Skip to main content
Log in

On Copositive Programming and Standard Quadratic Optimization Problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A standard quadratic problem consists of finding global maximizers of a quadratic form over the standard simplex. In this paper, the usual semidefinite programming relaxation is strengthened by replacing the cone of positive semidefinite matrices by the cone of completely positive matrices (the positive semidefinite matrices which allow a factorization FF T where F is some non-negative matrix). The dual of this cone is the cone of copositive matrices (i.e., those matrices which yield a non-negative quadratic form on the positive orthant). This conic formulation allows us to employ primal-dual affine-scaling directions. Furthermore, these approaches are combined with an evolutionary dynamics algorithm which generates primal-feasible paths along which the objective is monotonically improved until a local solution is reached. In particular, the primal-dual affine scaling directions are used to escape from local maxima encountered during the evolutionary dynamics phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baum, L.E. and Eagon, J.A. (1967), An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Amer. Math. Soc. 73: 360-363.

    Google Scholar 

  2. Baum, L.E. and Sell, G.R. (1968), Growth transformations for functions on manifolds. Pacif. J. Math. 27: 211-227.

    Google Scholar 

  3. Berman, A. (1988), Complete positivity. Linear Algebra Appl. 107: 57-63.

    Google Scholar 

  4. Berman, A. and Hershkowitz, D. (1987), Combinatorial results on completely positive matrices. Linear Algebra Appl. 95: 111-125.

    Google Scholar 

  5. Bomze, I.M. (1987), Remarks on the recursive structure of copositivity. J.Inf.Optimiz.Sci. 8: 243-260.

    Google Scholar 

  6. Bomze, I.M. (1996), Block pivoting and shortcut strategies for detecting copositivity. Linear Algebra Appl. 248: 161-184.

    Google Scholar 

  7. Bomze, I.M. (1997), Evolution towards the maximum clique. J. Global Optimiz. 10: 143-164.

    Google Scholar 

  8. Bomze, I.M. (1997), Global escape strategies for maximizing quadratic forms over a simplex. J. Global Optimiz. 11: 325-338.

    Google Scholar 

  9. Bomze, I.M. (1998), On standard quadratic optimization problems. J. Global Optimiz. 13: 369-387.

    Google Scholar 

  10. Bomze, I.M. (2000), Linear-time detection of copositivity for tridiagonal matrices and extension to block-tridiagonality. SIAM J. Matrix Anal. Appl.. 21: 840-848.

    Google Scholar 

  11. Bomze, I.M., Pelillo, M. and Giacomini, R. (1997), Evolutionary approach to the maximum clique problem: empirical evidence on a larger scale. In: Bomze, I.M., Csendes, T., Horst, R. and Pardalos, P.M. (eds.), Developments in Global Optimization, Kluwer, Dordrecht, pp. 95-108.

    Google Scholar 

  12. Bomze, I.M. and Stix, V. (1999), Genetical engineering via negative fitness: evolutionary dynamics for global optimization. Annals of O.R. 89: 279-318.

    Google Scholar 

  13. Crow, J.F., Kimura, M. (1970), An Introduction to Population Genetics Theory, Harper & Row, New York.

    Google Scholar 

  14. Danninger, G. (1990), A recursive algorithm to detect (strict) copositivity of a symmetric matrix. In: Rieder, U., Gessner, P., Peyerimhoff, A. and Radermacher, F.J., (eds.), Methods of Operations Research 62: 45-52. Hain, Meisenheim.

    Google Scholar 

  15. Drew, J.H., Johnson, C.R. and Loewy, R. (1994), Completely positive matrices associated with M-matrices. Linear and Multilinear Algebra 37: 303-310.

    Google Scholar 

  16. Fujisawa, K., Kojima, M. and Nakata, K. (1997), Exploiting sparsity in primal-dual interiorpoint methods for semidefinite programming. Math. Prog. 79: 235-253.

    Google Scholar 

  17. Fukuda, M., Kojima, M., Murota, K. and Nakata, K. (1999), Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework, Research Report B-358, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan.

    Google Scholar 

  18. Goemans, M.X. (1997), Semidefinite programming in combinatorial optimization. Math. Prog. 79: 143-161.

    Google Scholar 

  19. Hadeler, K.P. (1983), On copositive matrices. Linear Algebra Appl. 49: 79-89.

    Google Scholar 

  20. Hall, M., Jr. and M. Newman, (1963), Copositive and completely positive quadratic forms. Proc. Cambridge Philos. Soc. 59: 329-339.

    Google Scholar 

  21. Hannah, J. and Laffey, T.J. (1983), Nonnegative factorization of completely positive matrices. Linear Algebra Appl. 55: 1-9.

    Google Scholar 

  22. Helmberg, C., Rendl, F., Vanderbei, R.J. and Wolkowicz, H. (1996), An interior-point method for semidefinite programming. SIAM J. Optimiz. 6: 342-361.

    Google Scholar 

  23. Hofbauer, J. and Sigmund, K. (1988), The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  24. Horst, R., Pardalos, P.M. and Thoai, N.V. (1995), Introduction to Global Optimization, Kluwer, Dordrecht.

