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Early Cortical Orientation Selectivity: How Fast Inhibition Decodes
the Order of Spike Latencies
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Abstract. Following a flashed stimulus, I show that a simple neurophysiological mechanism in the primary visual
system can generate orientation selectivity based on the first incoming spikes. A biological model of the lateral
geniculate nucleus generates an asynchronous wave of spikes, with the most strongly activated neurons firing first.
Geniculate activation leads to both the direct excitation of a cortical pyramidal cell and disynaptic feed-forward
inhibition. The mechanism provides automatic gain control, so the cortical neurons respond over a wide range of
stimulus contrasts. It also demonstrates the biological plausibility of a new computationally efficient neural code:
latency rank order coding.
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1. Introduction

The question of how neurons encode and decode infor-
mation is central in neuroscience (Perkel and Bullock,
1968). Almost all computational models of processing
in the visual system start from the premise that neu-
rons transmit information in the form of a firing rate
code. Thus, the pattern of activity in the geniculate
afferents reaching the visual cortex can be described
as a set of continuous variables, one for each affer-
ent, where the value corresponds to the neurons firing
rate (Douglas et al., 1988; Ferster and Jagadeesh, 1992;
Suarez et al., 1995; Carandini et al., 1997; Hirsch et al.,
1998; Adorjan et al., 1999). However, an increasingly
large number of studies have looked at aspects of ac-
tivity in sensory neurons that cannot be described sim-
ply in terms of firing rate. In particular, there is now
considerable evidence that the timing of the response
to transient stimuli is considerably more precise than
had previously been thought (Mainen and Sejnowski,

1995; Gawne et al., 1996; Reich et al., 1997; Buracas
et al., 1998; Meister and Berry, 1999). This tempo-
ral precision opens up a whole range of computational
possibilities that merit further attention.

One such alternative takes advantage of the fact that
strongly activated neurons will tend to fire early, with
the result that information about the stimulus can be
obtained by looking at the latencies at which a pop-
ulation of cells fires (Thorpe, 1990). In this paper, I
test the plausibility of using such latency differences
as part of a mechanism for generating one of the most
widely studied functional properties of cortical neu-
rons, namely the orientation selectivity of neurons in
primary visual cortex (V1). Orientation selectivity has
been studied intensively for decades (Vidyasagar et al.,
1996; Sompolinsky and Shapley, 1997; Anderson et al.,
2000), but the underlying mechanisms are still contro-
versial. Some authors starting with Hubel and Weisel
(1962) have argued that the pattern of geniculate in-
puts is sufficient to explain basic orientation selectivity,
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whereas others have argued that intracortical feedback
is important (Suarez et al., 1995; Carandini and Ferster,
1997; Carandini et al., 1997; Adorjan et al., 1999).
The spike time based mechanism proposed here al-
lows these two apparently opposing views to be recon-
ciled. Following a transient visual stimulus, a wave of
spikes is generated in the lateral geniculate, the time of
discharge of neurons being a function of the local con-
trast in the image. Electrophysiological studies actually
report such waves of discharge for lateral geniculate
neurons presented with bars at high contrast (Maunsell
et al., 1999; Reinagel et al., 1999). This wave can pro-
duce orientation selective responses very rapidly in the
primary visual cortex by using a combination of exci-
tatory feed-forward connections and feed-forward in-
hibitory connections involving fast shunting inhibition
processes demonstrated recently (Borg-Graham et al.,
1998; Anderson et al., 2000; Ferster and Miller, 2000).
The resulting mechanism is interesting for a number
of reasons. First, its speed means that it is compati-
ble with the timing constraints imposed by behavioral
and neurophysiological data on the speed of process-
ing in the visual system. Second, it provides a simple
gain control mechanism that allows the system to re-
spond in an orientation-selective manner over a wide
range of stimuli contrasts. Obtaining contrast invari-
ance for such early responses is a feature that cannot be
generated using conventional techniques that involve
feedback mechanisms.

