Skip to main content
Log in

Controllability and Stabilization in Elasticity, Heat Conduction and Thermoelasticity: Review of Recent Developments*

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The aim of this paper is to review developments in exact and approximate controllability as well as stabilization of elastic, thermoelastic, and thermo-viscoelastic bodies. Heat equations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aassila, M. (1998a), Strong asymptotic stability of isotropic elasticity systems with internal damping, Acta Scient. Math. (Szeged), 64: 103-108.

    Google Scholar 

  • Aassila, M. (1998b), A new approach of strong stabillzation of distributed systems, Differential and Integral Equations, 11: 369-376.

    Google Scholar 

  • Aassila, M. (1998c), Strong asymptotic stability for n-dimensional thermoelasticity systems, Colloquium Mathematicum, 77; 133-138.

    Google Scholar 

  • Alabau, F. and Komornik, V. (1997), Boundary Observability and Controllability of Linear Elasto-dynamic Systems, in S. Cox, and I. Lasiecka (eds.), Optimization Methods in Partial Differential Equations, American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Alabau, F. and Komornik, V. (1998), Boundary observability, controllability and stabilization of linear elastodynamic systems, SIAM J. Control Optimization, 37: 521-542.

    Google Scholar 

  • Armstrong-Hélouvry, B., Dupont P. and Canudas de Wit, C. (1994), Friction in servo machines: analysis and control methods, Applied Mechanics Reviews, 47: 275-305.

    Google Scholar 

  • Asch, M. and Lebeau, C. (1996), Geometrical aspects of exact boundary controllability for the wave equation — a numerical study, Prépublications, No 96–35, Université de Paris-Sud, Mathématiques.

  • Asch, M. and Vai, B. (1998), Une étude du comportement exact du système de l'élasticité linéaire en dimension deux, Rapport Technique No 98-05, Laboratoire de Mathématiques, Université Paris-Sud.

  • Avdonin, S. A. and Ivanov, S. A. (1989), Controllability of Systems with Distributed Parameters and Family of Exponentials, Uchebno-Metodicheskij Kabinet po Vyshemu Obrazovaniju pri Minvuze USSR, Kiev, in Russian.

  • Avdonin, S. A. and Ivanov, S. A. (1995), Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, New York.

    Google Scholar 

  • Banks, H. T. (1975), Modeling and Control in the Biomedical Sciences, Springer-Verlag, Berlin.

    Google Scholar 

  • Banks, H. T., Smith, R. C. and Wang, Y. (1996), Smart Material Structures (Modeling, Estimation and Control), Wiley, Chichester; Masson, Paris.

    Google Scholar 

  • Bardos, C., Lebeau, G. and Rauch, J. (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control and Optimization, 30: 1024-1065.

    Google Scholar 

  • Bashirov, A. E. and Kerimov, K. R. (1997), On controllability conception for stochastic systems, SIAM J. Control and Optimization, 35: 384-398.

    Google Scholar 

  • Benjeddou, A., Trindade, M.A. and Ohayon, R. (1997), A unified beam finite element model for extension and shear piezoelectric actuation mechanisms, J. Intelligent Material Systems and Structures, 8: 1012-1025.

    Google Scholar 

  • Benjeddou, A., Trindade, M.A. and Ohayon, R. (1999), New shear actuated smart structure beam finite element, AIAA J., 37: 378-383.

    Google Scholar 

  • Bodart, I. and Fabre, C. (1994), Controls insensitizing the norm of the solution of a semi-linear heat equation, Ecole Polytechnique, Centre de Mathématiques Appliquées, R. I. 291.

  • Camilli, P. (1996), Computation of the ℌ∞ norm for nonlinear systems: a convergence results, System and Control Letters, 28: 139-150.

    Google Scholar 

  • Camilli, F. and Falcone, M. (1999), Approximation of control problems involving ordinary and impulsive controls, ESAIM: Control, Optimization and Calculus of Variations, 4: 159-176.

    Google Scholar 

  • Chernykh, K.F. (1988), An Introduction to Anisotropic Elasticity, Nauka, Moskva, in Russian.

    Google Scholar 

  • Datko, R. (1991), Two questions concerning the boundary control of certain elastic systems, J. Differential Equations, 92; 27-44.

