions ©fas functions of the differencte = € — enin.

Since the only model-dependent quantities sit¢) andv(A¢), we can classify the
largea asymptotics of scaled learning curves. In fact, the only model-dependent quantity
that need enter is a single expongntlefined by

S(Ae)v(A€) ~ (Ae)* (56)
nearAe = 0. This yields the following cases:

e If x > 2, there is a first-order (sudden) phase transition to perfect learning. This is
assuming that(0) = 0, sothatAe = Oisalways a solution of Eq. (55), if not the rightmost
solution. This is the generic case, unless there are exponentially many functions with
€ = €min-

e If 1 < x < 2, the error decays as a power layipd .

e In the marginal cas& = 2, the behavior can be affected by logarithmic corrections
to the power law of Eq. (56). In the absence of such corrections, there is a second-
order (continuous) transition to perfect learning in which the error drops to zero like
€ ~ ac —a. Inthe presence of a logarithmic correctistAe)v(Ae) ~ —(A€)?log Ae,
the error bound decays exponentially with

This classification scheme is a generalization of that of Sompolinsky and his colleagues tc
include unrealizable rules (Seung, et al., 1992).
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4. The infinite case

The final generalization of our theory that needs to be discussed is to the frequent cas
in which the function clasg (whether it realizes the target function or not) has infinite
cardinality. Unfortunately, while there are certainly several plausible directions we can
take to adapt our theory to this case, none of these has emerged as definitively the be:
choice for handling the infinite case. This is partially due to the lack of known natural
examples of infinite classes that lead to learning curve behavior other than a power law
(thus suggesting that the extremely general VC dimension-based approach is sufficient fo
analyzing most classes), and partially due to the difficulty of the calculations required by
the various approaches. Thus, by necessity our examination of the infinite case will be
considerably more open-ended than for the finite case.

We begin by noting that practically every step of our analysis for the finite case was
based on computing the (finite) cardinality of some subclasg.ofThis began with the
shell decomposition af to obtain the subclass cardinaliti€s, whose logarithms were
eventually bounded by the entropy functis@) in the thermodynamic limit method. Ob-
viously, new ideas will be required in order to carry out a similar analysis in the infinite
case. Our eventual goal should be to preserve the essentials of our theory: namely, to aga
describe learning curves as a competition between “entropy” and “energy”, with the largest
value for which energy dominates entropy being a bound on the generalization error of
empirical minimization algorithms. However, there are now several distinct candidates for
our entropic measure. We now discuss in some detail just one of these candidates, whicl
essentially attempts to reduce the infinite case to a series of finite problems. In Section 6
we briefly mention alternative approaches that are the focus of our current research.

4.1. The covering approach

In the covering approach, we reduce an infinite cardinality function class to a series of finite
classes, and perform our analysis for the finite case on each of these classes in order t
obtain a bound on the learning curve.

For any fixed function clasg (of possibly infinite cardinality), any distributioD, and
any valuey € [0, 1], a subclas$[y] € F is called ay-coverof F with respect td if for
every f € Fthere exists arf’ € F[y]suchthak(f, f’) < y. In other words, while there
may be functions i that are not realizable ifF[y], the extent of this unrealizability is
bounded by the parameter

There is a canonical greedy constructionye€overs that will be particularly helpful to
keep in mind. Thus, throughout this section, for any fixed valueve assume that|y]
is a y-cover of F with respect toD obtained by initially choosing any function if,
then inductively adding t¢F[y] at each step any € F that is distance at leagt (with
respect toD) from all h € F[y]. This process is repeated until no more functions can
be added. It is easy to see that the resulting/det] does indeed form &-cover, and it
is known that thig/-cover is in fact at most twice the cardinality of thmallestpossible
y-cover. Furthermore, suppose < y. Then we can extend[y] to obtain ay’-cover
Fly'l 2 Fly] by again greedily adding tG&[y] functions that are at distance at least
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until no such function exists. The resulting coven/’] will again have cardinality at most
twice the smallest’-cover. In this way we can obtain for any sequepce y, > y3 > - --
a sequence afestedcoversF[y1] € Flya] € Flys] € - - -.

