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Abstract. In this paper we are concerned with modelling techniques for evaluating development and con-
servation opportunities when dealing with investment decisions involving environmental resources manage-
ment. In this context, highly characterized by both environmental and economic uncertainty, we emphasize
the importance of capturing the flexibility of different investment strategies. In particular, we discuss a
discrete model that includes both environmental and economic uncertainty treated using an integrated ap-
proach. Decision analysis techniques and option pricing theory are jointly applied to evaluate development
versus conservation opportunities. In our analysis, we take into account how uncertainty interacts with two
types of irreversibility: sunk costs associated with investment in developing decisions, including environ-
mental and social costs, as well as sunk costs associated with environmental regulation and conservation.
The Quasi Option Value, QOV, is used to derive decision rules that account for different levels of flexibility
of land allocation possibilities.
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Introduction

In the presence of uncertain future events, the possibility to postpone development in-
vestment decisions often leads to alternative strategies than those which use traditional
discounted cash flows approaches. Indeed, the availability of new information may par-
tially resolve uncertainties over time, thus making it profitable to wait and act in the light
of it. This flexibility becomes even more valuable when we are faced with irreversible
decisions. In order to take into account the level of flexibility of different investment
strategies, we will use the concept of the Quasi Option Value (QOV), that is the ex-
tra value that can be captured by performing a fully dynamic analysis of the decision
problem.

The issue of irreversibility, uncertainty and environmental policy has been largely
discussed in the last three decades. From the first definition of the QOV given by
Arrow and Fisher (1974), this key concept has been extended by several authors, among
others, Conrad (1980), Hanemann (1989), Krutilla and Fisher (1975) and Coggins and
Ramezani (1998). In particular, Conrad showed that the QOV is equivalent to the value
of information, Hanemann emphasized the conditionality upon no development in the
first period, Coggins and Ramezani dealt with the issue of the discount rate to be used
and applied the “risk neutral” probability method in the valuation of option value.
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In this paper we extend the discrete model developed in Coggins and Ramezani
(1998) to include a set of decision problems that are particularly relevant in the Euro-
pean context, where decision makers are more concerned with land recovery expendi-
tures and conservation efficiency rather than with wilderness preservation. Indeed, in
our optimal land allocation model, we consider, in addition to the status quo possibility,
two further investment opportunities: the development alternative and the land recov-
ery/conservation alternative (Natural Park). Hence, we allow for two different sources
of irreversibility: sunk costs associated with investment in developing decisions, includ-
ing environmental and social costs due to the permanent degradation of resources, as
well as sunk costs associated with environmental regulation and conservation investment
plans.

These irreversible choices have to be made in the presence of two relevant types
of uncertainty: economic and environmental. Indeed, uncertainty can either be related
to future social and financial costs/benefits or to the evolution of the environmental sce-
nario. Thus, it is useful to introduce both these two sources of randomness in the model.
In the development case, we consider uncertainty concerning future demand for the good
produced, that is market uncertainty. While, in the conservation case, the decision maker
is uncertain about the environmental quality level that the Natural Park will turn out to
be. We call this environmental quality uncertainty and we assume it depends on a vector
of environmental parameters that are not known until after the investment is undertaken.
In fact, until investment in on-site research and in land recovery is undertaken, the para-
meters which make up the “ecological value index” are partially or completely unknown
and one can only deal with subjective probabilities, calculated by experts considering
the information that is available.

Market uncertainties are dealt with using the option pricing approach (Dixit and
Pindyck, 1994; Trigeorgis, 1996; Cortazar, Schwartz, and Salinas, 1998), that values real
investment projects attempting to replicate their return and risk characteristics through
a portfolio of existing assets. If we imply no arbitrage opportunities, the resulting risk
neutral probabilities can be applied to calculate the expected present value of the in-
vestment. Environmental uncertainties are a source of project specific risk and, there-
fore, cannot be entirely diversified. Hence, they are dealt with by computing certainty
equivalents, applying subjective probabilities and the decision maker’s utility function,
as suggested in Smith and McCardle (1998, 1999) and Smith and Nau (1995). This
approach leads to an integrated methodology which combines decision analysis tech-
niques with option pricing theory. We represent the problem as a two-period optimal
stopping problem (Dixit and Pindyck, 1994), where stopping corresponds to investing,
while continuation corresponds to waiting for information to resolve part of the uncer-
tainty. The rest of the paper is organised as follow. In section 2 we introduce the decision
process framework for the discussed problem by considering market uncertainty as well
as environmental uncertainty. Section 3 discusses the inclusion of environmental uncer-
tainty valuation in the overall procedure. Section 4 is devoted to a sensitivity analysis
of critical initial values and numerical analysis. Our conclusions are presented in sec-
tion 5.
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1. Decision process framework

