Skip to main content
Log in

Evolutionary Approach to Quantum and Reversible Circuits Synthesis

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

The paper discusses theevolutionary computation approach to theproblem of optimal synthesis of Quantum andReversible Logic circuits. Our approach usesstandard Genetic Algorithm (GA) and itsrelative power as compared to previousapproaches comes from the encoding and theformulation of the cost and fitness functionsfor quantum circuits synthesis. We analyze newoperators and their role in synthesis andoptimization processes. Cost and fitnessfunctions for Reversible Circuit synthesis areintroduced as well as local optimizingtransformations. It is also shown that ourapproach can be used alternatively forsynthesis of either reversible or quantumcircuits without a major change in thealgorithm. Results are illustrated onsynthesized Margolus, Toffoli, Fredkin andother gates and Entanglement Circuits. This isfor the first time that several variants ofthese gates have been automatically synthesizedfrom quantum primitives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Rabadi, A., Casperson, L., Perkowski, M. & Song, X. (2002). Canonical Representation for Two-Valued Quantum Computing. Proc. Fifth Intern. Workshop on Boolean Problems, 23–32. Freiberg, Sachsen, Germany, September 19–20.

  • Al-Rabadi, A. (2002). Novel Methods for Reversible Logic Synthesis and Their Application to Quantum Computing. Ph.D. Thesis, Portland State University, Portland, Oregon, USA, October 24.

    Google Scholar 

  • Barenco, A. et al. (1995). Elementary Gates for Quantum Computation. Physical Review A 52: 3457–3467.

    Google Scholar 

  • Bennett, C. (1973). Logically Reversible Computation. I.B.M. J. Res. Dev. (17): 525–632.

    Google Scholar 

  • Cirac, J. I. & Zoller, P. (1995). Quantum Computation with Cold Trapped Ions. Physical Review Letters (15 May) 74: Issue20, 4091–4094.

    Google Scholar 

  • Dill, K. & Perkowski, M. (2001). Baldwinian Learning utilizing Genetic and Heuristic for Logic Synthesis and Minimization of Incompletely Specified Data with Generalized Reed-Muller (AND-EXOR) Forms. Journal of System Architecture 47: Issue6, 477–489.

    Google Scholar 

  • Dirac, P. A. M. (1930). The Principles of Quantum Mechanics, 1st edn. Oxford University Press.

  • DiVincenzo, D. P. (1995). Quantum Computation. Science 270: 255–256.

    Google Scholar 

  • Dueck, G. W. & Maslov, D. (2003). Garbage in Reversible Designs of Multiple-Output Functions. Proc. RM: 162–170.

  • Einstein, A., Podolsky, B. & Rosen, N. (1935). Physical Review (47): 777.

    Google Scholar 

  • Ekert, A. & Jozsa, R. (1996). Quantum Computation and Shor's Factoring Algorithm. Review of Modern Physics (July) 68: Issue3, 733–753.

    Google Scholar 

  • Feynman, R. (1996). Feynman Lectures on Computation. Addison Wesley.

  • Fredkin, E. & Toffoli, T. (1982). Conservative Logic. Int. J. of Theoretical Physics (21): 219–253.

    Google Scholar 

  • Ge, Y. Z., Watson, L. T. & Collins, E. G. (1998). Genetic Algorithms for Optimization on a Quantum Computer. In Unconventional Models of Computation, 218–227. London: Springer Verlag.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley.

  • Graham, A. (1981). Kronecker Products and Matrix Calculus with Applications. Chichester, UK: Ellis Horwood Limited.

    Google Scholar 

  • Hirvensalo, M. (2001). Quantum Computing. Springer Verlag.

  • Iwama, K., Kambayashi, Y. & Yamashita, S. (2002). Transformation Rules for Designing CNOT-based Quantum Circuits. In Proc. DAC, 419–424. New Orleans, Louisiana.

  • Kerntopf, P. (2001). Maximally Efficient Binary and Multi-Valued Reversible Gates. In Proceedings of ULSI Workshop, 55–58. Warsaw, Poland, May.

  • Kerntopf, P. (2000). A Comparison of Logical Efficiency of Reversible and Conventional Gates. Proc. of 3rd Logic Design and Learning Symposium (LDL). Portland, Oregon.