Letusfixy € [0, 1], and assume th&f has a finite/-cover with respectt®. Thisis not
as severe an assumption as it might initially seem. For instance, it is well-known that any
class of VC dimensiod has ay-cover of cardinality at mosD(1/y %) with respect to any
distribution and for every. Furthermore, if a class is not finitejy-coverable with respect
to D, then the generalization error cannot be made less thamany finite number of
examples. Thus, we see that finite coverability is really a minimal assumption for attaining
small generalization error.

With a fixedy -coverF[y] of F with respect tdD in mind, it is a straightforward appli-
cation of our theory for the finite unrealizable case to analyze the algorithm that performs
empirical error minimization with respect 18]y ]. Givenm examples, this algorithm out-
puts anyh € F[y] with minimum empirical error on the sample. Note that this algorithm
explicitly doesnot choose from the full clasg, but limits its search to the fixed finite
subclassF[y]. For a fixed target function (containedfnor not), the thermodynamic limit
method applied tdF[y] results in a bound on the error ef, wheree; is the rightmost
crossing function of a permissible entropy bows)de) for F[y] and an energy function
au, (€), where as beforgnn(y) < y isthe smallest possible generalization error achievable
in F[y]. The idea of using empirical minimization over a finite cover for an infinite class
has also been investigated by Benedek and Itai (1991) in their investigation of distribution-
specific sample complexity, and also by Vapnik (1982).

Things become more interesting when we take the natural step of analyzing the algorithm
that first chooses an advantageous value for the realizability paraynaterthen performs
empirical minimization usingF[y]. More precisely, if we assume that the algorithm has
knowledge ofs, (¢) for eachy?®, and is giverm = ot (N) examples of the target function,
then the algorithm will explicitly choosg to minimize the resulting rightmost crossi

It is worth mentioning at this point that while such an algorithm may be difficult or
impossible to implement (requiring the possibly difficult choiceyond knowledge of
the finite coversF[y]), it is worth study for at least two reasons. First, the algorithm is of
some theoretical interest since it explicitly considers the potential trade-off between the bes
error achievable in the chosen covEfy] (whichimproves ag — 0), and thesizeof F[y]

(which increases gs — 0). Second, although one might not implement such an algorithm
in practice, any bound we can provide on its generalization error can provide bounds on
the generalization error of optimal algorithms (such as the Bayes or Gibbs algorithms in a
Bayesian framework (Haussler et al., 1991)).

In the thermodynamic limit, we may upper bound the generalization error of this algo-
rithm by

= min €. 57
R ®7)

Let us interpret this bound. For each fixgdwe are computing the rightmost crossi
of s, (¢) andau, (¢). What is the expected behavior of this crossingzas- 0? Well, as
y — 0the coversF[y] are becoming larger (since we require more functions to achieve the
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greater realizability), and we thus expsgte) to increase. Indeed, if we use the nested cover
construction suggested at the beginning of this section, then foparyy we will have

s, (€) > s, (¢) for everye. Thus, decreasing has the effect of “lifting”s, (¢) (although
perhaps in a very nonuniform and complex mannerju,lfe) remained unchanged s
decreased, then the lift & (¢) could only cause the crossia{jto increase, thus predicting
that decreasing could never help.

However,u,, (¢) doesnotremain unchanged asdecreases. Rather, smaljeresults in
a smaller value for the optimal errekin(y) < y, thus shifting the energy curug, (¢) to
the left. If s, (¢) remained unchanged as— 0, we would predict that decreasipgcould
never hurt, and would choose= 0.

Thus in general, the covering analysis predicts that while for each fixtte best error
for resolutiony is determined by the competition betwegre) andau,, (¢), the overall
best error is governed by the competition between the I te) and the leftward shift to
u,(e) asy — 0.

