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Moments of an exponential functional of random

walks and permutations with given descent sets
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Abstract

The exponential functional of simple, symmetric random walks with
negative drift is an infinite polynomial Y = 1+ ξ1 + ξ1ξ2 + ξ1ξ2ξ3 + · · · of
independent and identically distributed non-negative random variables. It
has moments that are rational functions of the variables µk = E(ξk) < 1
with universal coefficients. It turns out that such a coefficient is equal to
the number of permutations with descent set defined by the multiindex of
the coefficient. A recursion enumerates all numbers of permutations with
given descent sets in the form of a Pascal-type triangle.

1 Introduction

The present work was induced by the following problem from probability theory,
cf. [4]. Let (Xj)

∞
j=1 be a sequence of independent and identically distributed

random variables with P(Xj = ±1) = 1
2 . Further, let S0 = 0, Sk =

∑k

j=1 Xj

(k ≥ 1) be a simple, symmetric random walk. Introduce the following exponen-
tial functional Y of the random walk with negative drift:

Y =

∞
∑

k=0

exp(Sk − kν) = 1 + ξ1 + ξ1ξ2 + · · · , ξj = exp(Xj − ν), (1)

where ν > 0. Y is an approximation of a widely investigated exponential func-
tional of Brownian motion, important for example in studying Asian options of
financial mathematics. To generalize it somewhat, let (ξj)

∞
j=1 be independent

and identically distributed random variables, ξj ≥ 0. Consider first the finite
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polynomials

Yn = 1 + ξ1 + ξ1ξ2 + · · ·+ ξ1 · · · ξn

= 1 + ξ1(1 + ξ2 + ξ2ξ3 + · · ·+ ξ2 · · · ξn) (n ≥ 1).

This equation implies the following equality in distribution (denoted by
d
=):

Yn
d
= 1 + ξYn−1, where ξ

d
= ξ1 and ξ is independent of Yn−1. Since Yn ր Y =

1+ ξ1+ ξ1ξ2+ ξ1ξ2ξ3+ · · · as n → ∞, in the limit we get a stochastic difference
equation for the infinite polynomial Y :

Y
d
= 1 + ξY,

where ξ is independent of Y .
Then using the binomial theorem, the following recursion can be obtained

for the pth moment ep = E(Y p) of Y for any positive integer p:

ep =
1

1− µp

p−1
∑

k=0

(

p

k

)

µk ek, (2)

supposing µp < 1, where µk = E(ξk), ek = E(Y k), k ≥ 0. We mention that
E(Y p) < ∞ if and only if µp < 1, and then µk < 1 for any 1 ≤ k < p as well, cf.
[4, Theorem 2]. Observe that (2) defines a recursive sequence ep = ep(µ1, . . . , µp)
for p ≥ 1 with e0 = 1, irrespective of any probability theory background. In
this recursion the µk’s may be considered as variables that may take any value
except 1 for k ≥ 1. Thus from now on we always suppose that µk 6= 1 for k ≥ 1
and µ0 = 1.

It follows from (2) by induction that ep is a rational function of the variables
µ1, . . . , µp for any integer p ≥ 1:

ep =
1

(1− µ1) · · · (1− µp)

∑

(j1,...,jp−1)∈{0,1}p−1

a
(p)
j1...jp−1

µj1
1 · · ·µ

jp−1

p−1 , (3)

where the coefficients of the numerator are universal constants, being indepen-
dent of the parameters in the recursion.

These coefficients a
(p)
j1...jp−1

make a symmetrical, Pascal’s triangle-like table

if each row is listed in the increasing order of the binary numbers jp−12
p−2 +

· · · + j12
0, defined by the multiindices (j1, . . . , jp−1), see the rows p = 1, . . . , 5

in Table 1.
Two natural questions may arise at this point, independently of any prob-

ability theory background mentioned above. First, suppose that one defines a

recursive sequence (ep)
∞
p=1 by (2) with coefficients a

(p)
j1...jp−1

given by (3). Can

one attach any direct mathematical meaning to these coefficients a
(p)
j1...jp−1

then?

