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We report on the experimental simulation of spin squeezing using a liquid-state
nuclear magnetic resonance (NMR) quantum information processor. This was
done by identifying the energy levels within the symmetric subspace of a system
of n spin-1/2 nuclei with the energy levels of the simulated spin-(n/2) system. The
results obtained for our simulations of spin-1 and spin-3/2 systems are consistent
with earlier theoretical studies of spin squeezing, and illustrate interesting rela-
tions between the degree of squeezing and the strength of the correlations among
the underlying spin-1/2 particles.
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1. INTRODUCTION

The minimum uncertainty associated with complementary observables is
given by the uncertainty relations. For example, the position and momen-
tum fluctuations in a coherent state of the quantum harmonic oscillator
are both equal to the quantum limit –h/2. States for which the fluctua-
tions in one of these observables is less than the standard quantum limit
of –h/2, while the fluctuations in the complementary observable increase so
as to satisfy the uncertainty relation, are called “squeezed states”.(1,2) Thus
a squeezed state can be visualized as an ellipse of constant uncertainty in
phase space.

Squeezed spin states have been defined using analogous criteria,(3–9)

and several experimental demonstrations of spin squeezing have been pub-
lished. They include interaction of collection of atoms with squeezed
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radiation,(10) the displacement of two optical lattices with respect to each
other,(11) and collisional interactions between the atoms in a Bose–Einstein
condensate.(3,5,12) Spin squeezing by quantum non-demolition measure-
ments has also been proposed.(13)

A spin-1/2 is always in a coherent state, but it is possible to squeeze
the “effective” higher spin with j = n/2 that lives within the symmetric
manifold of states in a system of n> 1 spins each with j = 1/2.(14,15) In
this paper we describe experimental realizations of squeezed states of these
simulated higher order spins on a liquid-state nuclear magnetic resonance
(NMR) quantum information processor, using the method suggested by
Kitagawa.(4) First, we review the properties of coherent spin states and
Kitagawa’s method for creating squeezed spin states, along with the repre-
sentation of a spin-j system for j=1 and 3/2 within the totally symmetric
subspace of the Hilbert space of 2j spin-1/2 particles. We then describe
the NMR implementation of the method and the measures used to access
its overall precision, after which the experimental results of squeezing are
presented and the level of control attained is discussed. We end by veri-
fying the relation between the degree of squeezing of the simulated spin-j
system and the degree of pure state entanglement among the underlying
spin-1/2 particles, as quantified by various well-established entanglement
measures.(5,11,16)

2. SIMULATION OF SPIN SQUEEZING
IN A MULTI-SPIN-1/2 SYSTEM

Throughout the remainder of this paper we will work with units
such that –h = 1. Coherent spin states (CSS) may then be defined by
the following properties: (i) The uncertainty relation for the total angu-
lar momentum operator J becomes saturated, i.e., �Jx �Jy = (1/2)|〈Jz〉|,
where (x, y, z) label the coordinate axes. (ii) The absolute expectation
value of the spin in the direction of polarization, e.g. |〈Jz〉|, is maximum
and equal to j . (iii) The spin uncertainties are equally distributed in any
two orthogonal directions in the plane normal to the direction of polari-
zation, e.g., �Jx =�Jy . Kitagawa and Ueda(4) proposed that a spin state
is squeezed if the minimum spin uncertainty in the (x, y)-plane is less than
the standard quantum limit of

√
j/2. Since a squeezed spin state (SSS) is

not related to a CSS by a simple rotation, the polarization of an SSS is
less than maximum, e.g., |〈Jz〉|<j .

To create a SSS, a “non-linear” operation must be applied, i.e. one
that involves products or powers of the spin operators Jx , Jy and Jz in its
Hamiltonian H . Kitagawa and Ueda proposed two methods for squeezing
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Fig. 1. (i) A coherent state spin-j vector with expectation values [〈Jx〉, 〈Jy〉, 〈Jz〉] = [1,0,0]
may be visualized as a coherent superposition of angular momentum vectors on a cone
about the x-axis, all with a projection of j/2 along that axis. (ii) After squeezing via the
one-axis mechanism (see text), the cone representing the state of a spin-1 particle is elliptical,
with its squeezed (minor) axis making an angle of ±π/4 with the y, z–axes. (iii) In the max-
imally squeezed state of a spin-1 particle the cone has been folded into a nearly degenerate
ruled surface.