1.1. Market uncertainty

In this paper we extend the typical decision framework, in which the main issue is to
assess whether and when it is optimal to develop (extract) a natural land area (a natural
resource), to the case when a decision maker has to deal with a partially degraded area
that can be re-converted to a “natural” state. This is often the case in European countries.
In order to choose the best strategy the decision maker has to deal with a threefold prob-
lem. She can either decide to leave the land as it is, Status Quo (SQ) or to develop the
area through an initial investment, in order to undertake some profitable project, Devel-
opment (DV). In addition, she can also decide to reconvert it to a completely preserved
state. We will call this third investment opportunity Natural Park (NP), even though it
has a more general meaning. Choosing the SQ opportunity, the only source of profit is
the amenity value accruing every year from recreational use. We will assume this value
to be constant, however, the model could be easily extended to consider the case when
the amenity value decreases over time according to a decay rate. This may often be
the case when no regulation or enforcement of the area have been undertaken. The SQ
state is characterized by complete flexibility, thus the model also evaluates the option to
invest either in the DV or in the NP projects in the future. Moreover, this state does not
imply commitment to sunk costs (e.g., research, re-conversion of habitat degradation,
active protection). On the contrary, the other two states involve an initial investment
and annual maintenance costs. The Development alternative would result in a stream of
random revenues throughout the operating life of the project. This investment decision
implies the irreversible sacrifice of any amenity value as well as of any other poten-
tial value sources related to the conserved site. In this case the NP option is ruled out.
Finally, deciding to preserve the land as a Natural Park would produce a stream of con-
stant revenues due to the ecological services arising from the completely preserved land
in addition to the stream of revenues accruing from the amenity value. In this section we
will assume this value to be constant and known with certainty. In section 2.2 we will
allow for more realistic cases dealing with the uncertainty concerning the NP yearly rev-
enue. Let r denote the constant risk-free interest rate and R be the compounding factor,
R = (1 + r).

In the SQ state, the present value of the land over n years is:

A =
n∑
i=0

A

Ri
, (1)

where A is a constant amenity value accruing from the SQ state at each year t . When
computing the present value for an indefinite time horizon, i.e., i ∈ [0,∞) equation (1)
becomes:

A =
∞∑
i=0

A

Ri
= A R

(R − 1)
. (2)
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Figure 1. Binomial tree.

In the Development state the initial investment for instantaneous construction of the
project is ID > 0. The present value of the stream of annual constant operating cost,
c, is given by

C =
n−1∑
i=0

c

Ri
= c Rn − 1

Rn−1(R − 1)
, (3)

where n coincides with the operating life of the project.
Assuming for the sake of simplicity that the project will yield one unit of good per

year, then the yearly revenue will be given by the output price of the produced good that
is assumed to follow a stationary multiplicative random walk. Denoting the output price
at time t as Pt , then at time t + 1 it will either rise to P+

t+1 = uPt (where u > 1) or
decrease to P−

t+1 = dPt (where 0 < d < 1), with probability q and 1 − q, respectively,
with q ∈ (0, 1). Moreover, we require d < R < u to rule out profitable risk-less
arbitrage opportunities.

Therefore, the price follows a process that can be described by a binomial tree with
parameters (P0, u, d, q), see figure 1.