    Google Scholar 

  • Datko, R. and You, Y.C. (1991), Some second-order vibrating systems cannot tolerate small time delays in their damping, J. Optimization Theory and Applications, 70: 521-537.

    Google Scholar 

  • Deseri, L., Gentili, G. and Golden, M. (1999), An explicit formula for the minimum free energy in linear viscoelasticity, J. Elasticity, 54: 141-185.

    Google Scholar 

  • Destuynder, Ph., Legrain. I., Castel, L. and Richard, N. (1992), Theoretical, numerical and experimental discussion on the use of piezoelectric devices for control-structure interaction, European J. Mechanics, A/Solids, 11: 181-213.

    Google Scholar 

  • Ekeland, I. and Temam, R. (1976), Convex Analysis and Variational Problems, North Holland, Amsterdam.

    Google Scholar 

  • Fabre, C., Puel, J.-P. and Zuazua, E. (1993), Contrôlabilité approchée de l'equation de la chaleur linéaire avec des controles de norme L∞ minimale, Comptes Rendus de L'Académie des Sciences de Paris, Série I, 316, 679-684.

    Google Scholar 

  • Fabre, C., Puel, J.-P. and Zuazua, E. (1995), Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburgh, 125A, 31-61.

    Google Scholar 

  • Glowinski, R. and Lions, J.L. (1994), Exact and approximate controllabi1ity for distributed parameter systems. I., Acta Numerica, 269-378.

  • Glowinski, R. and Lions, J.L. (1996), Exact and approximate controllability for distributed parameter systems. II., Acta Numerica, 159-333.

  • Grisvard, P. (1989), Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularité, J. Mathématiques Pures et Appliquées, 68: 215-259.

    Google Scholar 

  • Henry, D.B., Perissinitto, A. and Lopes, O. (1993), On the essential spectrum of a semigroup of thermoelasticity, Nonlinear Analysis, Theory, Methods and Applications, 21: 65-75.

    Google Scholar 

  • Holnicki-Szulc, J. and Rodellar, J. (eds.), (1999), Smart Structures (Requirements and Potential Applications in Mechanical and Civil Engineering), NATO Science Series, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Horn, M.A. (1998), Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity, J. Mathematical Analysis and Applications, 223: 126-150.

    Google Scholar 

  • Ji, G. and Lasiecka, I. (1998), Partially observed analytic systems with fully unbounded actuators and sensors — FEM algorithms, Computational Optimization and Applications, 11: 111-136.

    Google Scholar 

  • Khapalov, A.Yu. (1995), Some aspects of the asymptotic behavior of the solutions of the semilinear equation in vanishing time and approximate controllability, J. Mathematical Analysis and Applications, 194; 858-882.

    Google Scholar 

  • Khapalov, A.Yu. (1998), An example of a globally controllable semilinear heat equation with super-linear term, Technical Report 98-1, Washington State University; also: J. Mathematical Analysis and Applications, in press.

  • Khapalov, A.Yu. (1999a), Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls, ESAIM: Control, Optimisation and Calculus of Variations, 4: 83-98.

    Google Scholar 

  • Khapalov, A.Yu. (1999b), Global properties for the semilinear heat equation with superlinear term, Revista Matemática Complutense, 12: 1-25.

    Google Scholar 

  • Khapalov, A.Yu. (1999c), Exact null-controllability for the semilinear heat equation with superlinear term and mobile internal controls, Nonlinear Analysis, 37, in press.

  • Khapalov, A.Yu. (1999d), Approximate controllability properties of the semilinear heat equation with lumped controIs, International J. Applied Mathematics and Computer Science, 9: 751-765.

    Google Scholar 

  • Klamka, J. (1998), Controllability of second-order semilinear infinite-dimensional dynamical systems, Applied Mathematics and Computer Science, 8: 459-470.

    Google Scholar 

  • Klamka, J. (1999), Constrained controllability of dynamic systems, Int. J. Applied Mathematics and Computer Science, 9: 231-244.

    Google Scholar 

  • Komornik, V. (1988), Contrôlabilité exacte en temps minimal de quelques modèles de plaques, Comptes Rendus de l'Académie des Sciences de Paris, Série I, 307: 471-474.

    Google Scholar 

  • Komornik, V. (1989), A new method of exact controllability in short time and applications, Annales Faculté des Sciences de Toulouse, 10: 415-464.