2. Material and Methods

2.1. Cortical Neuron Characteristics

A single compartment model of a cortical cell from
cat visual cortex was implemented in the NEURON
simulation software system (Hines, 1989). Detailed
modeling has shown that dendritic inputs tend to lin-
earize at the soma (Jaffe and Carnevale, 1999), imply-
ing that the single compartment simplification is not
unreasonable. The soma contained Hodgkin-Huxley
type voltage dependent sodium and potassium channels
(gNa = 180 mS/cm2; ENa = 50 mV; gK = 30 mS/cm2;
EK = 90 mV). Values from various models (Suarez
et al., 1995; Carandini et al., 1997; Destexhe, 1997; Mel
et al., 1998) were adjusted to fit single compartment
modeling (surface = 15000 µm2; Rm = 4 k�cm2;
Cm = 1.0 µF/cm2; Vrest = −70 mV; the simulation file
is available at www.sccn.ucsd.edu/∼arno/model.html).
Excitatory synapses from the lateral geniculate nuclei

(LGN) cells included only fast AMPA-type synaptic
conductances (τAMPA = 5 ms; Erev-AMPA = 0 mV).
Inhibitory neurons in the primary visual cortex im-
plemented fast GABAA inhibition (τGABAA = 10 ms;
Erev-GABAA = −70 mV). For both inhibitory and ex-
citatory receptive fields, synaptic delays were ignored
and post-synaptic potentials were modeled using in-
stantaneous exponential decay processes.

2.2. Stimuli

Input images were adjusted to contain a 2-cycle period
grating stimulating about 100 ON-center neurons and
100 OFF-center neurons. Each input image consisted
of a 17 × 17 pixel array containing a stationary Gabor
patch grating (8 bit gray level pixels) at a given orien-
tation and contrast:

I (x, y) = C sin(Re{(x + iy)eiθ }φ)e
x2+y2

2πσ2

where I (x, y) is the pixel value (between −1 and 1) at
position (x, y), x and y being integer between −8 and
8 relative to the ON or OFF neuron location (φ = 0.36
radians and σ = 2.3 pixels). Orientation θ in radian
was varied by 5◦ steps over the full 360◦ range and
contrast C was varied from 1.6 to 100%. An array of
11 × 11 ON-center cells values—excluding borders of
the initial image—was computed by a direct applica-
tion of a 7 × 7 difference of gaussian contrast filter on
the image. The standard deviation of the central posi-
tive gaussian was 0.63 pixels (surround 1.9 pixels), and
the amplitude of the surround negative gaussian was di-
vided by 3 with respect to the central region. The array
of OFF-center cells was calculated using the same filter
on the negative image with inverted pixel values.

2.3. Input from the LGN

Gabor patch gratings at various orientation and contrast
were presented to an array of ON-center and OFF-
center cells modeling the LGN neurons. These cells
were modeled as noisy leaky integrate-and-fire neu-
rons, whose inputs corresponded to the local contrast
in the image as depicted in the previous paragraph. The
earliest latencies correspond to those cells for which
the value of contrast is the highest (positive for ON-
center cells and negative for OFF-center cells), whereas
lower activation levels resulted in progressively longer
latencies (Fig. 1). The noise added to the LGN neurons
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Figure 1. Model architecture and dynamics. (a) Transformation
of an input image into neuronal discharges by arrays of ON-center
and OFF-center neurons and connectivity of these neurons with a
V1 pyramidal neuron. Synaptic weights are depicted in gray scale;
mean gray values standing for 0, brightest ones for excitatory AMPA
synapses and dark ones for inhibitory GABAA synapses. (b) Dy-
namic of neuronal activation. In the LGN, the latency of discharges
of neurons depends on the local intensity of activation. For the V1
neuron to discharge, highest synaptic weights must be activated first,
before the inhibition kicks in. (c) Latency of spikes of ON-center
neurons pooled for all 72 grating at 100% and 1.6% contrast (2 ms
time bin).

corresponded to a 3.6 ms standard deviation of spike
timing at the highest contrast and 12.6 ms at the lowest
contrast (corresponding to a signal to noise ratio of 1
at the lowest contrast). Averages spike latencies were
9 ms at the highest contrast and 47.3 ms at the low-
est contrast. These values appear reasonable with re-
spect to neurophysiological studies (Reich et al., 1997;
Maunsell et al., 1999). The latencies of LGN neurons’
spikes were generated with the neural network simula-
tor SpikeNET with a membrane time constant of 20 ms
(Delorme et al., 1999). For a given stimulus and at each
precise location, either an ON or an OFF-center cell

fires one spike, thus ruling out the possibility of using
a conventional rate code based on inter-spike interval.

2.4. Connectivity

Each of the 242 LGN neurons—11×11 ON-center and
11 × 11 OFF-center cells—forms a single excitatory
synapse onto the cortical cell’s soma. Synaptic weights
were set according to a Gabor function that makes the
neuron selective to contours oriented at 0◦ (Fig. 1).