The answer is yes, and rather surprisingly (as was conjectured in [4]), the coef-

ficient a
(p)
j1...jp−1

is equal to the number of permutations π ∈ Sp having descent

π(i) > π(i + 1) exactly where ji = 1, 1 ≤ i ≤ p− 1, cf. Theorem 1 below.

Second, can one give a direct way to evaluate the coefficients a
(p)
j1...jp−1

? The
affirmative answer to this question is partly included in the previous answer,
since several formulae are known for the number of permutations with given
descent sets. However, an apparently new recursion was conjectured in [4], which
is analogous to the recursion of binomial coefficients in the ordinary Pascal’s
triangle. The proof of this is the content of Lemma 2 below.
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Table 1: The Pascal’s triangle-like table of the coefficients

1
0
1

1
1

00
1

01
2

10
2

11
1

000
1

001
3

010
5

011
3

100
3

101
5

110
3

111
1

0000
1

0001
4

0010
9

0011
6

0100
9

0101
16

0110
11

0111
4

1000
4

1001
11

1010
16

1011
9

1100
6

1101
9

1110
4

1111
1

2 The results

In the next lemma we establish a direct recursion for the coefficients a
(p)
j1...jp−1

.

Lemma 1. Fix a multiindex (j1, . . . , jp−1) ∈ {0, 1}p−1. Let S be the set of
indices k where jk = 1:

S = {s1, . . . , sm} = {k : jk = 1, 1 ≤ k ≤ p− 1}, m =

p−1
∑

k=1

jk. (4)

Then the coefficient a
(p)
j1...jp−1

defined by (3) can be obtained by the recursion

a
(p)
j1...jp−1

=

p−1
∑

k=0

(

p

k

)

jk(−1)jk+1+···+jp−1a
(k)
j1...jk−1

=
m
∑

l=0

(

p

sl

)

(−1)m−la
(sl)
j1...jsl−1

, (5)

where, by definition, a(0) = 1, j0 = 1, s0 = 0 and −1 powered to an empty sum
is 1.

Proof. The second equality in (5) is a direct consequence of the definitions above.
To show the first equality, substitute (3) into (2):

ep =
1

1− µp

p−1
∑

k=0

(

p

k

)

µk

(1− µ1) · · · (1− µk)

∑

(j1,...,jk−1)∈{0,1}k−1

a
(k)
j1...jk−1

µj1
1 · · ·µ

jk−1

k−1 .

Here, multiplying by the common denominator and then collecting the coeffi-
cients of µj1

1 · · ·µ
jp−1

p−1 for each (j1, . . . , jp−1) we obtain

ep(1− µ1) · · · (1 − µp)

=

p−1
∑

k=0

∑

(j1,...,jk−1)∈{0,1}k−1

(

p

k

)

a
(k)
j1...jk−1

µj1
1 · · ·µ

jk−1

k−1 µk(1 − µk+1) · · · (1 − µp−1)

=
∑

(j1,...,jp−1)∈{0,1}p−1

µj1
1 · · ·µ

jp−1

p−1

p−1
∑

k=0

(

p

k

)

a
(k)
j1...jk−1

jk(−1)jk+1 · · · (−1)jp−1 .

This and (3) imply the first equality in (5).
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Now we turn to the proof of the equality of the coefficient a
(p)
j1...jp−1

given by

(3) and the number of permutations b(p)(S) with descent set S given by (4). The
descent set of a permutation π ∈ Sp is defined asD(π) = {i : π(i) > π(i+1), 1 ≤
i ≤ p− 1}. It is known, cf. [3, p. 69], that the number of permutations π ∈ Sp

with a given descent set S = (s1, . . . , sm), 1 ≤ s1 < · · · < sm ≤ p − 1, can be
obtained by the following inclusion-exclusion formula:

b(p)(S) = b(p)(s1, . . . , sm)

=
∑

1≤i1<···<ij≤m

(−1)m−j

(

p

si1 , si2 − si1 , . . . , sij − sij−1 , p− sij

)

.(6)

Theorem 1. The coefficient a
(p)
j1...jp−1

given by (2) and (3) is equal to the number

of permutations b(p)(S) with descent set S given by (4).