a CSS: (i) H = J 2
z (the one-axis twisting mechanism), or (ii) H = JxJy +

JyJx (the two-axis twisting mechanism). The second Hamiltonian can be
applied directly to any CSS to squeeze it, whereas the first requires that
the CSS be rotated to the (x, y)-plane before the propagator exp(i kJ 2

z ) is
used to squeeze it, where k is real number which we will call the squeez-
ing parameter. Figure 1 illustrates the one-axis process for j =1 polarized
along x, in which case maximum squeezing in the (y, z)-plane is obtained
when k= π/2. This one-axis method was used in the NMR experiments
described below.

A system of two spin-1/2 particles has four basis states. In the
coupled representation (in Table 1), the three symmetric states span a
subspace that transforms under identical rotations of both spins like a sin-
gle spin-1. Similarly, a system of three spin-1/2 particles has eight basis
states, which span a symmetric subspace that transforms like a single spin-
3/2, as well as two spin-1/2 subspaces with lower symmetry. The four

Table 1. The Representation of a Spin-1 by Two Spin-1/2 Particles

Uncoupled representation (|m1m2〉) Coupled representation (|j,m〉)

|00〉= |↑↑〉 |1,1〉= |↑↑〉
|01〉= |↑↓〉 |1,0〉= 1√

2
[|↑↓〉+ |↓↑〉]

|10〉= |↓↑〉 |1,−1〉= |↓↓〉
|11〉= |↓↓〉 |0,0〉= 1√

2
[|↑↓〉− |↓↑〉]
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Table 2. Coupled Representation (|j,m〉) of the Basis States Spanned by Three
Spin-1/2 Particles

Spin-3/2 subspace basis Spin-1/2 subspace basis

| 3
2 ,

3
2 〉= |↑↑↑〉 | 1

2 ,
1
2 〉= 1√

6
[2|↑↑↓〉− |↑↓↑〉− |↓↑↑〉]

| 3
2 ,

1
2 〉= 1√

3
[|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉] | 1

2 ,− 1
2 〉= 1√

6
[|↑↓↓〉+ |↓↑↓〉−2|↓↓↑〉]

| 3
2 ,− 1

2 〉= 1√
3

[|↓↓↑〉+ |↑↓↓〉+ |↓↑↓〉] | 1
2 ,

1
2 〉= 1√

2
[|↑↓↑〉− |↓↑↑〉]

| 3
2 ,− 3

2 〉= |↓↓↓〉 | 1
2 ,− 1

2 〉= 1√
2

[|↑↓↓〉− |↓↑↓〉]

states listed on the left-hand side column of Table 2 are the coupled rep-
resentation of the spin-3/2 subspace.

From the uncoupled and coupled representations, we see that there is
a linear mapping from the spin-j subspaces into the combined 2j spin-1/2
systems. These mappings induce the mappings between the spin-j opera-
tors and products of spin-1/2 operators (denoted here by I spin

axis ), which for
j =1 is simply

Jx = I 1
x + I 2

x , Jy = I 1
y + I 2

y , Jz= I 1
z + I 2

z . (1)

For j =3/2, on the other hand, we obtain

Jx = I 1
x I

2
x I

3
x

(
2+ 2

3 (I
1
x I

2
x + I 1

x I
3
x + I 2

x I
3
x )− 8

3 (I
1 ·I 2 + I 1 ·I 3 + I 2 ·I 3)

)
,

Jy = I 1
y I

2
y I

3
y

(
2+ 2

3 (I
1
y I

2
y + I 1

y I
3
y + I 2

y I
3
y )− 8

3 (I
1 ·I 2 + I 1 ·I 3 + I 2 ·I 3)

)
, (2)

Jz = I 1
z I

2
z I

3
z

(
2+ 2

3 (I
1
z I

2
z + I 1

z I
3
z + I 2

z I
3
z )− 8

3 (I
1 ·I 2 + I 1 ·I 3 + I 2 ·I 3)

)
.

