Skip to main content
Log in

A Bayesian molecular interaction library

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We describe a library of molecular fragments designed to model and predict non-bonded interactions between atoms. We apply the Bayesian approach, whereby prior knowledge and uncertainty of the mathematical model are incorporated into the estimated model and its parameters. The molecular interaction data are strengthened by narrowing the atom classification to 14 atom types, focusing on independent molecular contacts that lie within a short cutoff distance, and symmetrizing the interaction data for the molecular fragments. Furthermore, the location of atoms in contact with a molecular fragment are modeled by Gaussian mixture densities whose maximum a posteriori estimates are obtained by applying a version of the expectation-maximization algorithm that incorporates hyperparameters for the components of the Gaussian mixtures. A routine is introduced providing the hyperparameters and the initial values of the parameters of the Gaussian mixture densities. A model selection criterion, based on the concept of a `minimum message length' is used to automatically select the optimal complexity of a mixture model and the most suitable orientation of a reference frame for a fragment in a coordinate system. The type of atom interacting with a molecular fragment is predicted by values of the posterior probability function and the accuracy of these predictions is evaluated by comparing the predicted atom type with the actual atom type seen in crystal structures. The fact that an atom will simultaneously interact with several molecular fragments forming a cohesive network of interactions is exploited by introducing two strategies that combine the predictions of atom types given by multiple fragments. The accuracy of these combined predictions is compared with those based on an individual fragment. Exhaustive validation analyses and qualitative examples (e.g., the ligand-binding domain of glutamate receptors) demonstrate that these improvements lead to effective modeling and prediction of molecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  2. Wade, R.C., Clark, K.J. and Goodford, P.J., J.Med. Chem., 36 (1993) 140.

    Google Scholar 

  3. Wade, R.C. and Goodford, P.J., J.Med. Chem., 36 (1993) 148.

    Google Scholar 

  4. Kellogg, G.E., Semus, S.F. and Abraham, D.J., J. Comput.-Aided Mol. Des., 5 (1991) 545.

    Google Scholar 

  5. Danziger, D.J. and Dean, P.M., P. Roy. Soc. Lond. B Biol., 236 (1989) 101.

    Google Scholar 

  6. Danziger, D.J. and Dean, P.M., P. Roy. Soc. Lond. B Biol., 236 (1989) 115.

    Google Scholar 

  7. Laskowski, R.A., Thornton, J.M., Humblet, C. and Singh, J., J. Mol. Biol., 259 (1996) 175.

    Google Scholar 

  8. Pitt, W.R. and Goodfellow, J.M., Protein Eng., 4 (1991) 531.

    Google Scholar 

  9. Böhm, H.J., J. Comput.-Aided Mol. Des., 6 (1992) 61. 461

    Google Scholar 

  10. Böhm, H.J., J. Comput.-Aided Mol. Des., 6 (1992) 593.

    Google Scholar 

  11. Böhm, H.J., J. Comput.-Aided Mol. Des., 8 (1994) 623.

    Google Scholar 

  12. Bruno, I.J., Cole, J.C., Lommerse, J.P., Rowland, R.S., Taylor, R. and Verdonk, M.L., J. Comput.-Aided Mol. Des., 11 (1997) 525.

    Google Scholar 

  13. Verdonk, M.L., Cole, J.C. and Taylor R., J. Mol. Biol., 289 (1999) 1093.

    Google Scholar 

  14. Nissink, J.W.M., Verdonk, M.L. and Klebe, G., J. Comput.-Aided Mol. Des., 14 (2000) 787.

    Google Scholar 

  15. Verdonk, M.L., Cole, J.C., Watson, P., Gillet, V. and Willett, P., J. Mol. Biol., 307 (2001) 841.

    Google Scholar 

  16. Boer, D.R., Kroon J., Cole, J.C., Smith, B. and Verdonk, M.L., J. Mol. Biol., 312 (2001) 275.

    Google Scholar 

  17. Klebe, G., J. Mol. Biol., 237 (1994) 212.

    Google Scholar 

  18. Verkhivker, G., Appelt, K., Freer, S.T. and Villafranca, J.E., Protein Eng., 8 (1995) 677.

    Google Scholar 

  19. Mitchell, J.B.O., Laskowki, R.A., Alex, A. and Thornton, J.M., J. Comput. Chem., 20 (1999) 1165.

    Google Scholar 

  20. Mitchell, J.B.O., Laskowki, R.A., Alex, A., Forster, M.J. and Thornton, J.M., J. Comput. Chem., 20 (1999) 1177.

    Google Scholar 

  21. Muegge, I. and Martin, Y.C., J. Med. Chem., 42 (1999) 791.

    Google Scholar 

  22. Gohlke, H., Hendlich, M. and Klebe, G., J. Mol. Biol., 295 (2000) 337.

    Google Scholar 

  23. Hendlich, M., Acta Crystallogr. D, 54 (1998) 1178.

    Google Scholar 

  24. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E., Nucleic Acids Res., 28 (2000) 235.