Proof. It is enough to show that the numbers b(p)(S) satisfy the same recursion

(5) as the numbers a
(p)
j1...jp−1

do, that is,

b(p)(s1, . . . , sm) =
m
∑

l=0

(

p

sl

)

(−1)m−lb(sl)(s1, . . . , sl−1), (7)

where, by definition, s0 = 0 and b(s0) = b(0) = 1.
To show this, let us substitute the inclusion-exclusion formula (6) into the

right hand side of (7):

m
∑

l=0

(

p

sl

)

(−1)m−lb(sl)(s1, . . . , sl−1)

= (−1)m +

m
∑

l=1

(

p

sl

)

(−1)m−l
∑

1≤i1<···<ij≤l−1

(−1)l−1−j

(

sl
si1 , si2 − si1 , . . . , sl − sij

)

= (−1)m +
m
∑

l=1

∑

1≤i1<···<ij<l

(−1)m−j−1

(

p

si1 , si2 − si1 , . . . , sl − sij , p− sl

)

= (−1)m +
∑

1≤i1<···<ij<l≤m

(−1)m−(j+1)

(

p

si1 , si2 − si1 , . . . , sl − sij , p− sl

)

=
∑

1≤i1<···<ir≤m

(−1)m−r

(

p

si1 , si2 − si1 , . . . , sir − sir−1 , p− sir

)

= b(p)(s1, . . . , sm).

This proves (7), and so completes the proof.

Lemma 1 described a recursion that uses all previous rows of Table 1 to
compose the elements of a new row. In the next lemma we show a recursion that
uses only the previous row and which is an analog of the recursion formula in the
ordinary Pascal’s triangle:

(

p
k

)

=
(

p−1
k−1

)

+
(

p−1
k

)

. Interestingly, an application of
this identity is a key step in the following algebraic proof as well. We also give
a simple combinatorial proof which basically translates the well-known method
by which permutations in Sp can be obtained from permutations in Sp−1 by
adjoining the number p.
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Lemma 2. The following recursion holds for any p ≥ 2 and multiindex (j1, . . . , jp−1) ∈
{0, 1}p−1:

a
(p)
j1...jp−1

=

p−1
∑

i=1

δia
(p−1)

j
(i)
1 ...j

(i)
p−2

=
∑

(i1,...,ip−2)∈L(j1,...,jp−1)

a
(p−1)
i1...ip−2

, (8)

where a(1) = 1, δi = |ji − ji−1| for i ≥ 2, δ1 = 1, j
(i)
k = jk for 1 ≤ k ≤ i − 1,

j
(i)
k = jk+1 for i ≤ k ≤ p − 2, and L(j1, . . . , jp−1) is the set of all distinct
binary sequences obtained from (j1, . . . , jp−1) by deleting exactly one digit. For

example, a
(5)
0110 = 11 = a

(4)
110 + a

(4)
010 + a

(4)
011.

Proof. First we prove the second equality in (8). For this it is enough to show
that if the same binary sequence is obtained from (j1, . . . , jp−1) when eliminating
either the kth or the lth digit (k < l), then all digits between the kth and
lth (including these two) are uniformly either 0’s or 1’s (a run of 0’s or 1’s).
Therefore, the two recursions given in (8) are the same.

Consider a multiindex (j1, . . . , jk−1, jk, . . . , jl, jl+1, . . . , jp−1) ∈ {0, 1}p−1.
Suppose that we get the same binary sequence by deleting jk and jl, respectively:
(j1, . . . , jk−1, jk+1, . . . , jl, jl+1, . . . , jp−1) = (j1, . . . , jk−1, jk, . . . , jl−1, jl+1, . . . , jp−1).
Then jk = jk+1 = · · · = jl−1 = jl, so the second equality in (5) really holds.

Now it remains to show the first equality in (8), that is, the recursion itself.
A combinatorial proof of the recursion. Given a binary sequence (j1, . . . , jp−1),

let us remove a single 1 from a run of 1’s or a single 0 from a run of 0’s. Count
the number of permutations in Sp−1 determined by the resulting multiindex

(i1, . . . , ip−2). This number is a
(p−1)
i1...ip−2

by Theorem 1. We want to show that
there is a uniquely determined adjoining of the number p to any such permuta-
tion from Sp−1 to obtain a permutation from Sp corresponding to the original
multindex (j1, . . . , jp−1).

