Skip to main content
Log in

Approximations for the maximum of a vector-valued stochastic process with drift

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Giving a generalization of Berkes and Horváth (2003), we consider the Euclidean norm of vector-valued stochastic processes, which can be approximated with a vector-valued Wiener process having a linear drift. The suprema of the Euclidean norm of the processes are not far away from the norm of the processes at the right most point. We also obtain an approximation for the supremum of the weighted Euclidean norm with a Wiener process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Berkes and L. Horváth, Approximations for the maximum of stochastic processes with drift, Kybernetika, 2003 (to appear).

  2. Y. S. Chow and A. C. Hsiung, Limiting behavior of \(\max _{j \leqslant n} S_j /j^\alpha\) and the first passage time in a random walk with positive drift, Bulletin of Institute Mathem.Acad.Sinica 4 (1976), 35–44.

    MATH  MathSciNet  Google Scholar 

  3. Y. S. Chow, A. C. Hsiung and K. F. Yu, Limit theorems for a positively drifting process and its related first passage times, Bulletin of Institute Mathem.Acad.Sinica 8 (1980), 141–172.

    MATH  MathSciNet  Google Scholar 

  4. M. Csörgo and P. Révész, Strong approximations in probability and statistics, Academic Press, New York, 1981.

    Google Scholar 

  5. E. Eberlein, On strong invariance principles under dependence, Ann.Probab. 14 (1986), 260–270.

    MATH  MathSciNet  Google Scholar 

  6. U. Einmahl, Extensions of results of Komlós, Major, and Tusnády to the multivariate case, J.Multivariate Analysis 28 (1989), 20–68.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Komló, P. Major and G. Tusnády, An approximation of partial sums of independent r.v.'s and the sample d.f. I, Z.Wahrsch.Verw.Gebiete 32 (1975), 111–131.

    Article  Google Scholar 

  8. J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent r.v.'s and the sample d.f. II, Z.Wahrsch.Verw.Gebiete 34 (1976), 33–58.

    Article  MATH  Google Scholar 

  9. J. Kuelbs and W. Philipp, Almost sure invariance principles for partial sums of mixing B-valued random variables, Ann.Probab. 8 (1980), 1003–1036.

    MATH  MathSciNet  Google Scholar 

  10. D. Siegmund, On the asymptotic normality of one-sided stopping rules, Ann.Math.Statist. 39 (1968), 1493–1497.

    MATH  MathSciNet  Google Scholar 

  11. H. Teicher, A classical limit theorem without invariance or reflection, Ann.Probab. 1 (1973), 702–704.

    MATH  MathSciNet  Google Scholar 

  12. W. Vervaat, Functional central limit theorems for processes with positive drift and their inverses, Z.Wahrsch.Verw.Gebiete 23 (1972), 245–253.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aue, A., Horváth, L. Approximations for the maximum of a vector-valued stochastic process with drift. Periodica Mathematica Hungarica 47, 1–15 (2003). https://doi.org/10.1023/B:MAHU.0000010807.67937.19

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MAHU.0000010807.67937.19

Navigation