Given the apparent complexity of implementing these operations, it was
decided instead to implement the far simpler analoges of Eq. (1), namely:

J̃x = I 1
x + I 2

x + I 3
x , J̃y = I 1

y + I 2
y + I 3

y , J̃z = I 1
z + I 2

z + I 3
z . (3)

It is easily shown that Jx , Jy , and Jz are contained within the algebra
generated by J̃x , J̃y , and J̃z, and that the latter satisfy the usual angular
momentum commutation relations. In fact, since they have two extra pairs
of identical eigenvalues ±1/2, they are the sum of the angular momen-
tum operators for a spin-3/2 mixed with those for a pair of spin-1/2. As
a result, it was not possible to squeeze the corresponding coherent states
to the amount that would have been possible if a pure spin-3/2 represen-
tation had been used.
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It is apparent that for j=1, exp(−i kJ 2
z ) is an evolution exp(−i k 4I 1

z I
2
z )

under the bilinear Hamiltonian associated with the scalar coupling interac-
tion between spins in NMR, up to an overall phase factor. Thus the trace-
less part of the pseudopure state as a function of the squeezing parameter,
and its spin-1 pure state equivalent, are

e−ik 4I 1
z I

2
z
( 1

2I
1
x + 1

2I
2
x + I 1

x I
2
x

)
e ik 4I 1

z I
2
z = cos(k)

( 1
2I

1
x + 1

2I
2
x + I 1

x I
2
x

)

− sin(k)
(
I 1
y I

2
z + I 1

z I
2
y

)

⇔ e−ikJ 2
z 1

2

(
Jx +J 2

x

)
e ikJ 2

z = cos(k) 1
2Jx + 1

2J
2
x − i sin(k) 1

2

[
Jx, J

2
z

]
,

(4)

where [ , ] is the commutator. For j =3/2, on the other hand, we find that

J 2
z = 5

8I8 + 1
6

(
I 1 ·I 2 + I 1 ·I 3 + I 2 ·I 3) + 2

(
I 1
z I

2
z + I 1

z I
3
z + I 2

z I
3
z

)
,

= J̃ 2
z + 1

6

(
I 1 ·I 2 + I 1 ·I 3 + I 2 ·I 3 − 3

4 I8
)
. (5)

It follows that exp(−i kJ 2
z ) is, to a fairly good approximation, the same as

three equal scalar coupling evolutions up to phase, and the (pure) state as
a function of the squeezing parameter becomes

e−ik 4(I 1
z I

2
z +I 1

z I
3
z +I 2

z I
3
z ) 1

2

(
I8 +2I 1

x

) 1
2

(
I8 +2I 2

x

) 1
2

(
I8 +2I 3

x

)
e ik 4(I 1

z I
2
z +I 1

z I
3
z +I 2

z I
3
z )

= 1
2

(
I8 + I 1

x (I8 −4I 2
z I

3
z )+ cos(2k)I 1

x (I8 +4I 2
z I

3
z )− sin(2k) I 1

y (I
2
z + I 3

z )
) · · ·

1
2

(
I8 + I 2

x (I8 −4I 1
z I

3
z )+ cos(2k)I 2

x (I8 +4I 1
z I

3
z )− sin(2k) I 2

y (I
1
z + I 3

z )
) · · ·

1
2

(
I8 + I 3

x (I8 −4I 1
z I

2
z )+ cos(2k)I 3

x (I8 +4I 1
z I

2
z )− sin(2k) I 3

y (I
1
z + I 2

z )
)

↔ 1
16

(
e−ik/4(18−J 2

z )+ e−ik 9/4(2−J 2
z )

) 1
48

(−3I8 −2Jx +12J 2
x +8J 3

x

) · · ·
1
16

(
e ik/4(18−J 2

z )+ e ik 9/4(2−J 2
z )

)
, (6)

where in the last line we have expanded both the exponential exp(−ik J 2
z )

and the initial coherent state along x in terms of angular momentum oper-
ators. Finally, the CSS |0〉 is, for both values of j , the same as the Zeeman
ground state |↑↑〉 or |↑↑↑〉 in the uncoupled representation.