    Google Scholar 

  • Komornik, V. (1994a), Boundary stabilization of linear elasticity systems, Proceedings of the IFIP Workshop on Control Theory, Laredo, Spain.

  • Komornik, V. (1994b), Exact Controllability and Stabilization (The Multiplier Method), John Wiley and Sons, Chichester; Masson, Paris.

    Google Scholar 

  • Komornik, V. (1995), Stabilisation rapide de problèmes d'evolution linéaires, Comptes Rendus de l'Académie des Sciences de Paris, Série I, 321: 1-6.

    Google Scholar 

  • Komornik, V. (1997), Rapid boundary stabilization of linear distributed systems, SIAM J. Control and Optimization, 35; 1591-1613.

    Google Scholar 

  • Lagnese, J.E. (1983), Boundary Stabilization of Linear Elastodynamic Systems, SIAM J. Control and Optimization, 21, 968-984.

    Google Scholar 

  • Lagnese, J.E. (1989), Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, vol. 10, SIAM, Philadelphia.

    Google Scholar 

  • Lagnese, J.E. (1990), The reachability problem for thermoelastic plates, Archives for Rational Mechanics and Analysis, 112: 223-267.

    Google Scholar 

  • Lagnese, J.E. (1991), Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary, Nonlinear Analysis, Theory, Methods and Applications, 16: 35-54.

    Google Scholar 

  • Lagnese, J.E. (1997), Boundary controllability in problems of transmission for a class of second order hyperbolic systems, ESAIM: Control, Optimization and Calculus of Variations, 2: 343-357.

    Google Scholar 

  • Lagnese, J.E. and Lions, J.-L. (1988), Modelling, Analysis and Control of Thin Plates, Masson, Paris.

    Google Scholar 

  • Lasiecka, I. (1988), Stabilization of hyperbolic and parabolic systems with nonlinearly perturbed boundary conditions, J. Differential Equations, 75: 53-87.

    Google Scholar 

  • Lebeau, G. (1992), Contrôle de l'équation de Schrödinger, J. Mathématiques Pures et Appliquées, 71: 267-291.

    Google Scholar 

  • Lebeau, G. and Robbiano, L. (1995), Contrôle exact de l'équation de la chaleur, Communications in Partial Differential Equations, 20: 335-356.

    Google Scholar 

  • Lebeau, G. and Zuazua, B. (1998), Null controllability of a system of linear thermoelasticity, Archives for Rational Mechanics and Analysis, 141: 297-329.

    Google Scholar 

  • Lebeau, G. and Zuazua, E. (1999), Decay Rates for the three-dimensional linear system of thermoelasticity, Archives for Rational Mechanics and Analysis, 148: 179-231.

    Google Scholar 

  • Lions, J.-L. (1988a), Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, t. 1, Contrôlabilité Exacte, Masson, Paris.

    Google Scholar 

  • Lions, J.-L. (1988b), Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, t. 2, Perturbation, Masson, Paris.

    Google Scholar 

  • Liu, W. (1998a), The exponential stabilization of the higher-dimensional linear system of thermovis-coelasticity, J. Mathématiques Pures et Appliquées, 77: 355-386.

    Google Scholar 

  • Liu, W. (1998b), Partial exact controllability and exponential stability in higher-dimensional linear thermoviscoelasticity, ESAIM: Control, Optimisation and Calculus of Variations, 3: 23-48; Correction: pp. 323-327.

    Google Scholar 

  • Liu, W. and Williams, G.H. (1997), Exact internal controllability for the semilinear heat equations, J. Mathematical Analysis and Applications, 211: 258-272.

    Google Scholar 

  • Liu, W. and Williams, G.H. (1998), Partial exact controllability for the linear thermo-viscoelastic model, Electronic J. Differential Equations, 17: 1-11.

    Google Scholar 

  • Martinez, P. (1999), Uniform boundary stabilization of elasticity systems of cubic cystals by nonlinear feedbacks, Nonlinear Analysis 37: 719-733.

    Google Scholar 

  • Nicaise, S. (1992), About Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. I: regularity of the solutions, Annali della Scuola Normale Superiore di Pisa, Scienze Fisiche e Matematiche, 19: 327-361.