    Google Scholar 

  25. Rantanen, V.-V., Denessiouk, K.A., Gyllenberg, M., Koski, T. and Johnson, M.S., J. Mol. Biol., 313 (2001) 197.

    Google Scholar 

  26. Bernardo, J.M. and Smith, A.F.M., Bayesian Theory, John Wiley and Sons, Chichester, UK, 1994.

    Google Scholar 

  27. McLachlan, G.J. and Krishnan, T., The EM Algorithm and Extensions, John Wiley and Sons, New York, 1997.

    Google Scholar 

  28. McLachlan, G.J. and Peel, T., Finite Mixture Models, John Wiley and Sons, New York, 2000.

    Google Scholar 

  29. Durbin, R., Eddy, S.R., Krogh, A. and Mitchison, G.J., Biological Sequence Analysis: Probabilistic Models for Proteins and Nucleic Acids, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  30. Lanterman, A.D., Int. Stat. Rev., 69 (2001) 185.

    Google Scholar 

  31. Li, A.-J. and Nussinov, R., Proteins, 32 (1998) 111.

    Google Scholar 

  32. Rantanen, V.-V., Gyllenberg, M., Koski, T. and Johnson, M.S., Bioinformatics, 18 (2002) 1257.

    Google Scholar 

  33. Bondi, A., J. Phys. Chem., 68 (1964) 441.

    Google Scholar 

  34. Böhning, D., Schlattman, P. and Lindsay, B.G., Biometrics, 48 (1992) 283.

    Google Scholar 

  35. Ewens, W.J. and Grant, G.R., Statistical Methods of Bioinformatics, Springer Verlag, New York, 2001.

    Google Scholar 

  36. Geiger, D. and Heckerman, D., Ann. Stat., 25 (1997) 1344.

    Google Scholar 

  37. Gyllenberg, M. and Koski, T., Math. Biosci., 177&178 (2002) 161.

    Google Scholar 

  38. Geiger, D. and Heckerman, D., Ann. Stat., 30 (2002) 1412.

    Google Scholar 

  39. Gauvain, J.-L. and Lee, C.-H., IEEE T. Speech Audi. P., 2 (1994) 291.

    Google Scholar 

  40. Hastie, T. and Tibshirani, R., J. Roy. Stat. Soc. B Met., 58 (1996) 158.

    Google Scholar 

  41. Rissanen, J., IEEE T. Inform. Theory, 42 (1996) 40.

    Google Scholar 

  42. Rissanen, J., J. Comput. Syst. Sci., 55 (1997) 89.

    Google Scholar 

  43. Figueiredo, M. and Jain, A.K., IEEE T. Pattern Anal., 24 (2002) 381.

    Google Scholar 

  44. Wallace, C.S. and Freeman, P.R., J. Roy. Stat. Soc. B Met., 49 (1987) 241.

    Google Scholar 

  45. Wallace, C.S. and Freeman, P.R., J. Roy. Stat. Soc. B Met., 54 (1992) 195.

    Google Scholar 

  46. Samudrala, R. and Moult, J., J. Mol. Biol., 275 (1998) 895.

    Google Scholar 

  47. Chou, P.Y. and Fasman, G.D., Biochemistry, 13 (1974) 211.

    Google Scholar 

  48. Kittler, J., Hatef, M., Duin, R.P.W. and Matas, J., IEEE T. Pattern Anal., 20 (1998) 226.

    Google Scholar 

  49. Tax, D.M.J., van Breukelen, M., Duin, R.P.W. and Kittler, J., Pattern Recogn., 33 (2000) 1475.

    Google Scholar 

  50. Kuusinen, A., Arvola, M. and Keinänen, K., EMBO J., 14 (1995) 6327.

    Google Scholar 

  51. Armstrong, N., Sun, Y., Chen, G.Q. and Gouaux, E., Nature, 395 (1998) 913.

    Google Scholar 

  52. Armstrong, N. and Gouaux, E., Neuron, 28 (2000) 165.

    Google Scholar 

  53. Kraulis, P.J., J. Appl. Crystallogr., 24 (1991) 946.

    Google Scholar 

  54. Merritt, E.A. and Bacon, D.J., Methods Enzymol., 277 (1997) 505.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rantanen, VV., Gyllenberg, M., Koski, T. et al. A Bayesian molecular interaction library. J Comput Aided Mol Des 17, 435–461 (2003). https://doi.org/10.1023/A:1027371810547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027371810547

Navigation