Wi =
∣
∣
∣
∣
sin(A · d(ri , n))e

−d(ri ,n)2

2σ2

∣
∣
∣
∣

+
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where Wi is the synaptic weight between ON-center
neuron ri in the LGN and the unique neuron n in V1, and
d(r j , n) represents the Cartesian distance in pixels sep-
arating the two neurons (A = 0.75; B = 0.1; σ = 2.5).
The B parameter was added to ensure that the selec-
tivity of the neuron could not simply be explained by
the activation of sub-populations of synapses. Electro-
physiological studies explicitly show that the absence
of discharge for non-optimal orientations is not sim-
ply due to the withdrawal of excitation (Hirsch et al.,
1998; Anderson et al., 2000). Parameter B contributes
to about half the sum of weights. OFF-center cells make
connections with the V1 neuron using the same func-
tion but with a phase shift of 180◦.

Inhibitory interneurons were not explicitly modeled.
For simplicity, I supposed that the LGN cells trigger
an inhibitory neuron at the same location sufficiently
rapidly so the onset of the inhibitory post-synaptic
potentials (IPSP) coincided with the onset of excita-
tory post-synaptic potentials (EPSP). As I will discuss
later, this would be the case if the intradendritic prop-
agation of EPSP compensated for IPSP time lag. The
amount of inhibition slowly decreased with the dis-
tance separating the input LGN neuron to the corti-
cal neuron. Synapses were modeled using fast GABAA

synapses but preliminary studies show that the addition
of slow GABAB synapses does not modify the model’s
behavior.

3. Results

For a given amount of inhibition, excitatory synaptic
weights afferent to the unique cortical neuron were ad-
justed such that at 100% of contrast the neuron dis-
charged over a 65◦ orientation range centered on the
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preferred orientation (here 0◦). Even without inhibi-
tion, some orientation selectivity will be present: only
at the preferred orientation will the high amplitude EP-
SPs all arrive within a sufficiently short period to trigger
a spike. This period depends on the duration the mem-
brane time constant (τ = 9.5 ms) in our case and by
setting the spike threshold at a suitable value, the corti-
cal neuron can be made orientation selective. However,
the neuron’s selectivity is not robust against a drop in
stimulus contrast since the increased latency spread of
the incoming spikes prevents the neuron from reaching
its threshold (Fig. 2, black area).

In contrast, with feed-forward inhibition, the neu-
ron can cope with a wide range of different contrasts.
This can be seen from the other curves in Fig. 2, which
show that, as the total inhibition conductance increases,
the neuron becomes more and more robust to contrast
changes: for the condition of highest inhibition, the
neuron’s orientation selectivity can remains roughly
constant down to contrasts as low as 3%. Note that there
is a linear relationship between the sum of inhibitory
conductances and the sum of excitatory conductances
(linear fit: R = 0.9996) so the balance between exci-
tation and inhibition is similar in every condition. The
neuron fails to respond at 1.6% of residual contrast ir-
respective of the amount of inhibition: 1.6% residual
contrast would correspond to a standard deviation be-
tween spike latencies of 12.6 ms. Since the excitatory
AMPA time constant is 5 ms, the inhibition mechanism
for contrast invariance breaks down because EPSPs be-
come independent.

The selectivity of the neuron depends mainly on the
timing of the excitatory inputs relative to the rapidly in-
creasing inhibition. If strong excitatory inputs are trig-
gered fast enough, the neuron can reach its threshold
before significant inhibition kicks in (Fig. 3). On the
other hand, if the early activated excitatory synapses
are relatively weak, the relative contributions of excita-
tion and inhibition will be biased in favor of inhibition
and the neuron will not fire. This property was pre-
served using a 1-ms delay for the inhibitory synapses
but not using a 2-ms delay (data not shown). How-
ever, as pointed out in the Methods section, the effect
of excitation on the soma is delayed by intracellular
potential propagation. The issue of the relative timing
between excitation and inhibition will require detailed
simulations of the V1 neuron geometry.