3. THE NMR IMPLEMENTATION OF SQUEEZED SPIN STATES

The implementation of spin squeezing was carried out on a liquid-
state NMR quantum information processor, using the two spin-1/2
hydrogen nuclei of 2,3-dibromo-thiophene (see Fig. 2) to represent the
spin-1 system, while the spin-3/2 system was represented using the three
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Fig. 2. The molecular structure of 2,3-dibromo-thiophene is shown on the left, with the
two hydrogen atoms used for the spin-1 simulations numbered as in the main text. The cou-
pling strength J between them and the chemical shift of the first compared to the second
are also shown. The diagram on the right shows the pulse sequence used to implement spin
squeezing for a given parameter k, where f (k) ≡ k/(2πJ ), narrow rectangles indicate π/2
y-rotations, the broad rectangles y-rotations by π , and the rectangles point downwards for
pulses effecting rotations by the negatives of these angles.

carbon atoms of a 13C-labeled sample of alanine (see Fig. 3). Both the
experiments were carried out on a Bruker AVANCE-400 spectrometer in
a field of ca. 11.7 T. In the case of the two-spin experiment, frequency-
selective pulses were used to rotate single spins, and hard π -pulses to
refocus unwanted chemical shifts. To compensate for pulse imperfections,
composite pulses were employed instead of the standard π -pulse.(17) In
the three-spin experiment, strongly modulating pulses were used to more
accurately perform the desired unitary operations.(18,19) Unlike low-power
“soft” pulses, these pulses average out unwanted evolution, are shorter in
time and hence also reduce relaxation effects.

The I 1
z I

2
z operator used to squeeze the spin-1 system was imple-

mented using π -pulses to refocus the Zeeman evolution of the spins while
allowing the scalar coupling between them to evolve, in the standard fash-
ion.(20) Because the coupling between spins 1 and 3 of the alanine system
is so small (J 13 = −1.29 Hz), the coupling between them was generated
out of the much stronger 1,2 and 2,3 couplings.(21) The sum of the three
scalar coupling terms of the form I �z I

m
z was taken as an approximation to

J 2
z in the spin-3/2, as indicated in Eq. (5). As usual in NMR quantum

information processing,(22,23) pseudo-pure states were used to represent the
dynamics of pure states. These were obtained using spatial averaging tech-
niques based on magnetic field gradients.(24,25)

Even though the decoherence times in liquid-state NMR are long, the
intrinsic decoherence rates of the spins still impose limits on the accu-
racy of the experimental results. The T2 relaxation rates in 2,3-dibromo-
thiophene were 3.2 s−1 for both of the hydrogen spins, while in alanine
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Fig. 3. The molecular structure of alanine is shown on the left, with the three carbon-13
atoms used for the experiments numbered as in the text. The numbers next to the dashed
lines are the corresponding coupling constants (in Hz), while the numbers next to the car-
bons are their chemical shifts relative to the third (in Hz). On the top right is a schematic
diagram of the pulse sequence used, where the horizontal striping indicates an y-pulse, ver-
tical striping an x-pulse, the narrower pulses induce rotations by π/2, and the wider ones by
π (or the negatives thereof if the pulse is below the spin’s line). The grey boxes indicate one
of the two “modules” show on the bottom right, which allow a Imz I

n
z evolution by the angle

(k or π/2) shown on the bottom of the pulse sequence diagram while refocussing the chem-
ical shifts and the coupling between the pairs not contained in the grey box. The functions
which relate the delay time to the squeezing parameter k is given by fmn(k)≡ k/(4πJmn) for
[m,n]= [1,2], [2,3].

these rates were 0.55, 0.42 and 0.80 s−1 for the C1, C2 and C3 spins,
respectively. The products of the shortest of these decoherence times, mul-
tiplied by the weakest coupling constant used, were better than 15 for
both 2,3-dibromo-thiophene and alanine, which allows about 30 c-NOT
gates before decoherence begins to seriously degrade the quality of the
results. The amount of time needed for the longest experiments reported
here was only about one third of this.

