
Go! – A Multi-paradigm Programming Language

for Implementing Multi-threaded Agents

K.L. Clark∗

Dept. of Computing
Imperial College

London, UK
klc@doc.ic.ac.uk

F.G. McCabe
Fujistu Labs of America

Sunnyvale
CA, USA

fgm@fla.fujitsu.com

Abstract
Go! is a multi-paradigm programming language that is oriented to

the needs of programming secure, production quality, agent based ap-
plications. It is multi-threaded, strongly typed and higher order (in
the functional programming sense). It has relation, function and action
procedure definitions. Threads execute action procedures, calling func-
tions and querying relations as need be. Threads in different agents
communicate and coordinate using asynchronous messages. Threads
within the same agent can also use shared dynamic relations acting as
Linda-style tuple stores.

In this paper we introduce the essential features of Go!. We then
illustrate them by programming a simple multi-agent application com-
prising hybrid reactive/deliberative agents interacting in a simulated
ballroom. The dancer agents negotiate to enter into joint commitments
to dance a particular dance (e.g. polka) they both desire. When the
dance is announced, they dance together. The agents’ reactive and de-
liberative components are concurrently executing threads which com-
municate and coordinate using belief, desire and intention memory
stores. We believe such a multi-threaded agent architecture represents
a powerful and natural style of agent implementation, for which Go! is
well suited.

1 Introduction

Go! is a logic programming descendant of the multi-threaded symbolic pro-
gramming language April[25], with influences from IC-Prolog II [6] and

∗Alphabetical order of authors

1

1 INTRODUCTION 2

L&O[23]. Crudely. Go! is April enriched with the knowledge representa-
tion features of Prolog and L&O.

April was initially developed as the implementation language for the
much higher level MAI2L[17] agent programming of the EU Imagine project.
It has more recently been used to implement one of the FIPA compliant
agent platforms of the EU AgentCities project[37], and the agent services
running on that platform at Imperial College and Fujitsu. Go! was used
as a query server using the language SL1, a subset of FIPA SL[13], for our
AgentCities agents.

A significant theme in the design of Go! is software engineering in the
service of high-integrity systems. To bring the benefits of logic programming
to applications developers requires fitting the language into current best-
practice; and, especially since applications are increasingly operating in the
Internet, security, transparency and integrity are critical to the adoption of
logic programming technology.

Although Go! has many features in common with Prolog, particularly
multi-threaded Prolog’s, there are significant differences related to trans-
parency of code and security. Features of Prolog that mitigate against
transparency, such as the infamous cut (!) primitive, are absent from Go!.
Instead, its main uses are supported by higher level programming constructs,
such as single solution calls, iff rules, and the ability to define ’functional’
relations as functions.

In Prolog, the same clause syntax is used both for defining relations,
with a declarative semantics, and for defining procedures, say that read
and write to files, which really only have an operational semantics. In Go!,
behaviours are described using action rules which have a different syntax.

While Prolog is a meta-order language, Go! is higher-order as in higher
order functional programming. Go! is not higher order in the higher order
logic sense. There is no unification of function or relation definitions, as
there is in lambda-Prolog[26]. Code can only be passed as an opaque value
with a specific type.

A key feature of Go! is the ability to group a set of definitions into
a lexical unit by surrounding them with {} braces. We call such a unit
a theta environment. Theta environments are Go!’s program structuring
mechanism. Two key uses of theta environments are where expressions,
analogous to the let ... in ... construct of some functional programming
languages, and labeled theories, which are labeled theta environments.

Labeled theories are based on McCabe’s L&O [23] extension of Prolog.
A labeled theory is theta environment labeled by a term where variables of
the label term are global variables of the theory. Instances of the theory

1 INTRODUCTION 3

are created by giving values to these label variables. Labeled theories are
analogous to class definitions, and their instances are Go!’s objects. New
labeled theories can be defined in terms of one or more existing theories using
inheritance rules. Labeled theories provide a rich knowledge representation
notation akin to that of frame systems[28].

Go! is strongly typed – using a modified Hindley/Milner style type infer-
ence technique [18], [27] to reduce the programmer’s burden. The program-
mer can declare new types and thereby introduce new data constructors.
Indeed, all uses of functors as data constructors need to be declared by be-
ing introduced in some type definition. Compile time type checking improves
code safety.

Go! is also multi-threaded, a feature which we consider essential for build-
ing sophisticated agents. Threads primarily communicate through asyn-
chronous message passing as in Erlang[1], April[25], Qu-Prolog[8]. Threads,
executing action rules, react to received messages using pattern matching
and pattern based message reaction rules. A communications daemon en-
ables threads in different Go! processes to communicate transparently over a
network. Typically, each agent will comprise several threads, each of which
can directly communicate with threads in other agents.

Threads in the same Go! process, hence in the same agent, can also com-
municate by manipulating shared cell or dynamic relation objects. Updates
of these objects are atomic. Moreover, threads can be made to suspend
until a term unifying with some given term is added to a shared dynamic
relation by some other thread. This enables dynamic relations to be used
like Linda tuple stores[4] to coordinate the activities of different threads
within an agent. This is a powerful implementation abstraction for building
multi-threaded agents, which we will illustrate with our example application
of Go!.

Go! does not directly support any specific agent architecture or agent
programming methodology, although this could be done using library mod-
ules. It is a language is which different architectures and methodologies can
be quickly prototyped and explored. We illustrate this by developing a sim-
ple multi-agent application comprising hybrid reactive/deliberative agents
interacting at a simulated ball. In this ballroom there are male and female
dancers. The dancers have desires that reflect – somewhat – a typical ball-
room situation with the different desires corresponding to individual pref-
erences. Dancers negotiate with each other over up-coming dances and also
make counter proposals – such as going to the bar instead of having a dance.

Each dancer agent is programmed using multiple concurrently executing
threads that implement different aspects of its behaviour. The threads com-

2 KEY FEATURES OF GO! 4

municate and coordinate using shared belief, desire and intention dynamic
relation objects used as Linda-style memory stores. This internal run-time
architecture allows us to use implicit interleaving of the various activities
of the agent. This contrasts with the explicit interleaving of observation,
short deliberation and partial execution of the classic single threaded BDI
(Beliefs,Desires,Intentions) architecture[2].

Linda tuple stores have been used for inter-agent coordination [29]. For
scalability and other reasons, we prefer to use asynchronous point-to-point
messages between agents, as in KQML[11]. However, we strongly advocate
concurrency and Linda style shared memory co-ordination for internal agent
design.

In section 2 we give an overview of Go!. In section 3 we introduce
dynamic relations – which are objects – and the special subclass of linda
dynamic relations which can be used as Linda tuple spaces by concurrent
threads within an agent. In section 4 we give the program for a simple
directory server that can be used for agent registration and discovery. This is
used in our ballroom application to enable a dancer to discover other dancers
with similar desires. In section 5 we develop the ballroom application. In
section 6 we discuss related work before giving our concluding remarks in
section 7.

2 Key Features of Go!

Go! is a multi-paradigm language with a declarative subset of function and
relation definitions, an imperative subset comprising action procedure defi-
nitions and rich program structuring mechanisms.

2.1 Function, relation and action rules

Function Rules Functions are defined using sequences of conditional
rewrite rules of the form:

f (A 1,..,A k)::Test => Exp

The guard Test is optional. The :: can be read as such that.
As in most functional programming languages, the testing of whether

a function rule can be used to evaluate a function call uses matching not
unification. A rule is used if the head matches the call and any Test succeeds.
Once a function rule has been selected there is no backtracking to try an
alternative rule. The sequence of rules defining a function should cover all
the cases. It is an error if no rule can be used to evaluate a function call.

2 KEY FEATURES OF GO! 5

Example function definitions are:

nrev()=>[].
nrev([E,..X]) => nrev(X)<>R.

age(DateOfBirth) => yearsBetween(now(),DateOfBirth).

number_of_maths_courses(S)=>
listlen({C || takes(S,C),subject(C,’maths’)}).

The operator ,.. is Go!’s list constructor, equivalent to the LISP cons and
the Prolog |. It can be read as followed by. listlen is Go!’s primitive for
finding the length of a list, <> is a library function for appending lists, and
an expression of the form:

{T || Cond }

is a set expression, it is Go!’s equivalent to the Prolog findall. now is a
system function for returning the Unix time from which the current date
can be computed. yearsBetween is another defined function.

Notice that ’maths’ is singly quoted. Go! does not use the Prolog
convention that all alphanumeric names beginning with a lower case letter
are symbols and all those beginning with an upper case letter are variables.
Symbols have to be explicitly quoted and alphanumeric names beginning
with a lower case letter can be used as variable names.

if Relation definitions These comprise sequences of Prolog-style :- (if)
clauses; with some modifications – such as permitting expressions as well as
data terms, and no cut. An example is:

only_sons(P:person) :- (P.child(C:person)*>C.sex=’male’)

This defines a property that holds of a person (object) if all their children
(objects) have sex attribute ’male’. The first occurrences of P and C are
both type annotated as instances of the person class. Object attributes are
accessed using ’.’, as in C.sex.

*> is Go!’s forall. A condition:

(Cond1 *> Cond2).

holds if for every solution to Cond1, there exists a solution to Cond2.
Instead of the cut, Go! has negation-as-failure (\+)1, single solution calls,

and a conditional test as primitives.
1This is the normal Prolog operator for negation.