As illustrated in Fig. 4, the neuron’s spike latency is
shortest for its preferred orientation. This means that
when a population of orientation-selective neurons is

Figure 2. Range of orientations to which the neuron discharged as
a function of contrast and for different degrees of shunting inhibition
(depicted by different gray levels). The figures represent the sum of
all the inhibitory conductances in µS. The strength of the excitatory
input was adjusted so that the neuron responded over a range of
65◦ at 100% contrast. Each colored surface represents the range
of discharge of the output neuron in the contrast-orientation 2-D
space for a given level of inhibition. The limit was defined by the
range of orientations to which the cell responded on at least 5 of
the 10 trials when noise was added. The standard deviations at the
borders are always less than 5◦ (not shown). With no inhibition (black
surface), the neuron no longer responded when contrast was reduced
to 50%. In contrast, with increasing shunting inhibition, the neuron
could remain selective even when stimuli were presented at very low
contrasts. Thus the presence of fast shunting inhibition allows the
neuron to keep responding even at low contrasts.

presented with a grating stimulus, the optimally acti-
vated neuron will tend to respond faster than the other
ones. Thus, the model V1 neuron is orientation selec-
tive in terms of spike latency. As shown in Fig. 4, the la-
tency of the first spike was shortest when the orientation
of the stimulus matched the neurons preferred orienta-
tion. Response latency increased when stimulus orien-
tation was moved away from the preferred value, and
the neuron did not discharge at all for orientations be-
yond a certain value. Neurophysiological studies have
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Figure 3. Total excitatory (light gray curves) and inhibitory (dark gray curves) post-synaptic conductances of the model of V1 neuron calculated
for 3 orientations, 0◦, 30◦ and 180◦ and 2 levels of contrast. Dotted lines if present indicate the latency of the neuron’s discharges. The inhibitory
conductance is constant for a given contrast and it is the dynamic of the excitation that determine the neuron’s behavior. The neuron spikes for
the 0◦ and 30◦ oriented grating but not for the 180◦ one. The latency of discharge is faster at 0◦ than at 30◦ which indicate that the latency
code can be used at the next stage of processing. The total inhibitory conductance was 4 µS and the transient increase in shutting inhibition is
compatible with electrophysiological recordings (see text for details).

Figure 4. Spike latency of the first spike of the V1 neuron model
as a function of orientation for 4 different degrees of contrast and
inhibition fixed to an intermediate value (sum of 1 µS). The Standard
deviation of spikes’ timing was computed using 10 different initial
conditions. The data were fitted with curves based on second-degree
polynomial functions. For all contrast conditions, the latency of dis-
charge of the neuron is a function of the orientation of the stimulus:
earliest latencies corresponded to the preferred orientation. This be-
havior is in agreement with electrophysiological recordings.

shown that real neurons can behave very similarly in
primate V1. Both Celebrini et al. (1993) and Gawne
et al. (1996) observed increases in latency between the
preferred orientation and one shifted by 30◦. As in our

model, for larger orientation shifts, they did not observe
any responses. Thus, for the next processing stage, the
information can again be encoded in the pattern of spike
latency across the neuronal population.

Additional simulations showed that inhibitory cur-
rents did not have to be proportional to the output neu-
ron potential. In these simulations, inhibitory synapses
injected simple exponentially decreasing current pulses
(τ = 5 ms with current proportional to synaptic
weight). In these conditions, the output neuron still re-
sponded to a wide range of contrast (not shown).

I also tested whether the model required the precise
pairing of individual excitatory and inhibitory spikes
by randomly suppressing inhibitory synapses. The out-
put neuron behavior remained qualitatively unchanged
when up to 70% of the inhibitory synapses were ran-
domly suppressed (Fig. 5). Note however that, because
of the random suppression of synapses, the neuron la-
tency orientation tuning curve became discontinuous
and asymmetric with respect to the neuron’s preferred
orientation. This effect was even more pronounced
when 90% of the inhibitory synapses were suppressed
(not shown).

In the previous models, each neuron discharged only
once. To address the issue of multiple spikes, after the
first spike, each input neuron was allowed to discharge
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Figure 5. Spike latency of the first spike of the V1 neuron model
(with 70% of inhibitory input suppressed) as a function of orien-
tation for 4 different degrees of contrast and inhibition fixed to an
intermediate value (sum of 1.2 µS). The output neuron was still able
to respond to a wide range of contrast under these conditions.

an additional 4 Poisson spikes with a mean rate of
100 spikes per second (2-ms refractory period). Fast
synaptic depression was implemented for excitatory
connections, with synaptic efficacy divided by 3 for
the second spike, 4 for the third, 5 for the fourth, and
6 for the fifth. As shown in Fig. 6, in the absence of
inhibition, the model could not respond to changes in
stimulus contrast. Note that absence of synaptic depres-
sion led to similar results (not shown). Thus fast feed-
forward inhibition leads to responses at different levels
of contrast even if input neurons discharge multiple
spikes.