If a 0 was deleted from a run of 0’s, the number p should be inserted right
after the number at the position of the first 1 following the affected run of 0’s.
(If the given run happens to be the last, p is inserted as the last number.) When
a 1 was deleted from a run of 1’s, the number p should be inserted right after
the number at the position of the last 0 preceding the affected run of 1’s. (If
the given run happens to be the first, p is inserted as the first number.) Since
these insertions are the only ones that reconstruct the original descent set, the
recursion is proved.

An algebraic proof of the recursion. We are going to proceed by induction
over p. Thus suppose that the recursion holds for all multiindices of lengths
smaller than p− 1. First we use the recursion of Lemma 1 for the terms in the
right side of (8), then we change the order of summation to obtain

p−1
∑

i=1

δia
(p−1)

j
(i)
1 ...j

(i)
p−2

=

p−1
∑

i=1

δi

p−2
∑

k=0

(

p− 1

k

)

j
(i)
k (−1)j

(i)
k+1+···+j

(i)
p−2a

(k)

j
(i)
1 ...j

(i)
k−1

=

p−2
∑

k=0

(

p− 1

k

)

{

jk+1(−1)jk+2+···+jp−1

k
∑

i=1

δia
(k)

j
(i)
1 ...j

(i)
k−1

+jk(−1)jk+1+···+jp−1a
(k)
j1...jk−1

p−1
∑

i=k+1

δi(−1)ji

}

.
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Here in the last expression, one may use the induction hypothesis for the
first sum. In the second sum observe that δi(−1)ji is 1 if ji−1 = 1 and ji = 0,
it is −1 if ji−1 = 0 and ji = 1, and it equals 0 otherwise. Hence we get the
identity jk

∑p−1
i=k+1 δi(−1)ji = jk(1 − jp−1). Thus one obtains that

p−1
∑

i=1

δia
(p−1)

j
(i)
1 ...j

(i)
p−2

=

p−2
∑

k=0

{(

p− 1

k

)

jk+1(−1)jk+2+···+jp−1a
(k+1)
j1...jk

+

(

p− 1

k

)

(1− jp−1)jk(−1)jk+1+···+jp−1a
(k)
j1...jk−1

}

=

p−2
∑

k=1

{(

p− 1

k − 1

)

+

(

p− 1

k

)

(1 − jp−1)

}

jk(−1)jk+1+···+jp−1a
(k)
j1...jk−1

+(1− jp−1)(−1)j1+···+jp−1 +

(

p− 1

p− 2

)

jp−1a
(p−1)
j1...jp−2

.

To rewrite the terms above we use recursion (5) in the following case:

a
(p−1)
j1...jp−2

=

p−2
∑

k=0

(

p− 1

k

)

jk(−1)jk+1+···+jp−2a
(k)
j1...jk−1

,

plus the identity −jp−1(−1)jp−1 = jp−1, and the recursion for binomial coeffi-
cients:

p−1
∑

i=1

δia
(p−1)

j
(i)
1 ...j

(i)
p−2

=

p−2
∑

k=1

{(

p− 1

k − 1

)

+

(

p− 1

k

)}

jk(−1)jk+1+···+jp−1a
(k)
j1...jk−1

−jp−1(−1)jp−1

(

a
(p−1)
j1...jp−2

− (−1)j1+···+jp−2

)

+(1− jp−1)(−1)j1+···+jp−1 +

(

p− 1

p− 2

)

jp−1a
(p−1)
j1...jp−2

=

p−1
∑

k=0

(

p

k

)

jk(−1)jk+1+···+jp−1a
(k)
j1...jk−1

= a
(p)
j1...jp−1

.

This completes the proof.

The results above imply that Table 1 has properties analogous to the ones

of Pascal’s triangle: each entry a
(p)
j1...jp−1

is a positive integer, the first and the

last entries, a
(p)
0...0 and a

(p)
1...1 are 1, the table has symmetries a

(p)
j1...jp−1

= a
(p)
jp−1...j1

and a
(p)
j1...jp−1

= a
(p)
1−j1...1−jp−1

, and the sum of the 2p−1 entries in the pth row is
p!.