2 KEY FEATURES OF GO! 6

iff Relation definitions In addition, relations can be defined using se-
quences of :-- (iff) rules. These have the syntax:

p (A 1,..,A k)::Test :-- Condition

where Test is optional, but not Condition. Once an iff rule has been found
that unifies with a relation call, such that any associated Test succeeds,
there is a commitment to use just that rule. There is no backtracking on
the choice of the rule, just possible backtracking in the evaluation of the
body conditions of the rule when some of these are defined using Prolog
style :- rules. iff rules allow relations to be defined using disjoint cases,
each case being represented as a different head pattern/test of a rule. An
example of a definition using iff rules is:

ordered([]) :-- true.
ordered([_]):-- true.
ordered([X,Y,..L])::X=<Y :-- ordered([Y,..L]).

This is the definition of a relation for testing if a list of numbers is ordered.

Action rules The locus of action in Go! is a thread ; each Go! thread
executes a procedure. Procedures are defined using non-declarative action
rules of the form:

a (A 1,..,A k)::Test -> Action 1;...;Action n

As with function rules, the first action rule that matches some call, and
whose test is satisfied, is used. Once an action rule has been selected there
is no backtracking on the choice of rule and there is no backtracking within
the action sequence of the body of the rule. Every action call must succeed,
it is a run-time error if it does not.

An example action rule is:

runMe(Count) -> stdout.outLine(nrev(iota(1,Count))^0)

This defines a procedure runMe with number argument. The body of the
rule is the single action:

stdout.outLine(nrev(iota(1,Count))^0)

This uses the Go! primitive function iota to construct a list of numbers
from 1 to Count, uses nrev to reverse this list, and uses the standard operator
^ which will convert any Go! data value into a string. This string, followed

2 KEY FEATURES OF GO! 7

by a newline, is written to the standard ouput channel (usually the terminal
window from which the program was invoked) using the procedure outLine
of the stdout file object.

More generally, the permissible actions of an action rule include: mes-
sage dispatch and receipt, I/O, updating of dynamic relations and cells,
the calling of a procedure, and the spawning of any action, or sequence of
actions, to create a new thread.

2.2 Invoking queries from actions

The declarative part of a Go! program can be accessed from action rules in
a number of ways:

• Any expression can invoke functions.

• The head of an action rule – a(A1,..,Ak)::Q – can extend the argument
matching with a query Q .

• If Q is a query, {Q }, indicating a single solution call to Q , can be used
as an ‘action’.

• We can use a set expression {Trm || Q } to find all solutions to some
query.

• We can use Go!’s forall action. (Q *> A) executes the action A for
each solution to query Q . Typically, Q and A share variables.

• We can use a conditional action. (Q ? A1 | A2) executes A1 if Q

succeeds, else A2. Q and A1 can share variables.

Invoking actions from queries Occasionally it is necessary to execute
an action inside a query or relation definition although this style of pro-
gramming is discouraged in Go!. If it is done, then the action being called
must be prefixed by the action operator.

2.3 Programming behaviour with action rules

As an example of the use of action rules let us consider programming the
top level of an agent with a mission: this is to achieve some fixed goal by the
repeated execution of an appropriate action. The two action rule procedure:

2 KEY FEATURES OF GO! 8

performMission()::Goal -> {}.
performMission() ->

{choose_action(ActProc)};
ActProc ();
performMission().

captures the essence of this goal directed activity. ({} is the empty action.)
This procedure would be executed by one thread within an agent whilst
another concurrently executing thread is monitoring its environment, con-
stantly updating the agent’s beliefs about the environment. These beliefs
are queried by Goal, and by the choose action relation which selects an
action procedure to execute based on current beliefs. Note this is a higher
order relation. performMission is a tail recursive procedure and will be
executed as an iteration by the Go! engine.

2.4 Message communication

Threads in a single Go! invocation can communicate either by thread-to-
thread message communication or by synchronisable access and update of
shared data, such as dynamic relations. Threads in different Go! invoca-
tions can only communicate using messages. To support thread-to-thread
communication, each thread has its own buffer of messages it has not yet
read, which are ordered in the buffer by time of arrival.

Sending messages The non-blocking message send action is:

Exp >> Rec

where Exp is an expression denoting the message to be sent and Rec is a
handle-valued expression. handles are the type used by Go! for the iden-
tifiers of threads. Any Go! data value can be sent as a message, including
higher order values and data terms containing variables. Any variables in a
message are replaced by entirely new variables when it is received. Variables
are not shared across threads.

A handle is a term of the form:

hdl(Th ,Rt)

The second argument Rt is a symbol name of a family of threads, usually
all the threads in a given Go! invocation. We will refer to this as the root
name. The first argument

2 KEY FEATURES OF GO! 9

Th is a symbol that identifies the thread within the family. When a Go!
program is started we can set the both the root and thread names of the
the initial thread with command line arguments.

Go!’s message send is asynchronous. Successful dispatch means neither
that the recipient task has ‘accepted’ the message nor that it actually re-
ceived it. Message acceptance is an active process on the part of the receiver.
Also, the destination task may be no longer executing. Every thread has a
single associated message queue into which all sent messages are placed in
time order of arrival.

Multi-casting The message send primitive sends to just one other thread,
there is no primitive multicast or broadcast facility in Go!. However, a
message can be sent to all the threads whose handles are in some list Handles
using Go!’s forall operator:

(H in Handles *> Exp >> H)

in is Go!’s list membership primitive. More generally, we can use *> to send
a message M to thread H for each M, H satsifying some arbitrary query
condition Cond(M,H):

(Cond(M,H) *> M >> H)

For example:

(current_sub_task(Task),cannot_do(Task),cando(Ag,Task) *>
(’will_you_do’,Task) >> Ag)

Receiving messages A thread can search for and remove a message from
its message queue using a simple << message receive action, or by a executing
a choice message receive action. A << action has the form:

MsgPtn << Sender

It removes from the message queue the first message that matches Ms-
gPtn which comes from the thread identified by Sender. Typically Sender
is an unbound variable which will be bound to the handle of the sender. If
not, it serves as a check on the identity of the sender, and only messages
from that sender will be accepted by this receive action. For example:

MsgPtn << hdl(ThNm,RootNm)

2 KEY FEATURES OF GO! 10

will only accept a message matching MsgPtn from a thread within the col-
lection of threads with root name RootNm. Variable ThNm will be bound to
its thread name.

If there is no message in the thread’s message queue that matches Msg,
and is from the specified sender thread, then the << call suspends until such
a message is received. The message receive is a match operation, not a
unification, because no variable in the message term can be bound by the
message receive. Any attempt to bind a variable in a message results in
the match failure, and the next message in the queue is tested for a match.
Once a message has been accepted, variables can be bound in the message
term.

Note that it is often useful to use a test pattern, with an associated
condition. For example, the message receive action:

...;N::N<10 << S ;...

looks for a number message from thread S whose value is less than 10.
Numeric messages that are greater than 10, or messages from threads whose
handles do not unify with S, will not be picked up by this message receive.

Choice message receive Go! also has a more powerful mechanism for
receiving messages: the choice message receive. This allows a thread to
search for one of several different forms of message in a single sweep of its
message queue and to execute a different action depending on which form
of message it finds.

The recursive semaphore procedure:

semaphore(F) ->
(’req’::F>0 << H -> ’ok’>>H; semaphore(F-1)
| ’free’ << H -> semaphore(F+1)
).

uses a choice message receive comprising a disjunction of two message rules.
of the form:

MsgPtn ::Test << Sender -> Action

where Test is optional. Each (recursive) execution of the choice receive
results in a new search of the thread’s message buffer looking for either a
’req’ message, or a ’free’ message. If a ’req’ from a some sender H is
found first – and the value of F is greater than zero – the message is removed

2 KEY FEATURES OF GO! 11

from the queue and the procedure sends an ’ok’ acknowledgement back to
the sender of the message. The semaphore procedure then recurses with a
decremented value for F.

Otherwise, if a ’free’ message is found first, or if F is not currently
positive, causing all ’req’ messages to be skipped over until a ’free’ is
found, the ’free’ message is removed and we enter a tail recursive call with
an incremented value of F.

More generally, a choice message receive action operates by examining
each of the messages in the message queue; applying each of the message
patterns of its disjunction of message rules to each message in turn. As soon
as a message is found that satisfies a message pattern of some rule R, the
message is removed from the queue and the action sequence of rule R is
executed – none of the other actions in the choice message receive will be
executed. Execution of the choice message receive will suspend if there is
currently no message satisfying any of the alternative message patterns. It
is automatically resumed each time a new message arrives.

A choice message receive normally exits only when a message is received
that can be accepted by one of its message rules. However, a timeout can
be set by giving a last rule of the form:

timeout T -> default action

After reaching the end of the message buffer, it will wait for time T for an
acceptable message. It will then execute default action and exit the choice
receive.

2.5 Spawning threads

Any Go! thread can spawn new threads. The evaluation of all the threads
is time shared by the Go! run-time system. Each spawned thread also has
its own message buffer and handle identity.

As an example:

sem = spawn{semaphore(3)}

launches a new thread executing the semaphore procedure to control three
resources. The identity of the thread, its handle, is returned by the spawn
primitive and assigned to variable sem. The spawning thread, and any other
thread given access to the handle sem, can send messages to the new thread
using:

...; ’req’ >> sem; ’ok’ << sem; ...

2 KEY FEATURES OF GO! 12

The ’ok’ message receive action will suspend until a reply from sem is
received.

As an alternative to holding the handle of a spawned thread in a variable,
the programmer can assign a handle to the thread when it is launched, thus
giving a ’public’ name to the thread which can be used throughout the
program.

spawn {semaphore(3)} as hdl(’listener’,’semaphore’);
...;

’req’ >> hdl(’listener’,’semaphore’);

Such an assigned handle can even be used to send messages to the semaphore
thread from threads in other Go! processes, see section 4.1.