The accuracy of the experiments is further affected by systematic
errors like imperfect calibration of the pulses, off-resonance effects and RF
inhomogeneity.(20) The effects of these errors may be seen in the density
matrices of the final states, which in turn were determined by full state
tomography.(26) Although plots of these density matrices (see Figs. 4 and
5) provide a visual overview of the results, a more quantitative summary
of the overall accuracy may be obtained by calculating the correlation
between the theoretically expected and experimentally determined density
matrices ρthe and ρfin, respectively. This is defined as

C = tr(ρfinρthe)√
tr(ρfinρfin)tr(ρtheρthe)

. (7)
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Fig. 4. (i) The real part of the experimental density matrix representing the initial pseudo-
pure state |00〉 for the spin-1 experiments. (ii) The real part of the experimental density
matrix representing the maximally squeezed state of the effective spin-1 particle.

Fig. 5. (i) The real part of the experimental density matrix representing the initial pseudo-
pure state |000〉 for the spin-3/2 experiments. (ii) The real part of the density matrix when
the squeezing parameter k=π/2, at which point a GHZ state is obtained.(27)

To also include an estimate of the precision of the experiment, the amount
of signal (or polarization) lost during the experiment must also be taken
into account. This leads to a metric called the attenuated correlation,(18)

namely

Catt = C

√
tr(ρfinρfin)√
tr(ρiniρini)

= tr(ρfinρthe)√
tr(ρiniρini)tr(ρtheρthe)

. (8)

The theoretically expected density matrix ρthe was obtained by applying
the intended unitary transformation Uthe to the initial pseudo-pure state
ρini, as determined by state tomography.
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4. RESULTS OF SPIN SQUEEZING EXPERIMENTS

Using state tomography,(26) the 2j spin-1/2 density matrices ρexp were
reconstructed following squeezed state preparation for various values of
the squeezing parameter k= 0, . . . , π . The expectation values and uncer-
tainties along the basis axes were then calculated directly from these den-
sity matrices and the Jµ (or approximate J̃µ matrices given in Eqs. (1) and
(3)), as follows:

〈Jµ〉 = tr(Jµρexp) ,

〈�Jµ〉 =
√
tr(J 2

µρexp)− (tr(Jµρexp))2 . (9)

where µ=x, y, z.
The correlation for the spin-1 pseudo-pure density matrix (see

Fig. 4(i)) was 0.99. For the density matrix corresponding to the maximally
squeezed (k=π/2) spin-1 state, the correlation and the attenuated corre-
lation were 0.99 and 0.98, respectively. The correlation for the spin-3/2
pseudo-pure state density matrix (see Fig. 5(i)) was 0.98, while the corre-
lation and the attenuated correlation of the maximally squeezed spin-3/2
state were 0.84 and 0.80, respectively.

Since the squeezing operator conserves the total angular momentum,
the combined 2j spin-1/2 system should stay in the spin-j subspace dur-
ing the course of the experiment. However, due to decoherence and other
errors in the implementation there is some “leakage” out of the effective
spin-j subspace. To quantify the accuracy with which we have been able
to simulate the spin-j system, we computed the best pseudo-pure-state
approximation to mixed-state density matrix ρexp by taking the eigenvec-
tor |ψmax〉 associated with the largest eigenvalue of ρexp. The probability
of leakage was then obtained from the definition

Pr leak = 1−
j∑

m=−j

∣∣〈j,m ||ψmax〉
∣∣2
, (10)

where |j,m〉 are the basis states of spin-j subspace. This probability
of leakage, averaged over all the experiments performed, was (0.02 ±
0.02)% for the spin-1 simulations and (7.67 ± 3.20)% for the spin-3/2.
The substantially larger leakage in the latter case was due to the fact
that the protons were not decoupled from the carbons during the car-
bon scalar coupling evolution delays, in order to avoid the possibility of
carbon-proton nuclear Overhauser effects.
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4.1. The Spin-1 Case

The initial pseudo-pure state corresponds to a coherent state of the
embedded spin-1 subspace. It remains in a coherent spin state after a
π/2 rotation to the x-axis and accordingly, state tomography at this point
reveals that 〈Jx〉 is nearly equal to 1 while the spin uncertainties in the y
and z-directions are nearly equal to 1/

√
2. After applying the non-linear

interaction for a period of 2f (k)=k/(πJ ), the spin-1 expectation values in
all directions are all close to 0, consistent with maximally entangled state
(see Table 3). The uncertainty is now maximum in the x-direction, while
the uncertainties in the y and z-directions are still nearly equal to 1/

√
2

because the principle axes of the squeezed ellipsoid are at π/4 to the y
and z axes (see Fig. 1(iii)). To make the squeezing more readily apparent,
it was convenient to follow the squeezing step by a π/4 x-pulse so that the
uncertainty along the z-axis becomes 1. The experimental and theoretical
data for this maximally squeezed and rotated state are given in Table 3.

