Skip to main content
Log in

Photonic MPLS Internetworking using an Optical Code Label Stack

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Generalized multiprotocol label switching (GMPLS), which enables dynamic optical path provisioning, is promising. However, the critical issues of GMPLS in the optical domain are the data granularity of a wavelength and the very exiguous label space. The capacity of a single wavelength path may be sometimes too large to accommodate the traffic between edge node pairs, and the label space may be too small to assign the labels to each packet or flow. To solve the granularity and label space issues, optical code MPLS (OC-MPLS) is proposed. In this paper, OC-MPLS internetworking is introduced and experimentally demonstrated. One of the key techniques is photonic label processing of a label stack attached to a single packet or flow. The proposed method performs routing of packets or flows for interconnected OC-MPLS networks depending on the attached label stack in an all optical manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Keshav, R. Sharma, Issues and trends in router design, IEEE Communications Magazine, vol. 36, no. 5, (May 1998), pp. 144–151.

    Google Scholar 

  2. D. J. Blumenthal, Routing packets with light. Scientific American, (Jan. 2001), pp. 97–99.

  3. N. Ghani, S. Dixit, T. S. Wang, On IP-over-WDM integration, IEEE Communications Magazine, vol. 38, no. 3, (March 2000), pp. 72–84.

    Google Scholar 

  4. Generalized multi-protocol label switching architecture, Internet-Draft (work in progress), (May 2003).

  5. S. Okamoto, Future of IP backbone networks comprising HIKARI (photonic MPLS) routers, Proc. 28th European Conference on Optical Communication (ECOC2002), Copenhagen, Denmark, 10.2.1 (Sept. 2002).

  6. M. Murata, K. Kitayama, A perspective on photonic multi-protocol label switching, IEEE Network Magazine, vol. 15, no. 4, (July/Aug. 2001), pp. 56–63.

    Google Scholar 

  7. N. Wada, K. Kitayama, A lOGb/s optical code division multiplexing using 8-chip optical bipolar code and coherent detection, IEEE/OSA J. Lightwave Technology, vol. 17, no. 10, (Oct. 1999), pp. 1758–1765.

    Google Scholar 

  8. K. Kitayama, N. Wada, H. Sotobayashi, Architectural considerations of photonic IP router based upon optical code correlation (Invited), IEEE/OSA J. Lightwave Technology, vol. 18, no. 12, (Dec. 2000), pp. 1834–1844.

    Google Scholar 

  9. X. Wang, K. T. Chan, A sequentially self-seeded Fabry-Perot laser for two-dimensional encoding/decoding of optical pulses, IEEE Quantum Electron., vol. 39, no. 1, (Jan. 2003), pp. 83–90.

    Google Scholar 

  10. K. Kitayama, Code devision multiplexing lightwave networks based upon optical code conversion, IEEE J. Select. Areas in Communications, vol. 16, no. 9, (Sept. 1998), pp. 1309–1319.

    Google Scholar 

  11. K. Kitayama, M. Murata, Photonic access node using optical code-based label processing and its applications to optical data networkings, IEEE/OSA J. Lightwave Technology, vol. 19, no. 10, (Oct. 2001), pp. 1401–1415.

    Google Scholar 

  12. M. J. Francisco, L. Pezoulas, C. Huang, I. Lambadaris, End-to-end signaling and routing for optical networks, Proc. International Conf. on Communications (ICC 2002), vol. 5, New York, NY, U.S.A., (April/March 2002), pp. 2870–2875.

    Google Scholar 

  13. M. Francisco, et al., Interdomain routing in optical networks, Proc. SPIE Opticomm 2001, no. 4599-12, Denver, CO, U.S.A., (Aug. 2001).

  14. B. Rajagopalan, D. Pendarakis, D. Saha, R. S. Ramamoorthy, K. Bala, IP over optical networks: Architectural aspects, IEEE Communications Magazine, vol. 38, no. 9, (Sept. 2000), pp. 94–102.

    Google Scholar 

  15. K. Onohara, N. Wada, W. Chujo, K. Kitayama, Photonic inter-MPLS VPN using optical code based label stack, Proc. Conference on Optical Internet and Photonics in Switching 2002 (COIN+PS 2002), Cheju Island, Korea, COIN.WEA6, (July 2002), pp. 209–210.

  16. N. Wada, H. Harai, W. Chujo, F. Kubota, Multi-hop, 40Gbit/s variable length photonic packet routing based on multi-wavelength label switching, waveband routing, and label swapping, Proc. IEEE/OSA Optical Fiber Conference (OFC 2002), Anaheim, U.S.A., WG3, (Mar. 2002), pp. 216–217.

  17. K. Onohara, N. Wada, W. Chujo, K. Kitayama, Optical code-based IP longest prefix match using variable-length optical gate, Tech. Rep. IEICE Conf. on Photonic Network based Internet, Tokyo, Japan, vol. PN12001-9, (July 2001).

  18. N. Wada, K. Kitayama, Photonic IP routing using optical codes: lOGbit/s optical packet transfer experiment, IEEE/OSA Optical Fiber Conference (OFC 2000), Baltimore, U.S.A., WM51, (March 2000).

  19. K. Kitayama, H. Sotobayashi, N. Wada, Optical code division multiplexing (OCDM) and its applications to photonic networks, IEICE Irans. Fundamentals, vol. E82-A, no. 12, (Dec. 1999), pp. 2616–2626.

    Google Scholar 

  20. H. Sotobayashi, W. Chujo, K. Kitayama, 1.6bit/s/Hz, 6.4Tbit/ s OCDM/WDM (4 OCDM x 40 WDM x 40Gbit/s) transmission, Proc. 27th European Conference on Optical Communications (ECOC 2001), Amsterdam, The Netherlands, PD. M. 1.3 (Sept. 2001).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onohara, K., Kitayama, Ki. & Wada, N. Photonic MPLS Internetworking using an Optical Code Label Stack. Photonic Network Communications 8, 341–350 (2004). https://doi.org/10.1023/B:PNET.0000041243.06672.5f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PNET.0000041243.06672.5f

Navigation