2.6 Theta environments

In many ways, theta environments form the ‘heart’ of Go! programs: they
are where most programs are actually defined; they are also the only place
where new types may be defined. The scope of a type definition is the theta
environment in which it appears.

A theta environment is of a sequence of statements grouped inside {}
brackets, each of which is either:

• A Var=Expression assignment

• A Type::=TypeEpression new type definition

• A Type:>TypeEpression renaming type definition

• A relation rule

• A function rule

• An action rule

• A DCG grammar[30] rule

• A labeled theta environment - a class definition (see 2.7)

• A class rule - defining an inheritance relation (see 2.7)

The statements are separated by the ‘. ’ operator2.
2Where ‘. ’ means a period followed at least one whitespace character.

2 KEY FEATURES OF GO! 13

where expressions A common use of a theta environment is a where
expression, which is an expression of the form:

Exp..ThetaEnvironment

The .. is read as where. Exp is evaluated relative to the definitions inside
ThetaEnvironment which otherwise are local the environment.

where calls As well as expressions, calls can be evaluated relative to a
theta environment. The call, whether relation or action call, is written:

Call..ThetaEnvironment

2.7 Classes and objects

Classes in Go! are labeled theta environments3, which we can view as labeled
theories as in L&O[23]. The labels can contain variables, which are global
to all the definitions of the theory.

Class definitions also double as type definitions - the functor of the class
label is impliclty defined as a new type name. It can be used to declare the
type of variables that will be bound to instances of the class.

If L is a class label, $L’ , where L’ is an instance of L in which any
variables are given values, denotes an instance of the class. The instance is
an object characterised by these values - they define its static state.

Two system classes, the dynamic relations class and the cell class, have
instances with mutable state. A labeled theory can contain variables bound
to instances of these mutable state classes. If so, instances of the theory will
be objects with mutable state.

The following labeled theory is a mini-theory of a person.

person(Nm:symbol,Age:number,Sx:symbol,Hm:string){
include "sys:go/cell.gof".

Age=$cell[number](Age).
age() => Age.get().
birthday() -> Age.set(Age.get()+1).
sex=Sx.
name=Nm.
lives(Hm)

}.
3We shall use the terms labeled theory and class interchangeably.

2 KEY FEATURES OF GO! 14

The person’s age is recorded in a variable Age bound to a mutable
cell object that is private to the theory. It is private since its name begins
with a double underscore. Age holds a cell[integer] object with initial
value Age. The Age cell is updated by the birthday action method of the
theory. An object of type cell[T] is an instance of the polymorphic cell
class exported from the included system module. It can be used to hold an
updateable value of type T. When an instance of the class is created, this
type has to be specified.

person(Nm,Age,Sx,Hm) is the theory label and Nm, Age, Sx, Hm are the
theory parameters characterizing each instance – the theory of a particular
person. The class definition implicitly introduces a new object type person.
We type annotate the class parameters since, except for Age, the method
definitions do not constrain their types and we do not need the class defi-
nition to be polymorphic with respect to the types of Nm, Sx, Hm. We need
not have typed Age.

We can create two instances of the theory, i.e. two person objects, and
query them as follows:

P1=$person(’Bill’,23,’male’,"London,England").
P2=$person(’Jane’,20,’female’,"Cardiff,Wales").
P1.name -- returns name ’Bill’ of P1

P2.age() -- returns age 20 of P2

P1.birthday() -- adds one to age of P1

P1.age() -- returns 24 as current age of P1

P2.lives(Place) -- gives solution: Place="Cardiff,Wales"

Inheritance The following is a labeled theory for a student. It inherits
from the person theory.

student(Nm,Age,Sx,Hm, ,)<=person(Nm,Age,Sx,Hm).

student(, , , ,Cge:string,Sbj:string){
lives(Pl):-location of(Cge,Pl).
lives(Pl):-person.lives(Pl).
studies at(Sbj,Cge)}.

The separate <= rule says that this theory inherits from the person theory.
Inheritance is overriding. Any relation, function or action procedure defined
in a super class is replaced by any new definition in the inheriting class. In
this case, there is a relation, lives, which is so redefined. However, the
second clause for this relation explicitly invokes the over-ridden definition in

2 KEY FEATURES OF GO! 15

the person class, which means that in this case the new definition actually
extends the old definition. Note that the student theory makes use of a
global relation location of defined outside the theory. It has a normal
definition such as:

location of("Imperial","London,England").
location of("Caltec","Pasadena,CA").
...

We can create a specific student theory and query it as follows:

S=$student(’mary’,19,’female’,"Bath,England","Imperial",
"computing")

S.lives(Place) -- has two answers:

-- Place="Bath,England",Place="London,England"

S.age() -- returns 19

Analogously to student, we can define an employee class, and then a
new class of employed student that inherits from both of these:

employee(Nm,Age,Sx,Hm,)<=person(Nm, Age,Sx,Hm).

employee(, , , ,WorkPl:string,Role:symbol){
employed as(WorkPl,Role)}.

employed_student(Nm,Age,Sx,Hm, Cge,Sbj, ,)<=
student(Nm,Age,Sx,Hm,Cge,Sbj).

employed_student(Nm,Age,Sx,Hm, , ,WorkPl,Role) <=
employee(Nm,Age,Sx,Hm, WorkPl,Role).

Note that employed student is defined solely by two class rules. We can
query an instance of the class using any of the methods and attributes of
person, student and employee. Those from the shared person super class
of student and employee are inherited only once.

The use of Go! classes for knowledge representation is more fully explored
in [7].

2.8 Modules

The following is a module that exports the single function sort. The defi-
nitions of the auxiliary relations srt and partition are local to the theta
environment and not visible outside. <> is exported from the included sys-
tem stdlib module.

2 KEY FEATURES OF GO! 16

sort .. {
include "sys:go/stdlib.gof".
sort(list,lesseq) => srt(list) .. {

srt([]) => [].
srt([E,..X]) :: partition(X,E,A,B) =>

srt(A)<>[E,..srt(B)].
partition([],_,[],[]):-- true.
partition([E,..X],Piv,[E,..A],B)::lessq(E,Piv):--

partition(X,Piv,A,B).
partition([E,..X],Piv,A,[E,..B])::\+lesseq(E,Piv)4:--

partition(X,Piv,A,B).
}}

The sort function is parameterized with respect to the ordering relation
used to compare elements of the list. It is defined in terms of the auxilliary
definitions for srt and partition, themselves introduced in a subsiduary
where expression. This illustrates how where expressions may be used at
many levels – not just the top-level of a program. Note that the lesseq
variable – which holds the ordering relation – is only mentioned where it is
important: where it is introduced as a parameter of sort and where it is used
in partition. This is an example of variables having a somewhat extended
scope compared to Prolog. In Prolog, to achieve the same effect, we would
have had to ‘pass down’ the lesseq relation through all the intermediate
programs from the top-level to where it is needed.

Executable programs An executable program is a module that exports
a single action procedure value, this is the procedure that will be called
when the program is run. The execution of the procedure will be the initial
thread of the program.

2.9 Higher order values

A call to sort must supply the list to be sorted and the lesseq relation. In
many cases this relation is given as the value of a variable with a higher order
value5; however, it is also possible to use a lambda rule, or a disjunction of

4Given the operations semantics of iff rules, this \+ test could be dropped
5Note the contrast with Prolog. In Prolog a relation is passed as argument by passing

in its name - which is an atom. Prolog’s meta-level call is then used to map the name
to the value at run-time by accessing a run-time dictionary linking atom names with code
values. In Go! the code value is passed, not the name.

2 KEY FEATURES OF GO! 17

such rules, to give an on-the-fly definition of the relation. For example, in
the call:

sort([Some list of number lists],
((L,L):--true
| (L1,L2)::listlen(L1) =< listlen(L2):--true
| (L1,L2)::listlen(L1) = listlen(L2):--

less_at(L1,L2)..{
less_at([N1,.._],[N2,.._])::N1<N2:--true.
less_at([N,..L1],[N,..L2]):--

less_at(L1,L2)}
))

the second argument is a disjunction of lambda relation rules that uses the
standard =< relation to define an ordering for pairs of lists of numbers. The
first rule says that a pair of identical lists are in the relation. The second
includes each pair where the first list is shorter than the second ordered. The
third covers the case of non-identical lists of the same length. It includes
a pair of lists L1,L2 if they are identical up to some elements N1 in L1, N2
in L2, such that N1<N2. It uses an auxiliary relation less at defined in a
where call.

Go! has lambda forms of all of its rule types: relation rules, function
rules, action rules and grammar rules.

2.10 Types

Go! is a strongly typed language; using a form of Hindley/Milner’s type
inference system[27]. For the most part it is not necessary for programers to
associate types with variables or other expressions. However, all constructors
and unquoted symbols are required to be introduced using type definitions.
If an identifier is used as a function symbol in an expression it is assumed
to refer to an ‘evaluable’ function unless it has been introduced in a type
definition as a data constructor.

The type of a non-polymorphic relation, such as a relation whose exten-
sion is a set of pairs, each pair comprising a symbol and a lists of numbers,
is denoted by the type expression:

(symbol,list[number]){}

Here, list[number] is the Go! type expression for list of numbers, and the
postfix {} signals a set of pairs, i.e. a binary relation.

2 KEY FEATURES OF GO! 18

In Go! the type expressions for polymorphic relation, function and pro-
cedure types contain type variables instead of specific type names, and they
are quantified with respect to these type variables. Type quantification is
denoted by the varlist−type form, where all the variables in varlist are
implicitly universally quantified.