Figure 6. Using the model allowing several spikes per neuron (see text for details), latency of the first spike of the V1 neuron as a function of
orientation and contrast. (A) Without inhibition, the output neuron discharged only at the highest stimulus contrasts. (B) With inhibition (sum
of 4 µS), the neuron discharged selectively to a wide range of contrast.

4. Discussion

I proposed a hierarchical scheme in which the out-
puts of LGN cells are pooled together to drive an ori-
ented simple cell in V1. The simulations reported here
should be taken as proof-of-concept that fast inhibi-
tion can shape excitatory input at the very beginning
of the integration of incoming spikes, thus providing
early orientation selectivity and contrast invariant re-
sponses for the highest level of inhibition tested. I
proposed that non-orientation selective fast inhibition
shapes early responses and accounts for early orien-
tation selectivity and contrast invariance properties
of V1 membranes (Celebrini et al., 1993; Volgushev
et al., 1995; Carandini et al., 1997). The results show
that, even in a reasonably detailed neurophysiological
model, order sensitivity based on fast fast inhibition
could indeed provide a very rapid mechanism for pro-
ducing orientation selectivity. I will now review con-
verging evidence arguing in favor of such a neuronal
dynamics.

4.1. Fast Feed-Forward Shunting Inhibition

In real neurons, the onset of inhibition following a tran-
sient stimulation corresponds to shunting inhibition.
Hyperpolarizing inhibition lasts as long as the IPSP it-
self, which can be tens of ms, depending on the time
constant of the cell. Shunting effects however, last only
as long as the post-synaptic ion channels remain open,
i.e. for a period of a few ms in the case of GABAA

receptors. In the model presented here, shunting
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effects—increases in inhibitory channel conductance
as shown in Fig. 3—are present throughout EPSP
integration.

Shunting effects result in an increased membrane
conductance and recent experiments showed that after
a flashed stimulus, visual inputs evoke strong shunt-
ing inhibition in visual cortical neurons (Berman et al.,
1991; Borg-Graham et al., 1998; Anderson et al., 2000;
Ferster and Miller, 2000). Both Borg-Graham et al.
(1998) and Anderson et al. (2000) showed that mem-
brane conductance for stimuli at the preferred orienta-
tion can rise to more than three times that of the resting
state and it has been argued that the magnitude of such
changes can easily be underestimated. This shunting
inhibition seems to occur very rapidly after the stim-
ulus onset (within a few ms) and can precede spike
discharge (Anderson et al., 2000).

Most of the studies published on the topic of inhi-
bition are directly or indirectly compatible with our
model (Gabbott et al., 1988; Celebrini et al., 1993;
Volgushev et al., 1995) and show that fast feed-forward
inhibition might occur even before the visually evoked
first spike of a neuron. Hirsch et al. (1998) made in-
tracellular recordings from neurons in V1 while stimu-
lating the retina with flashed black or white squares of
various sizes in different locations. They showed that
for white squares overlapping the ON and OFF regions
of a neuron’s receptive field, the very first milliseconds
following excitation showed net effects that could be in-
hibitory even if the neuron received substantial excita-
tory input. Such data show that inhibition can indeed be
fast enough to counteract the effects of excitatory post-
synaptic potentials. Hirsch et al. (1998) also showed
that for non-optimal stimuli—positive contrast on the
OFF receptive field location—the decrease in activity
cannot be explained by the suppression of thalamic in-
puts. Rather, as in our model, it seems to be due to a fast
inhibitory process that is relatively independent of the
stimulus. Volgushev et al. (1995) showed very similar
results with flashed bars of different orientations. Extra-
cellular recordings have also shown that a reduction of
spontaneous activity triggered by non-optimal stimuli
can have similar latencies to the spike onsets produced
by optimal orientations (Celebrini et al., 1993). These
studies demonstrate that inhibitory processes take place
at the very beginning of an event-related neuronal
response.