Table 3. Theoretical and Experimental Spin Expectation Values and
Uncertainties of the Maximally Squeezed Spin-1 States

〈Jx〉 〈Jy〉 〈Jz〉 〈�Jx〉 〈�Jy〉 〈�Jz〉

Theory 0.00 0.00 0.00 1.00 0.00 1.00

Experiment 0.00 −0.02 0.00 0.97 0.21 0.98
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Fig. 6. Plots of the theoretically expected uncertainties as a function of the squeezing
parameter k (in degrees) for spin-1 (solid lines), along with the fits (dashed lines) to the
uncertainties computed from the experimental density matrices (+ or ∗). (a) Plots of 〈�Jy〉
(lower curves), and 〈�Jz〉 with k (upper curves). (b) Plot of |〈Jx〉| (no fits shown).
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The variation of |〈Jx〉|, �Jy and �Jz for different values of k is plot-
ted in Fig. 6. The corresponding values of |〈Jy〉| and |〈Jz〉| are close to
zero implying that the spin system is polarized along the x direction for
all values of the squeezing parameter k.

4.2. The Spin-3/2 Case

After the initial π/2 rotation to the x-axis, state tomography showed
that the spin-3/2 angular momentum vector pointed in the x-direction
with 〈Jx〉 ≈ 1.5, and uncertainties in the y and z-directions nearly equal
to their theoretical values of

√
3/2. Application of the non-linear interac-

tion for a given k created some apparent entanglement in the system, as
indicated by the fact that 〈Jx〉 was reduced to about 1 while 〈Jy〉 and 〈Jz〉
remained zero. The uncertainty in the x-direction also increased from 0 to√

3/2. To orient the axes of the squeezed uncertainty ellipsoid along the y
and z-directions, the results of state tomography were rotated about the x-
axis (on a computer, since unlike the spin-1 case the rotation angle needed
depends on the value of k).(14) The experimental and theoretical data for
the maximally squeezed state are shown in Table 4, while the variation of
|〈Jx〉|, �Jy and �Jz for different values of k is plotted in Fig. 7. As in the
spin-1 case, the corresponding values of |〈Jy〉| and |〈Jz〉| are close to zero,
implying that the spin system is polarized along x-direction for all values
of the squeezing parameter k, as desired.

4.3. Behavior of Entanglement Measures

The probability of leakage measurements described above (see
Eq. (10)) show that the best pseudo-pure-state approximation to the final
mixed-state density matrix quite accurately describes the spin-j system.
Thus this pseudo-pure state may be used to study the entanglement of the
constituent spin-1/2 particles by well-understood pure-state entanglement
criteria. The criteria used here are the entanglement of formation (or, for

Table 4. Theoretical and Experimental Spin Expectation Values and
Uncertainties of the Maximally Squeezed Spin-3/2 States

〈Jx〉 〈Jy〉 〈Jz〉 〈�Jx〉 〈�Jy〉 〈�Jz〉

Theory 1.00 0.00 0.00 0.87 0.50 1.32

Experiment 0.82 0.05 −0.13 0.92 0.53 1.36
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Fig. 7. Plots of the theoretically expected uncertainties as a function of the squeezing
parameter k (in degrees) for spin-3/2 (solid lines), along with fits (dashed lines) to the uncer-
tainties computed from the experimental density matrices (+ or ∗). (i) Plots of 〈�Jy〉 (lower
curves) and 〈�Jz〉 (upper curves). (ii) Plot of |〈Jx〉|.

bipartite pure states, the von Neumann entropy of the partial trace over
either subsystem),(28) and the concurrence(29,30) of (the partial trace onto
any) pair of qubits. The purpose of this discussion is not to uncover any
new features of entanglement in these simple systems, but rather to use the
compatibility of the experimental results with the well-known behavior of
these entanglement measures as a benchmark for the precision of control
obtained. In addition, these entanglement measures were computed with-
out taking into account the very large identity component that is always
present in liquid-state NMR, and hence should be regarded as measures
of the “pseudo-entanglement” associated with the pseudo-pure states used
for the experiments.