The type of sort is

[t]-((list[t],(t,t){})=>list[t])

i.e., it is a polymorphic function – it can sort lists of any type. sort takes
a list and a relation as arguments and returns a list of the same type.6

Any values Heterogeneous types of values can be included in a list of
type list[any]. The list:

[??1,??’a’,??"hello"]

is such a list. The ?? prefix operator maps any data value into the Go!
standard type any.

The type of a value V in a ??V term is not visible outside the term, but
its type is remembered as a hidden second argument of the term. In that
an any value hides an encapsulated type it is similar to what is called an
existential type[3].

When unifying two ?? terms, the hidden types are also compared – at
run-time if necessary. Thus the unification of two ?? terms succeeds only if
the hidden types are identical and the encapsulated values unify.

As an example, suppose A is a variable of type any holding some ?? term.
The unification:

A=??(W:list[number])

where W is an unbound variable, will succeed if and only if A encapsulates a
list of numbers. Thereafter, W, with type list[number], can be used in any
context where a list of numbers is required, and we have effectively extracted
the list of numbers hidden inside A.

6Note that while sort is polymorphic, its argument relation is not. This must be a
relation over the values on its argument list. If sort required a polymorphic relation in
its second argument, its type would be: [t]-((list[t],[s]-(s,s){})=>list[t])

2 KEY FEATURES OF GO! 19

Messages sent as any values Messages are passed between threads as
any values. The primitive message send and receive actions of Go! are both
of type (any,handle)*, the * indicating an action type. They are denoted,
respectively, by the operators ?>> and <<?. A message send Msg >> H is
actually shorthand for ??Msg ?>> H and is expanded to this by the compiler.
Similarly, MsgPtn << H is shorthand for ??(MsgPtn:T) <<? H where T is
the inferred type of MsgPtn.

Programmer defined types The pair of type definitions:

dance::= polka | jive | waltz | tango | quickstep | samba.
Desire::= toDance(dance,number) | barWhen(dance).

introduce two new types. An enumerated type dance, which has 6 literal
values:

polka, jive, waltz, tango, quickstep, samba

and a Desire type that has two constructor functions toDance and barWhen.
Each symbol literal and constructor name can only be used in a single type
definition within the same theta environment.

These types will be used in our ballroom application. The Desire type
defines the terms that will be stored in the dynamic relation representing
the agents desires. The compiler will check that only terms such as:

toDance(polka, 3), barWhen(samba)

are used to represent an agent’s desires.

Object types and object interfaces As mentioned earlier, a class def-
inition implicitly defines a new type - the type of the instances of the class.
Go! can usually infer the type of a variable from its use, however, since
methods and attributes are not unique to a class, it cannot infer the object
type of a variable from method invocation use.

For example, the procedure definition:

display_person_details(P) ->
stdout.outLine("Name is: "<>P.name^0);
stdout.outLine("Age is: "<>P.age()^0);
...

will generate a compiler error since the object type of P cannot be deter-
mined. To make it into a procedure for displaying the key attribute values
of any person object we need to use:

3 DYNAMIC RELATIONS 20

display_person_details(P:person) -> ...

To make it a procedure for displaying the details of any person object, or
any object ’declared’ to include all the attributes and methods of a person,
i.e. to implement the person interface, we use:

display_person_details(P<˜person) -> ...

Automatically, all subclasses of the person class implement its interface so
this is now a procedure for displaying the person level details of students,
workers etc.

3 Dynamic relations

In Prolog we can use assert and retract to change the definition of a
dynamic relation whilst a program is executing. In Go!, a dynamic relation
is an object with updateable state. It is an object of type dynamic[T], T
being the type of the argument of the dynamic relation. All Go! dynamic
relations are unary, but the unary argument can be a tuple of terms.

A dynamic relation object has methods: add(Trm), for adding Trm to
the end of the current extension of the relation, del(TrmPtn) for removing
the first term in the relation that unifies with TrmPtn, delall for removing
all unifying terms, mem(TrmPtn), for accessing each current term that unifies
with TrmPtn, and finally ext for retrieving the current extension as a list of
terms.

Creating a new dynamic relation A dynamic relation object can be
created and initialised as in:

desire = $dynamic[Desire]([toDance(jive,2),
toDance(waltz,1),...,barWhen(polka)])

The above initialisation is equivalent to giving the following sequence of
clauses for a Prolog dynamic relation:

desire(toDance(jive,2)).
desire(toDance(waltz,1)).
...
desire(barWhen(polka)).

3 DYNAMIC RELATIONS 21

Querying a dynamic relation If we want to query such a dynamic
relation we use the mem relation method as in:

desire.mem(todance(D,N)),N>2

Modifying a dynamic relation To modify a dynamic relation we can
use the add, and del action methods. For example:

desire.del(toDance(jive,N));desire.add(toDance(jive,N-1))

This is analogous to the following sequence of Prolog calls:

retract(desire(toDance(jive,N)),NewN is N-1,
assert(desire(toDance(jive,NewN)))

One difference is that we cannot backtrack on a del call to delete further
matching facts. This is because it is an action, and all Go! actions are
deterministic. A del call always succeeds, even if there is no matching
term. The delall method deletes all unifying facts as a single action:

desire.delall(barWhen(_))

will delete all current barWhen desires.

Dynamic relations with rules To allow run-time manipulation of dy-
namic relations defined by rules we can store a pair of values - a term
representing the head of the rule, and a relation lambda rule of type (){},
which is its body. Variables in the head term can appear as global variables
in the body of the lambda. As an example:

Likes=$dynamic[((symbol,symbol), (){})](
[((’peter’,’mary’), (():-true)),
((X,Y), (():-parent of(X,Y)))]).

initialises likes to a dynamic relation over pairs of symbols containing two
’clauses’. The first tells us that (’peter’,’mary’) is in the relation, the
second that any pair (X,Y) is in the relation providing a call to:

():-parent of(X,Y)

succeeds – providing parent of(X,Y).
We can add to the relation using:

3 DYNAMIC RELATIONS 22

Likes.add(((X,Y),(():-same_family(X,Y),\+ hates(X,Y))))

and query it as in:

{Y || Likes.mem(((’peter’,Y),Body)),Body()}

This will find all the Y’s whom ’peter’ likes given suitable definitions of
the other three relations. To make querying easier, we can define:

likes(X,Y) :- Likes.mem(((X,Y),Body)),Body().

and use:

{Y || likes(’peter’,Y)}

3.1 Multi-threaded applications and data sharing

It is often the case, in a multi-threaded Go! application, that we want the
different threads to be able to share information. For example, in a multi-
threaded agent we often want all the threads to be able to access and perhaps
update the beliefs of the agent.

We can represent the relations for which we will have changing infor-
mation as dynamic relations. A linda dynamic relation is an instance of
a subclass of the dynamic relations class with extra methods to facilitate
the sharing of dynamic relations across threads. It has a replace method,
allowing the deleting and adding of a term to be executed atomically, and,
as well as the inherited mem, is has a memw relation method. A call:

LinRel.memw(Trm)

will suspend if no term unifying with Trm is currently contained in LinRel.
It will resume as such a term is added by another thread. There is also a
dual, notw.

LinRel.notw(Trm)

will suspend if a term unifying with Trm is currently contained in LinRel. It
will resume when all such terms are deleted by other threads. There is also a
suspending delete method, delw. If need be, it will wait until some unfying
term is added before immediately deleting it. delw calls are queued.

memw and delw and the analogues of the Linda[4] readw and inw methods
for manipulating a shared tuple store. There is no analogue of notw in Linda.

4 A DIRECTORY SERVER EXAMPLE 23

4 A directory server example

Agent applications often make use of a directory server or match-maker
which enables agents to discover one another using descriptions. Our direc-
tory server given below stores descriptions as arbitrary length lists of terms
of type dscrTrm, which is an application specific data type.

The DSmessage type defines the type of the message protocol of the
directory server. This is a common use of new type. A register message
is declared to have an argument of type descrip, which is a list of dscrTrm
terms, as is a subscribe message.

The description dynamic relation holds the lists of dscrTrm terms
contained in each received registration message. subcription holds pairs -
handle of a subscriber, and a list of dscrTrm terms.

directory server..{
include "sys:go/dynamic.gof".
... -- type defs defining dscrTrm

descrip :> list[dscrTrm].
DSmessage ::= register(descrip) | subscribe(descrip) |

inform(descrip).
description=$dynamic[descrip]([]).
subscription=$dynamic[(handle, descrip)]([]).

matching descr(DsrcPtn, RegDscr) :-
(Term in DsrcPtn *> Term in RegDscr).

inform_if_match(DsrcPtn,RegDscr,S) ->
(matching_descr(DsrcPtn,RegDscr) ?

inform(DscrPtrn) >> S
| {}).

directory server() ->
(register(RegDescr) << _ ->

description.add(RegDescr);
(subscription.mem(S, DscrPtrn) *>

inform_if_match(DscrPtrn,RegDscr,S)
| subscribe(DsrcPtn) << S ->

subscription.add((S,DsrcPtn));
(description.mem(RegDescr) *>

inform_if_match(DsrcPtn,RegDscr,S))
);
directory server()}

4 A DIRECTORY SERVER EXAMPLE 24

Using the directory server The directory server is designed to be ex-
ecuted in a separate thread, perhaps in a separate Go! process, and agents
communicate with it using message send and message receive actions.

Given the type definition for the descriptive terms that will be used, such
as:

Sex::= male | female.
dscrTrm::= name(symbol) | sex(Sex) | ...

an agent can register with the directory with a registration message, such
as:

register([name(’sally’),sex(female),...]) >> DS

This will record a list of dscrTrm terms in the directory server DS.
An agent can also send a subscribe message such as:

subscribe([sex(female),name(_),...]) >> DS

which contains a partial description, including terms with unbound vari-
ables.