5. Generalization of the theory to distribution learning

We believe that the basic components of the theory outlined here—namely, the identificatior
of the appropriate entropy and energy bounds, and the resulting bound on the learning curv
in terms of their competition—should generalize considerably beyond the basic model of
supervised learning of boolean functions examined in this paper. By this we mean the theory
should generalize to cover many different models of learning from random independent
observations, using a variety of loss functions. To demonstrate this, we now informally work
out a simple example in which we calculate learning curve bounds, in the thermodynamic
limit, for a certain class of probability distributions with respect to the well-known Kullback-
Leibler divergence.

Let the target distributiod over{0, 1}N be defined as follows: for each<4di < N, we
let theith bit of the output vector be 0 with probabilitf — p) and 1 with probabilityp.
Here p is a parameter in [QL/2] that will remain fixed for the ensuing discussion. Thus,
the distributionD can be regarded as outputting a random vector obtained by corrupting
each bit of the vectaod = 00- - - 0 with independent probabilitp.

Let the class of hypothesis distributions be similarly defined by all the possible “center”
vectorsy e {0, 1}N. Thus, the vectar represents the distributidd; obtained by corrupting
each bit ofv with independent probabilitp, and the targeD = Dj. It should be clear that
the Kullback-Leibler divergence db; from the targetD depends only on the Hamming
distance betweet and0, which is just the number of 1’s appearing in the vedtor

We now undertake an analysis of the Kullback-Leibler divergence, as a function of the
sample sizen, of the hypothesi®; minimizing the empirical log-loss

los(D5., §) = ) log(1/D5[y)). (58)
yeS

Here S consists ofm independent random draws from the target distribuonThus, we
are simply analyzing in our theory the learning curve of the maximum-likelihood approach
to this problem.
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Now it is not hard to show that if is a vector with exactly 1's in it, then the Kullback-
Leibler divergence ob; to D is

1 1
r<plogl_p+(1—p)logﬁ—H(p)> (59)

where H(p) is the usual binary entropy gb. Note that the divergence is 0 when=
0 (the divergence of the target from itself is 0), and it is also 0 whea 1/2 (since
then everyy generates the uniform distribution ¢@, 1}N). Since p is fixed, let us use
Cp = plog(1/(1 — p)) + (1 — p)log(l/p) — H(p) to denote the constant inside the
parentheses above. For convenience, we also divide the Kullback-Leibler divergedce by
just to make our measure of generalization error an order 1 quantity. Then we see that ou
error levels are justN =r(C,/N) for 0 <r < N, and the number of distributions in the
class that are at divergene® from the target iQN = (';‘).

We now turn to the problem of finding a suitable energy function. In other words, suppose
thatv is a fixed vector with exactly 1's, and suppose we draw a sam@ef m vectors
from the target distributio®. Then what iPrscpn[loss(D3, S) < losg D, S)]?

To bound this probability, note that the difference in the log-loss incurred by the two
distributions on any fixed vectgrdepends only on the settingyrof ther bits wherev and
0 disagree (which we may assume without loss of generality are the bits). Ona 0 in
bits 1 througlr, the target pays lad/(1— p)) andD; pays log1/p), and on a 1, the costs
are reversed. Thus our problem simply reduces to the following: weraveBernoulli
trials, each with probabilityp of tails. What is the probability that we have a majority of
tails? Now we can just use standard Chernoff bounds to obtain the following bound:

Precon[loss(D;, S) < losgD, §)] < e (M/IA-2p*/(4p), (60)

Thus when we write out our summation of entropy times energy (corresponding to Eq. (7)
in the boolean function learning setting), e term is( N ye=(M/31-20)/p) ysing the
bound(N) < N" we can bound theth term bye' '09N-M/3)1-2p)*/4p) " Factoring out
the scaling factot(N) = log N, we rewrite thisg®dN —(@/3/1-2p%/(4p) where we define
a = m/logN. In the thermodynamic limit, this predicts a phase transition to perfect
generalization fos proportional top/ (1— 2p)?. This makes some sense, in that the critical
a goes to infinity agp approaches /.