Figure 8 shows plots of the theoretically expected and experimentally
observed entanglement measures as a function of the squeezing parame-
ter k for the spin-1 experiments. It is immediately apparent that the theory
and experiments agree extremely well with respect to either entanglement
measure, in accord with the fact that the concurrence and entanglement
of formation are monotonically related for two qubits. The maximally
squeezed state (k=90◦) is observed to correspond to the maximally entan-
gled state, as theory predicts it should in a representation by Dicke
states.(31)

Figure 9 shows the analogous pair of plots for the spin-3/2
experiments, where the interpolation is now done using a fifth-order
polynomial fit to the data (dashed lines). In this case three different
entanglements of formation are obtained, depending on which pair of
qubits is traced over in order to obtain the reduced density matrix, and
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Fig. 8. Plots of the entanglement of formation (i) and concurrence (ii) with the squeezing
parameter k (in degrees) for spin-1. The solid lines are the theoretically expected curves, while
the dashed lines interpolate linearly between the values computed from the experimental den-
sity matrices obtained via tomography (∗).

their average, also known as the Meyer’s entanglement metric,(32) is plot-
ted for simplicity. According to this metric, the maximum entanglement
again occurs at k=90◦ and corresponds to a Greenberger–Horne–Zeilinger
state, which is however not a maximally squeezed state. The maximally
squeezed state now occurs instead at k = 34.7◦ and again at 180–34.7 =
155.3◦, and corresponds to the maximum concurrence of the reduced den-
sity matrix obtained by tracing over any one qubit (which is attained by a
W -state). The correspondence between theory and experiment in this case
is noticeably lower than in the spin-1 experiments, primarily because of
leakage from the carbons used as qubits into the alpha and methyl pro-
tons during the experiment.

5. CONCLUSIONS

We have demonstrated the use of liquid-state NMR to simulate
squeezed states of the effective spin-1 and 3/2 subsystem contained in a
two and three-qubit system, respectively. We have further shown that the
precision of quantum control obtained was sufficient to reproduce the the-
oretically expected behavior of the spin-1 and 3/2 observables as well as
the associated entanglement measures among the underlying qubits. The
results are a further demonstration of the utility of pseudo-pure states,(22)

and the power of strongly modulating pulses,(19) for the development and
validation of quantum control methods. The dynamics of the coherences
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Fig. 9. Plots of the Meyer’s metric or average entanglement over tracing down to each of
the three qubits in turn (i) and concurrence after tracing down to any pair of qubits (ii)
with the squeezing parameter k (in degrees) for spin-3/2. The solid lines are the theoretically
expected curves, while the dashed lines are a fifth-order polyomial fit to the values computed
from the experimental density matrices obtained via tomography (∗).

among the fiducial states that were confirmed by complete tomography are
fully in accord with these proposals, even though the highly mixed states
used in our experiments were, of course, separable at all times. It is inter-
esting to observe, however, that even when the identity component of the
density matrix is fully taken into account the uncertainties in the x and
y directions were unequal, i.e., the actual mixed states created could be
regarded as (very slightly) “squeezed”.

It should also be pointed out that the interpretation of the higher
spin states as “squeezed” or not depends on how the higher spin states
are mapped into the symmetric subspace of the multi-spin-1/2 system. We
discussed earlier, for example, how the mapping used here for the spin-
3/2 experiments actually gave the sum of a spin-3/2 with a spin-1/2 pair,
limiting the degree of squeezing attainable. Even when the mathematical
representation is strictly correct, however, the physical properties of the
squeezed states can be rather different. For instance, if we were to replace
the Dicke states |↑↑〉 and |↓↓〉 in Table 1 by the Bell states 1/

√
2 (|↑↑〉±

|↓↓〉), the maximally squeezed state of the simulated spin-1 would corre-
spond to the unentangled basis state |00〉 of the two-qubit system in which
it is contained. Such a representation may be a bit unnatural, since rota-
tions of the qubits no longer correspond to rotations of the higher spin,
but should still be kept in mind when discussing the relations between
entanglement in multi-qubit systems and the squeezing of the effective
higher spins therein.(4,16)
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