Such a message is understood as a request for a stream of inform mes-
sages to be sent as response, all of which contain an instantiation of the
partial description. For example:

inform([sex(female),name(’mary’),...])

The instantiation is done by the call to matching descr.
The directory server module can be imported into another program,

and its exported procedure spawned as a directory server to be used by
all the other threads spawned in the program. It can also be executed as
a separate stand-alone Go! process as described in the next section. Go!
agents executing in separate processes, even on other hosts, can use it to
advertise their attributes and to discover one another.

This directory server is by no means complete; a more elaborate di-
rectory server would also accept de-registration messages and un-subscribe
messages. If intended for a public environment it would also require a tech-
nique for authenticating clients. However, this program is sufficient for the
dancer agents in our ‘ballroom’ scenario.

5 MULTI-THREADED DANCER AGENTS AT A BALL 25

4.1 Distributed use

Full discussion of how a Go! application can be distributed over a network
is beyond the scope of this paper and is described in [24]. In brief, to
distribute a Go! application we make use of a separately launched message
router, which is an April program, a Go! system module that communicates
with the router using TCP/IP, and the ability we have to launch a Go!
program with command line options that determine the handle of its initial
thread.

Using this last feature, we can launch the directory server program so
that its initial and only thread has a public handle, such as:

hdl(’receiver’,’directory’)

In addition, we slightly modify its program by importing the router commu-
nications module and by making its initially executed procedure one that
executes the directory server procedure indirectly, by being passed as ar-
gument to a higher order procedure scsconnect. scsconnect is exported
from the communications module. It has another argument which is the
identity of the host on which the router is running. It opens a connection
with the router, registers the assigned handle with it, and then executes
directory server in a special mode that allows external thread communi-
cation via the router.

Any messages sent by the directory server to external threads now get
automatically sent to the router for forwarding. Conversely, any messages
with destination

hdl(’receiver’,’directory’)

sent by threads in other Go! processes, similarly connected to the router,
get sent to the router for forwarding to the directory server.

5 Multi-threaded dancer agents at a ball

In our agents’ ball, we have male and female dancer agents, a directory
server, and a band that ‘plays’ music for different kinds of dances, with
intervals between each dance. The directory server and the band ’are’ the
ball. The dancers ’arive’ in some random phased order. They use the
directory server to discover the identities and dance desires of dancers of
opposite gender, and negotiate with one another to do a dance, or go to the
bar. This scenario is a compact use case that demonstrates many of the
aspects of building intelligent agents and of coordinating their activities.

5 MULTI-THREADED DANCER AGENTS AT A BALL 26

Following the BDI model[2][32], each agent has a belief, a desire and
an intention store each implemented as a linda dynamic relation. The
belief store contains beliefs about the desires of other dancers, what dance
tune is currently being played, if any, and what intentions have been success-
fully executed. The desire store contains the currently unfulfilled desires.
The intention relation holds current intentions. An intention is a com-
mitment to a joint activity with another dancer the next time the band
announces a particular dance, such as a polka. It is either to dance, or to
go to the bar.

5.1 The male dancer agent

Below we give the overall structure of the male dancer class. Each instance
of the class will have its own state represented by the three linda dynamic
relations.

A call to the start method is spawned as a new thread immediately
after an instance is created. To create a new male dancer we execute:

spawn {($maleDancer(Name ,Desires)).start()}

start adds each desire of the given Desires argument to the dancer’s desire
relation. It then spawns three threads: one to execute intentions when the
triggering dance announcement occurs, one to negotiate with other dancers
to generate new joint commitment intentions, one to interface with the di-
rectory server.

maleDancer(MyNm,MyDesires){
Belief::= hasDesires(symbol, list[Desire]) |

haveDanced(dance,symbol) |
bandPlaying(dance) |
ballOver.

dance::= polka | jive | waltz | ...
Desire::= toDance(dance,number) | barWhen(dance).
Intention ::= toDanceWith(dance,symbol) |

toBarWith(dance,symbol).
Sex::= male | female.

belief=$linda[Belief]([]).
believe(B):-belief.mem(B).
desire=$linda[Desire]([]).
want(D):-desire.mem(D).

5 MULTI-THREADED DANCER AGENTS AT A BALL 27

intention=$linda[Intention]([]).
intend(I):-intention.mem(I).

maleIntention=maleIntention..{
-- inner module to be given }.

DSinterface= DSinterface..{
-- inner module to be given }.

satisfyDesires=satisfyDesires..{
-- inner module to be given }.

start() ->
(Des on MyDesires *> desire.add(Des));
spawn {maleIntention()} as hdl(’execTh’,MyNm);
spawn {satisfyDesires()} as hdl(’negTh’,MyNm);
spawn {DSinterface()};
waitfor(hdl(’execTh’,MyNm)).

}

The first two are assigned handle identities with root name the name of the
dancer and standard thread names. This facilitates the inter-thread com-
munication between the dancers. The threads within a dancer communicate
with each other using the shared linda dynamic relations: belief, desire
and intention accessed as global variables of the inner modules defining
their procedures. After spawning the three threads the start procedure
waits for the intention execution thread to terminate, which it does when
the band announces the ball is over. At this point the start procedure will
terminate, automatically terminating the spawned negotiation and directory
interface threads.

All three sub-threads execute concurrently. The data flow between the
threads is depicted in the architecture figure. Each update and access to
one of the shared stores is atomic, and a thread may suspend waiting for an
item to be added to a store by another thread.

Note that while all the dancers can be executed in a single invocation
of the Go! engine, they will not have direct access to each others’ beliefs,
desires and intentions since each instance of the class has its own copies
of the three linda relations. Furthermore, it is a simple task to distribute
the progam across multiple invocations and hosts, making each dancer a
separate Go! process.

5 MULTI-THREADED DANCER AGENTS AT A BALL 28

Agent architecture

DS
Interface

Th

Int
Exec
Th

Neg
Th

beliefs intentionsdesires

Messages
To/From DS Messages

from Band

Other dancers

Other dancers

5.2 A dancer’s directory interface thread

Each dancer registers with the directory its name, gender, and its initial
desires. It then subscribes for details of all other registrations of opposite
gender.

DSinterface..{
DS=hdl(’main’,’dir’)7.
dscrTrm::=name(symbol)|sex(Sex)|desires(list[Desire]).
DSmessage ::= ... -- as in directory server.

DSinterface() ->
register([name(MyNm),sex(male),desires(MyDesires)])

>> DS;
subscribe([sex(female),name(_),desires(_)]) >> DS;
acceptDSinforms().

7We assume that the directory server has been spawned with this handle, per-
haps as a separate process.

5 MULTI-THREADED DANCER AGENTS AT A BALL 29

acceptDSinforms() ->
inform([_,name(Nm),desires(Dsrs)]) << DS;
belief.add(hasDesires(Nm,Dsrs));
acceptDSinforms().

}

The acceptDSinforms procedure – which is the continuation of the interface
thread after the initial registration – iterates, processing one inform message
on each iteration. Initially these will be messages giving details of female
dancers already at the dance. Thereafter, they will be messages sent when
new females arrive and register. The procedure waits for each of these
messages, processing it as soon as the message arrives. The added belief
about the new dancer can then be used by the negotiation thread.

5.3 A male dancer’s intention execution thread

A dancer’s intention execution thread handles the execution of intentions
when they are triggered by dance announcements. We assume a band agent
which sends an announcement message to every currently registered dancer
when it starts, and when it stops playing each dance ‘number’.

maleIntention= maleIntention..{
bandMessage::=starting(dance) | stopping |

ball over.
danceMessage::=shallWeDance(dance) | myPleasure(dance).
Band=hdl(’main’,’band’)8.
maleIntention() ->
(starting(D) << Band ->

belief.add(bandPlaying(D));
check intents(D);
maleIntention()

| stopping << Band ->
belief.del(bandPlaying());
maleIntention()

| ball over << Band -> belief.add(ballOver)
).

8As with the directory server, we assume the band thread is sepa-
rately launched and given this handle.

5 MULTI-THREADED DANCER AGENTS AT A BALL 30

check intents(D) ->
(intend(toDanceWith(D,FNm)) ?

intention.del(toDanceWith(D,FNm));
maleDance(D,FNm)

| (intend(toBarWith(D,...)) ? ...
).

... -- definition of maleDance }

The maleIntention action procedure is a recursive loop that listens for
messages from the band that signal: the starting of a new dance, the stop-
ping of the current dance, and that the ball is over. A ball over message
terminates the loop. It also maintains an appropriate belief recording when
and what the band is playing, and when the ball is over. These beliefs are
accessed by the negotiation thread.

When it receives a starting(D) message, and there is an intention to
do dance D, the maleDance procedure is executed. The intended partner
will similarly have called its corresponding femaleDance procedure and the
interaction between the two intention threads, respectively executing their
dance procedures, is the joint dancing activity. The dance procedures ter-
minate when the stopping message is received.

Note that the maleDance procedure below increments the dancer’s de-
sires to dance D if the stopping message is received before the myPleasure
reply from female FNm; and he ’forgets’ about FNm - the belief about her
desires is deleted as are any other intentions involving her. Getting no reply
is interpreted to mean she has ’left’ the ball. A late arriving reply from FNm
will now just be ignored. It increases its desires to do D because they will
have been decreased by 1 when the commitment to dance was made.

maleDance(D,FNm)->
shallWeDance(D) >> hdl(’execTh’,FNm);
(myPleasure(D) << hdl(’execTh’,FNm) ->

stopping << _; -- ’dance’ till end of D

belief.add(haveDanced(D,FNm))
| stopping << _ -> -- FNm has probably left the ball

forget about(FNm);
{want(toDance(D,N))};
desire.replace(toDance(D,N),toDance(D,N+1))

);
belief.del(bandPlaying(D)).