6. Conclusion

Two questions have often been raised in the computational learning theory community
regarding the statistical physics approach to learning curves. Can it be made rigorous’
Does it give any results that can not be derived from the VC theory? In this paper, we have
shown that for finite function classes and excluding replica calculations, the answer to both
guestions is affirmative. Under certain circumstances, our theory provides much tighter
bounds than the VC theory, best illustrated in our examples exhibiting phase transitions.
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Our theory gives tighter bounds than the VC theory at the expense of increasing the
number of problem-dependent quantities. Since the computation of the entropydgeund
requires knowledge of the input distribution, it is considerably more difficult than the
computation of the VC dimension, which requires knowledge of only the function class.
For this reason, applications of our theory to real problems may be difficult. Thus, our
theory is descriptive rather than prescriptive at this point: it should be regarded more as
an attempt to come to a theoretical understanding of the true behavior of learning curves
rather than as a tool for application.

There is obviously still much work to do in our theory, and we now list some of the
research directions we are pursuing.

e The infinite case. The most glaring weakness of our theory, especially in comparison
to the VC theory, is that we have developed and analyzed it only for finite cardinality
concept classes. We are currently investigating extensions to the infinite case that ar
more refined than the covering approach discussed in Section 4.1, and are based
combining the shell decomposition with the VC dimension, VC entropy and random
covering numbers (Dudley, 1978; Haussler, 1992; Pollard, 1984; Vapnik, 1982).

e Expressing our bounds as penalty functions.One of the most interesting aspects of
the VC theory is Vapnik’s explicit prescription in the unrealizable setting for trading off
hypothesis class complexity (and therefore, ability to realize the target function) against
empirical error (Vapnik, 1982). This prescription is knownsasictural risk minimiza-
tion, and the form it takes can be directly traced to the form of the VC bounds on learning
curves. The fact that we now have learning curve bounds whose functional form can
differ radically from the VC bounds opens the possibility for structural risk minimization
prescriptions that are different from Vapnik’s. Although possibly difficult to apply, such
prescriptions may have interesting theoretical interpretations and consequences.

o Alternatives to the computation of s(¢). We mentioned above that at this point our
theory is descriptive rather than prescriptive. It would be nice to at least partially remedy
this situation. The main barrier is our assumption 8@} is known to the designer of
a learning algorithm, which in turn implies knowledge of the input distribution. Might
it be possible to estimatg(e) from data, even for special function classes of interest?

If one has only partial information about the input distribution, can this be translated
into useful partial information aboste). Note that such considerations must be central
to any attempt to apply our theory in a practical manner, for instance to structural risk
minimization.

A. Technical appendix

A.1l. Relaxing the bound on the number of error levels

One undesirable aspect of the statement of Theorem 4 is the demant\that o(e!N)2)
for all valuesA > 0, that is, the insistence that the number of error levéld) be a

strictly subexponential function of chosen scaling functioN). In this section we briefly
show how this condition can be sidestepped without changing the essential character of thi
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thermodynamic limit method. The basic idea is this: if the true number of error le(éls
is too large to apply Theorem 4, we can instead apply the theorem using a smaller numbe
of error levels of our own choosing.

More precisely, rather than using the error Ie\&ﬂsl < j <r(N), that are determined
by the definition of theFy, fy andDy, let us instead lat(N) beanyfunction meeting the
conditionr (N) = o(e!™2) for all valuesA > 0, and let '[h&ij be anysequence of error
values that we choose. Thus, now there may in fagidfeinctions inF at generalization
erroreN. We now redefineQ" to be all those functions ifFy whose generalization error
falls in the interval EJ-N, eJ-NH). The intuition is that we are first putting functions of nearby
generalization error in the same “bin”, and assuming (pessimistically) that all functions in
the same bin have the smallest possible generalization error for this bin.

The definition of a permissible entropy bous@) with respect to the scaling function
t(N) remains unaltered, and it can be verified that under the new definitions, Theorem 4
still holds. Given a scaling functiotn(N), the number and spacing of the error levels we
should choose to obtain the best analysis depends on the problem. A natural choice is t
space the error levels evenly over 1, but this is not the only possibility and may not be
the best one for certain problems.