3 Some remarks

We mention that beside the indirect recursion (2), (3), direct recursions (5) and
(8), and sieve formula (6), there are other methods as well in the literature

that can be used for evaluating the coefficients a
(p)
j1...jp−1

. Here we mention two
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of them. Zabrocki [5] uses the following rather fast and practical ‘splitting’
recursion:

a
(p)
j1...jp−1

=
∑

{k:jk−1=0,jk=1,1≤k≤p}

(

p− 1

k − 1

)

a
(k−1)
j1...jk−2

a
(p−k)
jk+1...jp−1

,

where, by definition, j0 = 0 and jp = 1. Its verification is simple: this recursion
divides the set of permutations in Sp with descent set defined by the 1’s in
(j1, . . . , jp−1) into disjoint subsets, where the largest number p is at the different
local maxima k where jk−1 = 0 and jk = 1. Then there are

(

p−1
k−1

)

ways to pick

the numbers to precede the largest, with a
(k−1)
j1...jk−2

permutations, and a
(p−k)
jk+1...jp−1

permutations for the numbers succeeding the largest, fitting the given descent
set.

Another method (of mostly theoretical interest) can be based on MacMa-
hon’s determinant, cf. [3, p. 69]:

a
(p)
j1...jp−1

= b(p)(s1, . . . , sm) = p! det [1/(sj+1 − si)!] , (i, j) ∈ [0,m]× [0,m].,

where the descent set S = (s1, . . . , sm) is defined by (4), s0 = 0, and sm+1 = p.
This gives the recursion

b(p)(s1, . . . , sm) =
1

s1!
b(p)(s2 − s1, . . . , sm − s1)−

1

s2!
b(p)(s3 − s2, . . . , sm − s2).

Obviously, the coefficients a
(p)
j1...jp−1

are closely related to other important

classifications of permutations as well. The Eulerian number A(p, k) which
counts the permutations in Sp having exactly k − 1 descents (that is, exactly k
runs), where p ≥ 1, 1 ≤ k ≤ p, can be written as

A(p, k) =
∑

{(j1,...,jp−1)∈{0,1}p−1:
∑p−1

i=1 ji=k−1}

a
(p)
j1...jp−1

.

Also, let I(p, k) be the number of permutations in Sp with k inversions
(p ≥ 1, 0 ≤ k ≤

(

p

2

)

). By MacMahon’s theorem, cf. [1, Section 5.1.1], I(p, k) is
equal to the number of permutations in Sp with major index k, thus

I(p, k) =
∑

{(j1,...,jp−1)∈{0,1}p−1:
∑p−1

i=1 iji=k}

a
(p)
j1...jp−1

.

Finally, let us express the generating function of the coefficients a
(p)
j1...jp−1

by

the help of a suitable recursive sequence (ep)
∞
p=1 given by (2). First, one can

assign a positive integer n to any p ≥ 1 and multiindex (j1, . . . , jp−1) by the

equation n = 2p−1 +
∑p−1

k=1 jk2
k−1 , in a one-to-one way. Then let us introduce

the notation αn = a
(p)
j1...jp−1

, n ≥ 1. This way the coefficients are arranged in a
single sequence.

Second, take the variables (moments) µk = x2k−1

for k ≥ 1, x 6= 1, and let
µ0 = 1. Then define the sequence (ep(x))

∞
p=1 by (2):

ep(x) =
1

1− x2p−1

{

1 +

p−1
∑

k=1

(

p

k

)

x2k−1

ek(x)

}

.

7



Also, using (3) and the definition of n one obtains that

x2p−1

ep(x) =
1

(1− x)(1 − x2)(1− x4) · · · (1− x2p−1)

2p−1
∑

n=2p−1

αnx
n.

Hence the generating function of the sequence (αn)
∞
n=1 can be expressed as

∞
∑

n=1

αnx
n =

∞
∑

p=1

x2p−1

(1 − x)(1 − x2)(1 − x4) · · · (1 − x2p−1

)ep(x).
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