5 MULTI-THREADED DANCER AGENTS AT A BALL 31

5.4 A male dancer’s negotiation thread

The procedures executed by the negotiation threads of our dancers are the
most complex. They represent the rational and pro-active activity of the
agents for they convert desires into intentions taking into account current
beliefs, desires and intentions. In contrast, the intention execution and di-
rectory interface threads are essentially reactive.

A male dancer’s negotiation thread must decide which uncommitted de-
sire to try to convert into an intention and which female to invite to partici-
pate. This may result in negotiation over which dance they will do together,
for the female who is invited may no longer want to do that dance, may
prefer to do another, or may already be committed to doing it. (We allow a
dancer to enter into at most one joint commitment to do a particular type
of dance since this is understood as a commitment to do the dance the next
time that dance is announced.)

The overall negotiation procedure is satisfyDesires:

satisfyDesires() ->
{belief.notw(bandPlaying(_))};
(chooseDesire(Des,FNm),still ok to negotiate() *>

negotiateOver(Des,FNm));
{belief.memw(bandPlaying(_))};
satisfyDesires().

still ok to negotiate():-
\+ (believe(bandPlaying(_)) | believe(ballOver)).

The first action of satisfyDesires is the notw call. This is a query action to
the belief relation that will suspend, if need be, until any bandPlaying()
belief is removed by the intention execution thread that is ’listening’ to the
band. As an ’etiquette’, our dancer agents can start a negotiation only if
the band is not playing.

As soon as that belief query succeeds, there is an attempt to convert
into commitments as many unsatisfied desires as possible during the dance
interval. This is the *> forall loop of the procedure. Each negotiation is
with a named female FNm whom the male dancer believes shares that desire.
Before starting each negotiation the dancer checks that it is still ’ok’ to
negotiate - it checks that it does not believe the band has started playing,
or announced that the ball is over. When the negotiation loop terminates,
in case this is before the band has restarted, the dancer checks if it believes
the band is playing and waits if not. (It does this to ensure there is only one
round of negotiations in any dance interval.) The procedure then recurses

5 MULTI-THREADED DANCER AGENTS AT A BALL 32

for a new round of negotiation when the band next stops playing. The
procedure suspends if the dancer believes the ball is over.

At the next dance interval, the answers returned by chooseDesire will
almost certainly be different because the beliefs, desires and intentions of the
dancer will have changed and new female dancers may have arrived. Even
if one answer is the same, a re-negotiation may have a different outcome
because of changes in the female’s mental state.

chooseDesire(toDance(D,N),FNm) :-
uncmtdFeasibleDesire(toDance(D,N),FNm),
(want(toDance(OthrD,OthrN)),OthrD\=D *> OthrN<N).

chooseDesire(toDance(D,N),FNm) :-
uncmtdFeasibleDesire(toDance(D,N),FNm),
\+ believe(haveDanced(D,_)).

chooseDesire(toDance(D,N),FNm) :-
uncmtdFeasibleDesire(toDance(D,N),FNm),
\+ believe(haveDanced(D,FNm)).

chooseDesire(toDance(D,N),FNm) :-
uncmtdFeasibleDesire(toDance(D,N),FNm).

uncmtdFeasibleDesire(toDance(D,N),FNm) :-
uncmtdDesire(toDance(D,N)),
believe(hasDesires(FNm,FDesires)),
toDance(D,_) in FDesires.

uncmtdDesire(toDance(D,N)):-
want(toDance(D,N)), N>0,
\+ intend(toDanceWith(D,_)).

uncmtdDesire(barWhen(D)):-
want(barWhen(D)),
\+ intend(toBarWith(D,_)).

The above clauses for chooseDesire are tried in order, which reflects
priorities. The clauses only select a dance desire. The minimal requirement
for choosing a desire toDance(D,N) and a female FNm is: N>0, there is no
current commitment to do the dance D, and FNm is believed to want to do D.

The first rule selects a dance if, additionally, the dancer at that point
desires to do the dance more times than any other dance. The second selects
a dance if it has not so far been danced with any partner. The third rule
selects it if it has not so far been danced with the female who will now be
asked. The last, default rule, selects any dance desire satisfying the minimal
requirement. A male with this chooseDesire definition only actively tries

5 MULTI-THREADED DANCER AGENTS AT A BALL 33

to satisfy dance desires, but it could still end up with an intention of going
to the bar as a result of negotiation with a female dancer.

Below is a negotiateOver procedure embodying a simple negotiation
strategy.

ngtMess::= willYouDance(dance) | okDance(dance) |
sorry | goBarWhen(dance) | okBarWhen(dance).

negotiateOver(toDance(D,N),FNm) ->
ngtOverDance(D,N,FNm,[]).

ngtOverDance(D,N,FNm,PrevDs) ->
willYouDance(D) >> hdl(’negTh’, FNm);
(okDance(D) << hdl(’negTh’, FNm) ->

desire.replace(toDance(D,N),toDance(D,N-1));
intention.add(toDanceWith(D,FNm))

| sorry << hdl(’negTh’, FNm) -> {}
| willYouDance(D2)::

uncmtdDesire(toDance(D2,N2)) << hdl(’negTh’,FNm)->
intention.add(toDanceWith(D2,FNm));
desire.replace(toDance(D2,N2),toDance(D2,N2-1));
okDance(D2) >> hdl(’negTh’, FNm)

| willYouDance(D2) << hdl(’negTh’, FNm) ->
counterP(FNm,[D,D2,..PrevDs])

| goBarWhen(D2)::
uncmtdDesire(barWhen(D2)) << hdl(’negTh’,FNm) ->
intention.add(toBarWith(D2,FNm));
desire.del(barWhen(D2));
okBarWhen(D2) >> hdl(’negTh’, FNm)

| goBarWhen(D2) << hdl(’negTh’, FNm) ->
counterP(FNm,[D,D2,..PrevDs])).

counterP(FNm,PrevDs)::
chooseDesire(toDance(D,N),FNm),\+(D in PrevDs)->

ngtOverDance(D,N,FNm,PrevDs).
counterP(FNm,_) ->

sorry >> hdl(’negTh’,FNm).

The negotiation is with the negotiation thread hdl(’negTh’, FNm) in the
female dancer with name FNm. We assume, as with the male dancers, that
this thread will have been spawned with this assigned handle.

5 MULTI-THREADED DANCER AGENTS AT A BALL 34

The negotiation starts with the male sending a willYouDance(D) mes-
sage to her negotiation thread. There are four possible responses: an
okDance(D) accepting the invitation, a sorry message declining, a counter
proposal to do another dance, or one to go to the bar when some dance is
played. A counter proposal is accepted if it is currently an uncommitted de-
sire. (This is when a male dancer may enter a commitment to go to the bar.)
Otherwise, the male’s counterP procedure is called to find an alternative
dance to suggest. An alternative is suitable if it is a dance that satisfies the
chooseDesire constraint for female FNm and it is different from all previ-
ous dances already mentioned in this negotiation (the PrevDs argument). If
there is such a dance, the dance negotiation procedure is re-called to invite
FNm to do this new dance. If no alternative new dance can be found, a sorry
message is sent and the negotiation with this female ends.

5.5 A female dancer

The female dancer is similar to the male dancer; we assume that the female
never takes the initiative. The female negotiation thread must wait for an
initial proposal from a male but thereafter it can make counter proposals.
It might immediately counter propose a different dance or to go to the bar,
depending on its current desires and commitments.

5.6 The band

The band agent is a two threaded agent with one shared linda dynamic
relation containing the names of dancers at the ball. One thread subscribes
to the directory server in order to be sent the name of each dancer as it
arrives at the ball and registers. The other thread recurses over a list of
dances, which are its schedule of dances for the ball. For each dance D
on the schedule it sends a starting(D) message to the intention execution
thread of every dancer it currently knows about. It then pauses for a time
dependent upon D before sending the stopping message to each dancer.
After a delay for the inter-dance interval, when the dancers will negotiate,
it announces the next dance on its schedule. When it reaches the end of the
schedule, it sends the dance over message.

6 RELATED WORK 35

6 Related Work

6.1 Logic Based Programming Languages

Qu-Prolog[8], BinProlog[34], CIAO Prolog [5], SICStus-MT Prolog[10], IC-
Prolog II[6] are all multi-threaded Prolog systems. The closest to Go! are
Qu-Prolog and IC-Prolog II.

Threads in Qu-Prolog communicate using messages or via the dynamic
data base. As in Go!, threads can suspend waiting for another thread to
update some dynamic relation. Threads in IC-Prolog II communicate either
using unidirectional pipes, shared data base, or mailboxes. Mailboxes must
be used for communication between threads in different invocations of IC-
Prolog II. The language also has the L&O extension[23]. Neither language
has higher order features or type checking support, and all threads in the
same invocation share the same global dynamic data base. In Go!, a dynamic
relation is the value of a variable. Only threads whose procedures access
the variable as a global variable, or which are given access to the dynamic
relation via a call argument or a message, can access it.

SICStus-MT[10] Prolog threads also each have a single message buffer,
and threads can scan the buffer looking for a message of a certain form.
But this buffered communication only applies to communication between
threads in the same Prolog invocation. Threads running on different hosts
must use lower level TCP/IP communication primitives.