  • Khan, M. H. A., Perkowski, M. & Kerntopf, P. (2003). Multi-Output Galois Field Sum of Products Synthesis with New Quantum Cascades. In Proceedings of 33rd International Symposium on Multiple-Valued Logic, ISMVL 2003, 146–153. Meiji University, Tokyo, Japan, 16–19 May.

    Google Scholar 

  • Khlopotine, A., Perkowski, M. & Kerntopf, P. (2002). Reversible Logic Synthesis by Gate Composition. Proceedings of IWLS: 261–266.

  • Kim, J., Lee, J-S. & Lee, S. (2000). Implementation of the Refined Deutsch-Jozsa algorithm on a Three-Bit NMR Quantum Computer. Physical Review A 62: 022312.

    Google Scholar 

  • Kim, J., Lee, J-S. & Lee, S. (2000). Implementing Unitary Operators in Quantum Computation. Physical Review A: 032312.

  • Klay, M. (1988). Einstein-Podolsky-Rosen Experiments: The Structure of the Sample Space I, II. Foundations of Physics Letters 1: 205–232.

    Google Scholar 

  • Koza, J. (1992). Genetic Programming. On the Programming of Computers by Means of Natural Selection. The MIT Press.

  • Lee, J-S., Chung, Y., Kim, J. & Lee, S. (1999). A Practical Method of Constructing Quantum Combinational Logic Circuits. arXiv:quant-ph/9911053v1 (12 November).

  • Lomont, Ch. (2003). Quantum Circuit Identities. arXiv:quant-ph/0307111v1 (16 July).

  • Lukac, M., Pivtoraiko, M., Mishchenko, A. & Perkowski, M. (2002). Automated Synthesis of Generalized Reversible Cascades Using Genetic Algorithms. In Proc. Fifth Intern. Workshop on Boolean Problems, 33–45 Freiberg, Sachsen, Germany, September 19–20.

  • Lukac, M. & Perkowski, M. (2002). Evolving Quantum Circuits Using Genetic Algorithms. In Proc. of 5th NASA/DOD Workshop on Evolvable Hardware, 177–185.

  • Lukac, M., Lee, S. & Perkowski, M. (2003). Low Cost NMR Realizations of Ternary and Mixed Quantum Gates and Circuits. In preparation.

  • Lukac, M., Lee, S. & Perkowski, M. (2003). Inexpensive NMR Realizations of Quantum Gates. In preparation.

  • Miller, D. M. (2002). Spectral and Two-Place Decomposition Techniques in Reversible Logic. Proc. Midwest Symposium on Circuits and Systems, on CD-ROM, August.

  • Miller, D. M. & Dueck, G. W. (2003). Spectral Techniques for Reversible Logic Synthesis. Proc. RM: 56–62.

  • Mishchenko, A. & Perkowski, M. (2002). Logic Synthesis of Reversible Wave Cascades. In Proc. IEEE/ACM International Workshop on Logic Synthesis, 197–202. June.

  • Monroe, C., Leibfried, D., King, B. E., Meekhof, D. M., Itano, W. M. & Wineland, D. J. (1997). Simplified Quantum Logic with trapped Ions. Physical Review A (April) 55: Issue4, 2489–2491.

    Google Scholar 

  • Monroe, C., Meekhof, D. M., King, B. E. & Wineland, D. J. (1996). A “Schroedinger Cat” Superposition State of an Atom. Science (May) 272: 1131–1136.

    Google Scholar 

  • Nielsen, M. A. & Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge University Press.

  • Negotevic, G., Perkowski, M., Lukac, M. & Buller, A. (2002). Evolving Quantum Circuits and an FPGA Based Quantum Computing Emulator. In Proc. Fifth Intern. Workshop on Boolean Problems, 15–22. Freiberg, Sachsen, Germany, September 19–20.

  • Peres, A. (1985). Reversible Logic and Quantum Computers. Physical Review A 32: 3266–3276.

    Google Scholar 

  • Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mishchenko, A., Song, X., Al-Rabadi, A., Jozwiak, L., Coppola, A. & Massey, B. (2001). Regular Realization of symmetric Functions Using Reversible Logic. In Proceedings of EUROMICRO Symposium on Digital Systems Design, 245–252.