    Google Scholar 

  25. Hummel, R.A. and Zucker, S.W. (1983), On the foundations of relaxation labeling processes. IEEE Trans. Pattern Anal. Machine Intell. 5: 267-287.

    Google Scholar 

  26. Jansen, B., Roos, C. and Terlaky, T. (1995), Interior point methods: a decade after Karmarkar. A survey, with application to the smallest eigenvalue problem. Statistica Neerlandica 50: 146-170.

    Google Scholar 

  27. Kaykobad, M. (1987), On nonnegative factorization matrices. Linear Algebra Appl. 96: 27-33.

    Google Scholar 

  28. Klerk, E. de, Roos, C. and Terlaky, T. (1998), Polynomial primal-dual affine scaling algorithms in semidefinite programming. J. Combin. Optimiz. 2: 51-69.

    Google Scholar 

  29. Kojima, M., Shindoh, S. and Hara, S. (1997), Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optimiz. 7: 86-125.

    Google Scholar 

  30. Kojima, M. and Tunçel, L. (1998), Monotonicity of primal-dual interior-point algorithms for semidefinite programming problems. Optimiz. Methods Softw. 10: 275-296.

    Google Scholar 

  31. Lau, C.M. and Markham, T.L., (1978), Square triangular factorizations of completely positive matrices. J. Ind. Math. Soc. 28: 15-24.

    Google Scholar 

  32. Levinson, S.E., Rabiner, L.R. and Sondhi, M.M. (1983), An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition. Bell Syst. Tech. J. 62: 1035-1074.

    Google Scholar 

  33. Lyubich, Y., Maistrowskii, G. D. and Ol'khovskii, Yu.G. (1980), Selection-induced convergence to equilibrium in a single-locus autosomal population. Problems of Information Transmission 16: 66-75.

    Google Scholar 

  34. Markham, T. L. (1971), Factorizations of completely positive matrices. Proc. Cambridge Philos. Soc. 69: 53-58.

    Google Scholar 

  35. Martin, D.H. and Jacobson, D.H. (1981), Copositive matrices and definiteness of quadratic forms subject to homogeneous linear inequality constraints, Linear Algebra Appl. 35: 227-258.

    Google Scholar 

  36. Monteiro, R.D.C. (1997), Primal-dual path-following algorithms for semidefinite programming. SIAM J. Optimiz. 7: 663-678.

    Google Scholar 

  37. Muramatsu, M. and Vanderbei, R.J. (1997), Primal-dual affine-scaling algorithm fails for semidefinite programming. Technical Report SOR 97-04, Princeton University, NJ 08544.

    Google Scholar 

  38. Murty, K.G. and Kabadi, S.N. (1987), Some NP-complete problems in quadratic and linear programming. Math. Prog. 39: 117-129.

    Google Scholar 

  39. Nesterov, Y.E. and Nemirovskii, A.S. (1994), Interior point methods in convex programming: theory and applications. SIAM, Philadelphia, PA.

    Google Scholar 

  40. Nowak, I. (1999), A new semidefinite programming bound for indefinite quadratic forms over a simplex. J. Global Optimiz. 14: 357-364.

    Google Scholar 

  41. Pelillo, M. (1994), On the dynamics of relaxation labeling processes. Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, pp. 1006-1011.

  42. Pelillo, M. (1995), Relaxation labeling networks for the maximum clique problem. J. Artif. Neural Networks 2: 313-327.

    Google Scholar 

  43. Raber, U. (1999), Nonconvex all-quadratic global optimization problems: solution methods, application and related topics. Ph.D. dissertation, University of Trier.

  44. Rosenfeld, A., Hummel, R.A. and Zucker, S.W. (1976), Scene labeling by relaxation operations. IEEE Trans. Syst. Man Cybern. 6: 420-433.

    Google Scholar 

  45. Quist, A.J., de Klerk, E., Roos, C. and Terlaky, T. (1998), Copositive relaxation for general quadratic programming. Optimiz. Methods Softw. 9: 185-209.

    Google Scholar 

  46. Sigmund, K. (1987), Game dynamics, mixed strategies, and gradient systems. Theor. Pop. Biol. 32: 114-126.

    Google Scholar 

  47. Tunçel, L. (1999), Generalization of primal-dual interior-point methods to convex optimization problems in conic form. Technical Report CORR 99-35, University of Waterloo.

  48. Väliaho, H. (1986), Criteria for copositive matrices. Linear Algebra Appl. 81: 19-34.

    Google Scholar 

  49. Väliaho, H. (1988), Testing the definiteness of matrices on polyhedral cones. Linear Algebra Appl. 101: 135-165.

    Google Scholar 

  50. Väliaho, H. (1989), Quadratic-programming criteria for copositive matrices. Linear Algebra Appl. 119: 163-182.

    Google Scholar 

  51. Xiang, S.H. and Xiang, S.W. (1998), Notes on completely positive matrices. Linear Algebra Appl. 271: 273-282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomze, I.M., Dür, M., de Klerk, E. et al. On Copositive Programming and Standard Quadratic Optimization Problems. Journal of Global Optimization 18, 301–320 (2000). https://doi.org/10.1023/A:1026583532263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026583532263

Navigation