In BinProlog[34], threads in the same invocation communicate using
Linda tuple spaces[4] acting as shared information managers. BinProlog also
supports the migration of threads, with the state of execution remembered
and moved with the thread9. The CIAO Prolog system [5] uses just the
global dynamic database for communicating between thread’s in the same
process. Through front end compilers, the system also supports functional
syntax and modules.

Mozart/Oz[36] is a higher order, untyped, concurrent constraint lan-
guage with logic, functional and object oriented programming components.
Threads must be explicitly forked and can communicate either via shared
variables bindings in the constraint store, which acts as a shared memory,
or ports which are multiple writer/single reader communication channels
similar to Go! message queues. Threads in different hosts can communicate

9A Go! thread executing a recursive procedure can also be migrated by sending a
closure containing a ’continuation’ call to this procedure in a message. The recipient then
spawns the closure allowing the threads computation to continue in a new location. The
original thread can even continue executing, allowing cloning.

6 RELATED WORK 36

using a ticket, which is an ascii string public name for a port.
Mercury[38] is a pure logic programming language with polymorphic

types and modes. The modes are used to aid efficient compilation. It is not
multi-threaded.

Escher [22], and Curry [16] are both hybrid logic/functional program-
ming languages with types, the latter with type inference similar to Go!.
They differ from Go! in using lazy evaluation for functions and Curry uses
narrowing - function evaluations can instantiate variables in the calls. In [21]
an ensemble primitive for Escher is proposed that forks a set of threads.
The threads communicate via a shared global blackboard that contains mu-
table variables has well as I/O channels and files. Curry also has concurrent
execution. Its threads communicate, as in concurrent logic programming,
via incremental binding of shared variables, or via Oz style ports.

Concurrent MetateM [14] is based on temporal logic. Each agent exe-
cutes a program comprising a set of rules with preconditions that refer to
past or current events. The rules specify future events that may or must
occur, that are in the control of the agent. A broadcast communication to
all other agents is one such event. Receipt of a message of a certain form
might be a current or past event. The agent uses the rules to determine its
behaviour by endeavoring to make the description of the future implied by
the rules and events come true.

Dali[9] is an extension of Prolog which has reactive rules as well as normal
clauses. It is untyped and not explicitly multi-threaded. The reactive rules
define how a Dali agent reacts to external and internal events. The arrival
of a message sent by another agent is an external event, as is a signal, such
as alarm clock ring, sent by the environment. An internal event is a goal
G that can be inferred from the history of past events. Internal events are
generated as a result of the agent automatically attempting to prove certain
goals at a frequency that can be specified by try G ... statement. The
automatic retrying of these goals gives the agent implicit multi-threading.
In that a Dali program determines future actions based on the history of
past events, it is similar to Concurrent MetateM [14].

6.2 Agent programming languages

Agent0[33], the related Placa[35], AgentSpeak(L)[31], 3APL[19], Vip[20]
and ConGolog[15] are all proposals for higher level agent programming lan-
guages.

Agent0 was the first language to be proposed for agent programming.
A defined communication protocol for inter agent communication is a key

6 RELATED WORK 37

component. Agents can transfer information and send requests to one an-
other to perform actions at a specified future time. There are three message
types: inform, request and unrequest. The agents are purely reactive,
they only do things on request. If a request is accepted, this generates a
commitment to do the requested action when its time is due providing the
agent remains capable of doing it.

An Agent0 agent is programmed by being given a repertoire of primitive
actions, an initial set of beliefs, a set of commitment rules that are used to
respond to messages, and a set of capability rules. A commitment rule could
constrain an agent to only accept inform or request messages from specified
agents. The commitment rules are like Go! message receive rules. When the
commitment rules allow acceptance of some request for a private action, the
agent must still query its capability rules to determine whether or not it is
capable of performing the action at the requested time taking into account
its current commitments and beliefs. (Our dancer agents similarly check
against current commitments, and take into account their current dance
desires - which can be viewed as a reflection on their dancing capabilities -
before accepted a dance request.)

An Agent0 agent executes in a cycle: process all incoming messages
updating beliefs and adding new commitments as necessary; prune commit-
ments that it no longer believes it is capable of doing; execute all commit-
ments that must be done at this time; repeat. The Agent0 commitments
are similar to our dancer’s intentions except that execution of an Agent0
commitment is triggered by a time rather than an event, and they are not
commitments to joint action.

Placa[35] is an extension of Agent0 to allow agents to request achieve-
ment of a goal as well as a basic action. To handle a goal request the agent’s
have a plan library with conditions of applicability that are checked against
the mental state. Plans are sequences of actions and sub-goals. As part
of its cycle, a Placa agent does plan selection, and then plan refinement
under a time constraint. Plan refinement is the expansion of sub-goals of
a selected plan using other plans in the plan library. This contrasts with
the use of plans in classic BDI architectures such as AgentSpeak described
below. There subgoals are only expanded when they are reached during ex-
ecution of the plan so that the selection of the plan for the sub-goal can take
into account changes in the beliefs of the agent at that later time. A Placa
agent uses spare cycle time to expand its plans, thereby saving delays in
plan execution, but the early expansions may need to be abandoned due to
updated beliefs when the sub-plan is reached. This is similar to an Agent0
agent dropping a commitment if it comes to believe it is no longer capable

6 RELATED WORK 38

of perfoming the action.
AgentSpeak(L)[31] assumes an agent state comprising a set of events

E, a set of beliefs B, and a set of intentions I. As in Dali[9], events are
either external or internal. The external events correspond to inputs from
the agent’s environment. Internal events are generated during execution of
a plan.

Events are terms of the form: +B, -B, which are events to add or remove
a belief B, or of the form: +!B, -!B, which are events to add or drop an
achievement goal !B. All internal events are +!B events. !B can be under-
stood as the goal to achieve a state of the environment which will reported
to the agent by an external +B event.

A plan is a rule of the form:

e:b1,..,bn -> a1;...;ak

where e is the event term head of the rule, the bi are belief terms comprising
the guard, and ai are action terms or goals to be sequentially executed if
the plan is invoked. It is invocable only if e matches some event in E and
the bi all match some belief in B. A plan action term denotes an external
action on the environment. A plan goal is either an achievement goal !B,
or a test goal ?B. When plan execution reaches an !B goal this results in a
+!B internal event being generated. A test goal ?B is a query to the agents
belief store.

The plan rules are very similar to Go!’s action rules especially if we in-
terpret an event as a message - an internal event being a message sent by the
agent to itself - and actions as messages sent to the environment. The belief
store corresponds to a Go! dynamic relation, however the AgentSpeak(L)
paper does not indicate how the agents beliefs get updated. A +B external
event/message can only be handled by invocation of a plan rule with head
+B’ where B and B’ match. As described in [31], plan bodies can query
the belief store but not update it. However, a belief update action could
be added to the language – the equivalent of the dynamic relation update
action of Go! action rules.

An AgentSpeak(L) agent executes in a cycle: select some event e from
the pending set of events E using an event selection function SE ; look for
and choose an applicable plan p for e using a plan selector function SP ;
generate a new intention (e,p) if e is external, extend intention i’ with p
if e is an achieve goal event generated by i’; select an intention i from the
current set of intentions I using an intention selector SI ; execute the next
goal or action of i; repeat. Asynchronously the ’environment’ is adding
events to the agents event store, and it is asynchronously ’absorbing’ the

6 RELATED WORK 39

agents actions. Each i in I is an execution thread and corresponds to
the stack of plans currently being used to respond to some external event.
However, the agent explicitly time shares between them using SI , it has
no internal concurrency. There is also no inter-agent communication model
in the language - no special communication actions. The three selection
functions SE , SP , SI are black boxes, there is no means of programming
them within the AgentSpeak(L) language. In Go! one could program them
using relation definitions similar to the chooseDesire relation of the dancer
agents. AgentSpeak(L) belief store querying is also quite weak - there is no
inferencing using rules.

3APL[19] is similar to AgentSpeak(L) in having beliefs, plans and inten-
tions, although it calls the intentions goals. However it lacks events. Indeed
the language does not appear to have the notion of an agent environment.
Actions directly update the agent’s own belief store! But 3APL plans are
more complex, they can branch and fork, and intentions can be executed
concurrently. A plan may also modify an existing intention as well as extend
it, say by replacing one sub-plan by another. But, as it stands, the language
cannot be used for programming agents due to its lack of any interface to
other agents or the environment.

Vip[20] agents also have events, beliefs and intentions in their internal
state and plans are activated in response to events taking into account cur-
rent beliefs. The major difference between it and AgentSpeak(L) is that
Vip plans, like those of 3APL, can branch and fork, and intentions can be
executed concurrently. Plans have a graphical representation as trees. Belief
updates occur because epistemic effects can be associated with events and
actions; although how these epistemic effects are specified is not described.
(In Go! the epistemic effects of events and actions are explicitly programmed
as updates of a dynamic relation. For example, a dancer responds to the
event of receiving a message from the directory server or the band by updat-
ing its belief store, whereas it responds to the event of receiving an okDance
message from a dancer by updating its intention store. It also records the
successful execution of a dance by a new belief.) VIP allows a programmer
to express priorities and preferences on plans and branches in plans, thus
allowing a means to program the applicable plan selection function, which
is not possible in AgentSpeak(L).