  • Perkowski, M., Jozwiak, L., Kerntopf, P., Mishchenko, A., Al-Rabadi, A., Coppola, A., Buller, A., Song, X., Khan, M. M. H. A., Yanushkevich, S., Shmerko, V. & Chrzanowska-Jeske, M. (2001). A General Decomposition for Reversible Logic. Proceedings of RM: 119–138.

  • Perkowski, M., Al-Rabadi, A. & Kerntopf, P. (2002). Multiple-Valued Quantum Logic Synthesis. Proc. of 2002 International Symposium on New Paradigm VLSI Computing, 41–47. Sendai, Japan, December 12–14.

  • Price, M. D., Somaroo, S. S., Tseng, C. H., Core, J. C., Fahmy, A. H., Havel, T. F. & Cory, D. (1999). Construction and Implementation of NMR Quantum Logic Gates for Two Spin Systems. Journal of Magnetic Resonance 140: 371–378.

    Google Scholar 

  • Price, M. D., Somaroo, S. S., Dunlop, A. E., Havel, T. F. & Cory, D. G. (1999). Generalized Methods for the Development of Quantum Logic Gates for an NMR Quantum Information Processor. Physical Review A (Octover) 60(4): 2777–2780.

    Google Scholar 

  • Rubinstein, B. I. P. (2001). Evolving Quantum Circuits Using Genetic Programming. In Proceedings of the 2001 Congress on Evolutionary Computation (CEC2001), 144–151.

  • Shende, V. V., Prasad, A. K., Markov, I. K. & Hayes, J. P. (2002). Reversible Logic Circuit Synthesis. Proc. 11th IEEE/ACM Intern. Workshop on Logic Synthesis (IWLS), 125–130.

  • Smolin, J. & DiVincenzo, D. P. (1996). Five Two-Qubit Gates are Sufficient to Implement the Quantum Fredkin Gate. Physical Review A (April) 53(4), 2855–2856.

    Google Scholar 

  • Spector, L., Barnum, H., Bernstein, H. J. & Swamy, N. (1999). Finding a Better-than-Classical Quantum AND/OR Algorithm Using Genetic Programming. In Proc. 1999 Congress on Evolutionary Computation, Vol. 3, 2239–2246. Washington DC, 6–9 July; IEEE, Piscataway, NJ.

    Google Scholar 

  • Van Der Sypen, L. M. K., Steffen, M., Breyta, G., Yannoni, C. S., Sherwood, M. H. & Chuang, I. L. (2001). Experimental Realization of Shor's Quantum Factoring Algorithm Using Nuclear Magnetic Resonance. Nature (20/27 December) 414: 883–887.

    Google Scholar 

  • Vieri, C., Ammer, M. J., Frank, M., Margolus, N. & Knight, T. A Fully Reversible Asymptotically Zero Energy Microprocessor. MIT Artificial Intelligence Laboratory, Cambridge, MA 02139, USA

  • von Neumann, J. (1950). Mathematical Foundations of Quantum Mechanics. Princeton University Press.

  • Wheeler, J. A. & Zurek, W. H. (1983). Quantum Theory and Measurement. Princeton University Press.

  • Williams, C. W. & Gray, A. G. (1999). Automated Design of Quantum Circuits. ETC Quantum Computing and Quantum Communication, QCQC '98, 113–125. Palm Springs, California: Springer-Verlag, February 17–20.

    Google Scholar 

  • Williams, C. P. & Clearwater, S. H. (1998)., Explorations in Quantum Computing. New York Inc.: Springer-Verlag.

    Google Scholar 

  • www.ece.pdx.edu/~lukacm/q-bench.html

  • Yabuki, T. & Iba, H. (2000). Genetic Algorithms and Quantum Circuit Design, Evolving a Simpler Teleportation Circuit. In Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference, 421–425.

  • Yang, G., Hung, W. N. N., Song, X. & Perkowski, M. (2003). Majority-Based Reversible Logic Gate. In Proceedings of 6th International Symposium on Representations and Methodology of Future Computing Technology, 191–200. Trier, Germany, March 10–11.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukac, M., Perkowski, M., Goi, H. et al. Evolutionary Approach to Quantum and Reversible Circuits Synthesis. Artificial Intelligence Review 20, 361–417 (2003). https://doi.org/10.1023/B:AIRE.0000006605.86111.79

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AIRE.0000006605.86111.79

Navigation