    Google Scholar 

  • Nicaise, S. (1993), About Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. II: exact controllability, Annali della Scuola Normale Superiore di Pisa, Scienze Fisiche e Matematiche, 20: 163-191.

    Google Scholar 

  • Nikolski, N.K. (1998), Contrôlabilitè à une renormalisation près et petits opérateurs de contrôle, J. Mathématiques Pures et Appliqués, 77: 439-479.

    Google Scholar 

  • Ouazza, M. (1997), Estimations d'énergie et résultats de contrôlabilité pour certains systémes couplés, Institut de Recherche Mathématique Avancée, Université Louis Pasteur, Strasbourg.

    Google Scholar 

  • Panagiotopoulos, P.D. (1993), Hemivariational Inequalities (Applications in Mechanics and Engineering), Springer-Verlag, Berlin.

    Google Scholar 

  • Ralston, J. (1982), Gaussian beams and the propagation of singularities, in E. Littman, (ed.) Studies in Partial Differential Equations, vol. 23.

  • Renardy, M. and Russell, D.L. (1999), Formability of linearly elastic structures with volume-type actuation, Archive for Rational Mechanics and Analysis, 149: 97-122.

    Google Scholar 

  • Russel, D.L. (1973), A unified boundary controllability theory for hyperbolic and parabolic differential equations, Studies in Applied Mathematics, 52: 189-212.

    Google Scholar 

  • Russel, D.L. (1978), Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, SIAM Review, 20: 639-739.

    Google Scholar 

  • Russel, D.L. (1997), Approximate and exact formability of two-dimensional elastic structures; com-plete and incomplete actuator families, in S. Cox and lI. Lasiecka, (eds.), Optimization Methods in Partial Differential Equations, American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Tani, J., Takagi, T. and Qiu, J. (1998), Intelligent material systems: application to functional materials, Applied Mechanics Reviews, 51: 505-521.

    Google Scholar 

  • Tcheuogué Tebou, L.R. (1996), On the stabilization of the wave and linear elasticity equations in 2-D, Panamerican Mathematical J., 6: 41-55.

    Google Scholar 

  • Telega, J.J. and Bielski W.R. (1996), Exact controllability of anisotropic elastic bodies, in K. Malanowski, Z. Nahorski, and M. Peszyńska (eds.), Modelling and Optimization of Distributed Parameter Systems, Chapman and Hall, London.

    Google Scholar 

  • Telega, J.J. and Bielski, W.R. (1999), On two problems of exact controllability for anisotropic solids, in J. Holnicki-Szulc, and J. Rodellar (eds.), Smart Structures, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Telega, J.J. and Bielski, W.R. (2000), Advances in controllability and stabilization: solids and structures, in preparation.

  • Telega, J.J. and Lekszycki, T. (2000), Progress in functional adaptation of tissues and remodelling, Part I and Part II, Engineering Transactions, 48, in press.

  • Trindade, M.A., Benjeddou, A. and Ohayon, R. (1998), Shear and extension actuation mechanisms for structural vibration control, in N.W. Aagood, and M.J. Atalia (eds.), Proceedings 9th Conf. on Adaptive Structures and Technologies, Technomic Publishing Co., Cambridge.

    Google Scholar 

  • Yosida, K. (1978), Functional Analysis, Springer-Verlag, Berlin.

    Google Scholar 

  • Zhou, Y.-H. and Tzou, H.S. (2000), Active control of nonlinear piezoelectric shallow spherical shells, International J. Solids and Structures, 37: 1663-1677.

    Google Scholar 

  • Zuazua, E. (1995), Controllability of the linear system of thermoelasticity, J. Mathématiques Pures et Appliquées, 74: 291-315.

    Google Scholar 

  • Zuazua, E. (1996), A uniqueness result for the linear system of elasticity and its control theoretical consequences, SIAM J. Control and Optimization, 34: 1473-1495; Erratum: ibid., 37: 330–331.

    Google Scholar 

  • Zuazua, E. (1997), Finite dimensional null controllabillty for the semilinear heat equation, J. Mathématiques Pures et Appliquées, 76: 237-264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telega, J.J., Bielski, W.R. Controllability and Stabilization in Elasticity, Heat Conduction and Thermoelasticity: Review of Recent Developments*. Journal of Global Optimization 17, 353–386 (2000). https://doi.org/10.1023/A:1026596405554

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026596405554

Navigation