ConGolog[15] is a concurrent agent programming language rooted in the
situation calculus representation of action and change in predicate logic.
Beliefs have a environment state argument. This is either a special symbol
S0 denoting the initial state, about which the agent has a set of beliefs, or
a term do(an,do(an−1,....,do(a1,S0)....)), denoting a state reachable

7 CONCLUSIONS 40

from this initial state by some sequence of actions. Successor state axioms
and applicability axioms for each action a enable the agent to check whether
a can be used in a state S and what its effect will be - what beliefs will char-
acterise the state do(a,S). The agent environment is represented by the
notion of exogenous actions, and an assumption that there is a concurrent
process executing these actions outside the control of the agent. Notifi-
cation of an exogenous action is equivalent to an external event. What
distinguishes ConColog from normal situation calculus is that it has a rich
language for describing complex actions - effectively plans. It allows action
sequencing, non-deterministic choice, iteration, concurrent execution with
priorities, and belief querying. The agents execute such plans, and can infer
the consequences of both plan and exogenous actions, using the successor
state axioms. A query in the plan is implicitly against the inferable beliefs
about the state of the environment resulting from the sequence of actions
executed up to that point, including the exogenous actions.

7 Conclusions

Go! is a multi-paradigm programming language – with a strong logic pro-
gramming aspect – that has been designed to make it easier to build intelli-
gent agents while still meeting strict software engineering best practice. It is
at a lower level than the agent programming languages just described, but
can be used to quickly build agent applications using concepts from these
languages. In addition, aspects of these languages, such as the selection
functions of AgentSpeak(L), can be declaratively programmed. Go! agent’s
can have internal concurrency, can deductively query their state compo-
nents, can communicate with other Go! agents using application specific
symbolic messages, can negotiate, and can communicate with external pro-
cesses using TCP/IP based communication. Using its DCG grammars[30],
parsers for KQML[11] or FIPA ACL[12] message strings are straightforward
to program. A parser for XML strings and files is distributed with the
language.

Although not described in this paper, Go! also has a powerful mechanism
for code re-use. It is based on the use of URIs to access compile-time in-
clusion of text and run-time loading of compiled program fragments. Go!’s
mechanisms for code re-use are significant for two reasons: they support
type safe code re-use in a convenient manner; and they permit Go! pro-
grams to be executed out of ‘non standard devices’ – devices which may
have an execution environment but no file system.

8 ACKNOWLEDGMENTS 41

In addition to these language level features, the Go! run-time system
offers additional support for safe programming in the form of a code verifier.
Verification is used to ensure that programs do not attempt to harm either
the core engine or other legal Go! programs.

The ballroom scenario is an interesting use case for multi-agent program-
ming. Although the agents are quite simple, it encompasses key behavioural
features of agents: autonomy, adaptability, negotiation and commitment.
Our implementation features inter-agent communication and co-ordination
via messages, multi-threaded agents, intra-agent communication and co-
ordination via shared memory stores. We believe these features, which are
so easily implemented in Go!, are firm foundations on which to explore the
development of much more sophisticated multi-threaded agents.

The Go! language is available under a GNU general public licence from
Sourceforge (http://sourceforge.net/projects/networkagent/).

8 Acknowledgments

The first named author wishes to thank Fujitsu Labs of America for a re-
search contract that supported the collaboration between the authors on the
design of Go! and the writing of this paper.

References

[1] J. Armstrong, R. Virding, and M. Williams. Concurrent Programming
in Erlang. Prentice-Hall International, 1993.

[2] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource
bounded practical reasoning. Computational Intelligence, 4:349–355,
1988.

[3] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. Computing Surveys, 17:471–522, 1985.

[4] N. Carriero and D. Gelernter. Linda in context. Communications of
the ACM, 32(4):444–458, 1989.

[5] M. Carro and M. Hermenegildo. Concurrency in Prolog using Threads
and a Shared Database. In D. D. Schreye, editor, Proceedings of
ICLP99, pages 320–334. MIT Press, 1999.

REFERENCES 42

[6] D. Chu and K. L. Clark. IC-Prolog II: a multi-threaded Prolog system.
In G. Succi and G. Colla, editors, Proceedings of the ICLP’93 Work-
shop on Concurrent & Parallel Implementations of Logic Programming
Systems, pages 115–141, 1993.

[7] K. Clark and F. McCabe. Ontology representation and inference in Go!
Technical report, Dept. of Computing, Imperial College, London, 2003.

[8] K. L. Clark, P. J. Robinson, and R. Hagen. Multi-threading and mes-
sage communication in Qu-Prolog. Theory and Practice of Logic Pro-
gramming, 1(3):283–301, 2001.

[9] S. Constantini and A. Tocchio. A logic programming language for multi-
agent systems. In Proc. JELIA02 - 8th European Conf. on Logics in
AI, pages 1–13. Springer-Verlag, LNAI, Vol 2424, 2002.

[10] J. Eskilson and M. Carlsson. Sicstus MT - a multithreaded execu-
tion environment for SICStus Prolog. In K. M. Catuscia Palamidessi,
Hugh Glaser, editor, Principles of Declarative Programming, LNCS
1490, pages 36–53. Springer-Verlag, 1998.

[11] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent
communication language. In Proceedings 3rd International Conference
on Information and Knowledge Management, 1994.

[12] FIPA. Fipa SL content language specification. Technical report, Foun-
dation for Intelligent Physical Agents, www.fipa.org, 2001.

[13] FIPA. Fipa communicative act library specification. Technical report,
Foundation for Intelligent Physical Agents, www.fipa.org, 2002.

[14] M. Fisher. A survey of concurrent MetateM- the language and its
applications. In D. Gabbay and H. Ohlbach, editors, Temporal Logic,
pages 480–505. Springer-Verlag, LNAI, Vol 827, 1994.

[15] G. D. Giacomo, Y. Lesperance, and H. Levesque. Congolog, a concur-
rent programming language based on the situation calculus. Artificial
Intelligence, 1–2(121):109–169, 2000.

[16] M. Hanus. A unified computation model for functional and logic pro-
gramming. In Proc. 24st ACM Symposium on Principles of Program-
ming Languages (POPL’97), pages 80–93, 1997.

REFERENCES 43

[17] H. Haugeneder and D. Steiner. Co-operative agents: Concepts and
applications. In N. R. Jennings and M. J. Wooldridge, editors, Agent
Technology, pages 175–202. Springer-Verlag, 1998.

[18] R. Hindley. The principal type scheme of an object in combinatory
logic. Trans. AMS, 146:29–60, 1969.

[19] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer. For-
mal semantics for an abstract agent programming language. In Singh,
Rao, and Wooldridge, editors, Intelligent Agents IV, LNAI, pages 215–
230. Springer-Verlag, 1997.

[20] D. Kinny. VIP:A visual programming language for plan execution sys-
tems. In 1st International Joint Conf. Autonomous Agents and Multi-
agent Systems, pages 721–728. ACM Press, 2002.

[21] J. Lloyd. Interaction and concurrency in a declarative programming
language. Unpublished report, Dept. of Computer Science, Bristol Uni-
versity, London, 1988.

[22] J. Lloyd. Programming in an integrated functional and logic program-
ming language. Journal of Functional and Logic Programming, pages
1–49, March 1999.

[23] F. McCabe. L&O: Logic and Objects. Prentice-Hall International, 1992.

[24] F. McCabe. Go! Reference Manual. Technical report, Available from
author, or http://sourceforge.net/projects/networkagent/, 2003.

[25] F. McCabe and K. Clark. April - Agent PRocess Interaction Language.
In N. Jennings and M. Wooldridge, editors, Intelligent Agents, number
890 in LNAI, pages 324–340. Springer-Verlag, 1995.

[26] D. Miller and G. Nadathur. An overview of λ-prolog. In Proc. Fifth In-
ternational Conference and Symposium on Logic Programming, Seattle,
1988.

[27] R. Milner. A theory of type polymorphism in programming. Computer
and System Sciences, 17(3):348–375, 1978.

[28] M. Minsky. A framework for representing knowledge. In P. Winston, ed-
itor, Psychology of Computer Vision, pages 211–277. MIT Press, 1975.

REFERENCES 44

[29] A. Omnicini and F. Zambonelli. Coordination for internet application
development. Autonomous Agents and Multi-agent systems, 2(3):251–
269, 1999.

[30] F. Pereira and D. H. Warren. Definite clause grammars compared with
augmented transition network. Artificial Intelligence, 13(3):231–278,
1980.

[31] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical com-
putable language. In Agents Breaking Away, LNAI 1038, pages 42–55.
Springer-Verlag, 1996.

[32] A. S. Rao and M. P. Georgeff. An abstract architecture for rational
agents. In Proceedings of Knowledge Representation and Reasoning
(KR&R92), pages 349–349, 1992.

[33] Y. Shoham. Agent0: An agent-oriented language and its interpreter. In
Proceedings of the National Conference on AI (AAAI-91), pages 704–
709, 1991.

[34] P. Tarau and V. Dahl. Mobile Threads through First Order Contin-
uations. In Proceedings of APPAI-GULP-PRODE’98, Coruna, Spain,
1998.

[35] S. R. Thomas. PLACA, an agent oriented programming language. PhD
thesis, Dept. of Computer Science, Stanford University, Stanford, 1993.

[36] P. Van Roy and S. Haridi. Mozart: A programming system for agent ap-
plications. In International Workshop on Distributed and Internet Pro-
gramming with Logic and Constraint Languages. http://www.mozart-
oz.org/papers/abstracts/diplcl99.html, 1999. Part of International
Conference on Logic Programming (ICLP 99).

[37] S. N. Willmott, J. Dale, B. Burg, C. Charlton, and P. O’Brien. Agentc-
ities: A Worldwide Open Agent Network. Agentlink News, (8):13–15,
November 2001.

[38] F. H. Zoltan Somogyi and T. Conway. Mercury: an efficient purely
declarative logic programming language. In Proceedings of the Aus-
tralian Computer Science Conference, pages 499–512, 1995.