A.2. Derivation of general energy bound form
Here we show how Egs. (30) and (54) can be derived.
Lemma 9. (Sanoy Let Z,..., Zy be ii.d. random variables taking on the values

{—1, 0, 1} with probabilities{p_1, po, p1}, resp. If the mean p— p_; of Z is positive
then the probability that the empirical mean is nonpositive is bounded by

1 & m
pr[a ; zZ < o} <(1-WP1—VPD?) (61)
m(py — pl)2>
= 7 62
= exp( 2(p1 + p-1) ©2

Proof: LetT = %Zim:l Z;i be the empirical mean. Then from Markov’s inequality it
follows that

Pr[T < 0] = Prle™T > 1] (63)
< E[e™T] (64)
= ﬁ E[e *%] (65)
i=1
= (P& + po+ p_1€H)™, (66)

for any positiver. In particular, it is true for the.* satisfyinge™" = /p_1/p1. Making
this substitution and usingy = 1 — p1 — p_1, we find the first inequality of the lemma.
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The second inequality follows from

(p1— p-1)? »(VPL+ /P-D)?
= T = —Jp )Py v 67
e e 67
< 2(y/P1 — v/P-0)? (68)
< —2log(1 - (/Pr — v/P-1?) (69)
a
To prove Eq. (30) using this lemma, we note that the random varighlé, S) —
em(h*, S) is precisely the empirical mean of the random variables
Z = x[h(x) # vi] — x[h*(x) # yi], (70)

where eachx;, yi) is an example drawn independently frdby,. Eachz; takes on the
values{—1, 0, 1} with probabilities

p1 = Pri(h(0) # y) A (W (x) = y)] (71)
Po = Pri(h(x) # y) A (h*(X) # Y]

+Pri(h(x) = y) A (h*(xX) = y)] (72)

p_1 = Pr{(h(x) = y) A (h*(x) # Y)] (73)

where(x, y) is an example drawn randomly froBy. These are related to probabilities of
disagreement via

e(h,h") = p1+p1 (74)
eh)y —e(h®) = p1— p_1 (75)

Making the appropriate substitutions in Eq. (62) yields the desired result.
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Notes

1. Here for simplicity we are using th@(-) notation, which hides logarithmic factors in the same wayGie
notation hides constant factors.
2. By a power law, we mean the functional fotay m)®, wherea, b > 0 are constants.
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3. Aside to the statistical physicist: the annealed approximation was previously used to approximate the learning
curve of a Gibbs learner, which chooses a hypothesis from a Gibbs distribution with the empirical error as
energy. Here we adopt a microcanonical rather than a canonical ensemble, enabling us to obtain rigorous
upper bounds from the annealed theory, rather than approximations. These bounds hold for all empirical error
minimization algorithms, including the zero temperature limit of the Gibbs algorithm. Because of our desire
for rigor, we have not used the replica method (Gardner, 1988) in this paper. Engel, van den Broeck, and Fink
have used the replica method to calculate the maximum deviation between empirical and generalization errol
in the function class, and the maximum generalization error in the version space (Engel & Fink, 1993; Engel
& Broeck, 1993). Although the replica method produces exact results when used correctly, it rests upon an
interchange of limits for which no rigorous justification has been found.

4. Throughout this section, we will refrain from giving the explicit functisis) used to generate the plots, since
some of them are rather complicated, and it is their shape rather than their mathematical definitions that are o
interest here.

5. The designation “Ising” refers to thel constraint, which is present in the original Ising model of magnetism
with N interacting spins.

6. Accordingto calculations using the replica method of statistical physics, for this problem the true scaled learning
curve of the Gibbs learning algorithm (which chooses a random consistent hypothesis from the version space
exhibits a phase transition to perfect generalizatian @t 1.245. This picture is consistent with the results of
exhaustive enumeration by computer for up\ie= 32.

7. Note that the large-asymptotics, which by definition invoke a thermodynamic limit, may be different from
the largem asymptotics for a fixed function class.

8. This is a nontrivial assumption, since in many of the examples we have examined, the entropy bound depend
strongly on the target function, which we of course assume is unknown. Thus, we are really assuming here
that eithers, (¢) is invariant to the target function (as in the realizable Ising perceptron), or that is a worst-case
entropy bound over all target functions.
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