While all these studies strongly support the exis-
tence of the sort of fast feed-forward inhibition used in
our model, even apparently contradictory studies that

favor linear integration of spikes are compatible with
transient shunting inhibition. Experimental and mod-
eling works have argued that long-lasting shunting in-
hibition does not play a major role in orientation se-
lectivity (Douglas et al., 1988; Ferster and Jagadeesh,
1992; Hirsch et al., 1998). However, most of these
studies start from the basic assumption that stimuli
are represented by the firing rate of neurons. Thus,
even when modeling spiking neurons in V1 (Maex and
Orban, 1996) or when implementing feedforward in-
hibition (Troyer et al., 1998), the discharge patterns
of geniculate inputs involved in generating orienta-
tion selectivity are typically modeled using Poisson
spike distributions. It is commonly supposed that an
initial linear integration phase (Ferster and Jagadeesh,
1992; Hirsch et al., 1998) precede cortical amplifica-
tion (Suarez et al., 1995; Adorjan et al., 1999) and/or
normalization (Carandini and Ferster, 1997; Carandini
et al., 1997). However, these models and the model I
presented in this article act on a different time scale and
they are by no means incompatible. The kind of pro-
cessing I presented here would only occur in response
to very fast changing stimuli or following the release of
saccade-related inhibition in the geniculate at the end
of an eye movement, when the spike timing is more
reliable (Mechler et al., 1998).

4.2. Rapid Visual Processing

One of the other aspects of the current model that merits
discussion is its relevance to rapid visual processing.
The speed with which the visual system can process
complex scenes poses a major challenge for current
models of visual processing. Neural recording and be-
havioral data (Thorpe et al., 1996; Delorme et al., 2000;
Keysers et al., 2001) imply that the underlying pro-
cessing at each stage of the visual pathway must be ex-
tremely rapid, and at least some information needs to be
made available within the first 10 milliseconds follow-
ing the arrival of inputs from the preceding stage. These
very severe temporal constraints are problematic for
conventional rate codes because few cells will be able
to emit more than one spike in less than 10 ms. Such
data argue strongly in favor of a mainly feed-forward
processing strategy in which computations need to be
performed very rapidly. The model reported here is
compatible with these time constraints and can account
for very fast contrast invariant responses of V1 cells.
Celebrini et al. (1993) showed for instance that a 10 ms
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oriented bar presentation followed by a perpendicular
mask is sufficient to elicit selective responses in V1
neurons.

My model also demonstrates the biological plau-
sibility of using computationally efficient population
codes for hierarchical processing in the visual system.
If the amount of shunting inhibition in the modeled
neuron depends on the number of spikes that have been
received from the LGN, excitatory synaptic potential
will be shunted to a degree that depends on their order
of arrival rather than their time of discharge. This form
of Rank Order Coding has a number of features that
make it very interesting from a computational point of
view (Thorpe, 1990; Gautrais and Thorpe, 1998; Van
Rullen and Thorpe, 2001). In a previous model, I im-
plemented a hierarchical neural network of two layer of
integrate-and fire neurons, the first one implementing
orientation selectivity as in the model presented here
and the second one implementing face recognition. I
have shown that such a network could perform com-
plex visual processing tasks that include the localiza-
tion and recognition of new faces in photographs and
that it could cope with high level of noise (Delorme et
al., 1999; Delorme and Thorpe, 2001). According to
the Rank-order-coding hypothesis, the main aspect in
the current model that plays a role in the encoding of
orientation at different contrasts is the extent to which
real neurons behave as perfect integrators.

I have shown that a simple mechanism that uses
fast feed-forward shunting inhibition, coupled with
the fact that strongly activated neurons will tend to
fire early, provides a form of automatic gain control
that allows selectivity to be maintained over a very
wide range of stimulus contrasts. This new biologi-
cally plausible mechanism may be used to produce a
model for orientation selectivity than can operate very
quickly, even under conditions where each input only
has time to emit one spike. This mechanism has also
been shown to be computationally efficient to perform
image processing. Finally, it is theoretically compati-
ble with rate based model that operate over longer time
scales.

The model leads to predictions that could be tested
experimentally. Suppressing fast inhibition in a whole
cell clamped cortical neuron should result in broader
initial orientation selectivity and the loss of contrast
invariant selective responses. However this blockage
might have no visible effect at a longer time scale
(Nelson et al., 1994). In addition, I would also expect
fast shunting inhibition and membrane conductance

increases to occur not only for the preferred orienta-
tion (Borg-Graham et al., 1998; Anderson et al., 2000)
but also for other orientations.
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