Thus, given P0, the expected value of Pt at time t > 0, will be given by

E[Pt ] = (
qu + (1 − q)d)tP0, (4)

where E is the expectation operator with respect to probability q.
We denote the present value of the expected stream of revenues accruing from the

n operative years of the DV project, calculated in the first period (t = 0), as PD0 , and
this is given by

PVD0 =
n−1∑
i=0

E[Pi]
Ri

. (5)

Denoting

µ = qu+ (1 − q)d (6)
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Figure 2. Inflexible modelling decision tree.

we obtain

PVD0 (P0, q) = P0

[
Rn − µn

Rn−1(R − µ)
]
. (7)

The third alternative, the Natural Park, is characterized by an initial investment,
IN , and a stream of annual constant operating cost, g. The present value, computed for
an indefinite time horizon is given by

G =
∞∑
i=0

g

Ri
= g R

(R − 1)
. (8)

We firstly consider the revenues accruing from the NP option as a stream of con-
stant yearly cash flow,N = A+EQ, where EQ is a positive constant value, representing
the increased environmental quality characteristics of the site. Then, the present value
of the NP can be once again calculated as

PVN0 (N) =
∞∑
i=0

N

Ri
= N R

(R − 1)
. (9)

Let us first analyze the problem applying the traditional discounted cash flow rule,
without considering the flexibility of postponing decisions.

According to the traditional Expected Net Present Value (ENPV) decision rule (see
the decision tree in figure 2), the value of the land area is given by the following state-
ment:

WENPV = max
[
A,PVD0 (P0, q)− (ID + C),PVN0 (N)− (IN +G)]. (10)

Now, let us consider the possibility to postpone any irreversible decision. The
decision tree in figure 3 represents this more flexible decision process, which takes into
account future information regarding the price Pt and embodies it in the evaluation.

In the SQ state the decision maker is free to switch to one of the two investments
in a second period. Let us, as an example, suppose the land has been left in the SQ state
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Figure 3. Flexible modelling decision tree.

for the first period. The only revenue will be the SQ amenity value, A. While, in the
second period, the availability of new information concerning the price P1 will leave
the decision maker the possibility to choose her strategy according to the maximization
criterion, whichever state of nature has occurred. We can now calculate the value of land
in period t = 0 as

WS0 = A+ qW
+
1 + (1 − q)W−

1

R
, (11)

where the second term of the right-hand side of equation (11) is the expectation value,
with respect to the probability q of the quantities

W+
1 = max

[
WS2 ,PVD1 (P

+
1 , q)− (ID + C),PVN1 (N)− (IN +G)] (12)

and

W−
1 = max

[
WS2 ,PVD1 (P

−
1 , q)− (ID + C),PVN1 (N)− (IN +G)]. (13)
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Consequently, the decision whether to develop in the first period or delay any in-
vestment is based on the value that gives W ∗

0 , where

W ∗
0 = max

[
PVD0 − (ID + C),PVN0 − (IN +G),WS0

]
. (14)

Since, from definitions (2) and (11) it follows that WS0 � A, then W ∗
0 can also be

expressed

W ∗
0 = max

[
WENPV,W

S
0

]
. (15)

Indeed, whenWENPV is greater thanWS0 it means that one of the two investment decisions
should take place immediately following the rule given in (10). Whereas, when WS0 is
greater, waiting is the optimal solution and no sunk costs should be undertaken.

Note that (15) is the Bellman equation for this problem, see (Dixit and Pindyck,
1994), and can be more generally stated as

W ∗
t = max

[
WENPV,W

S
t

]
, (16)

W ∗
0 = max

[
WENPV, A+ R−1E

[
W ∗
t+1

]]
. (17)

This problem presents itself as an optimal stopping problem (Dixit and Pindyck, 1994;
Oksendal and Yaozhong, 1998), where stopping corresponds to invest either in the DV
or in the NP project, while continuation corresponds to do not commit to any sunk cost.

We will assume that the decision maker’s investment decision can be delayed up
to time period, say, T such that afterwards the two investment options will expire. This
may often be the case if we consider that political mandates are timed by expiring dates
and that investment opportunities are often exclusive for limited periods. In other words,
we may think SQ as a portfolio formed by a risk free perpetual bond plus an American
option on two different assets (namely, projects NP and DV) with expiry date T . Beyond
time period T , if the option is not exercised, the only value will be the amenity value, A.
Thus at time period T ,

WST = A. (18)

It is now possible to calculate the value of the option and to consider the optimal
exercise decision by working backwards from date T , applying at each step the principle
of optimality stated in (16). For some initial critical value of P0 it will be optimal to
immediately stop and rule out the option, i.e., for P0 � P ∗

0 it will always be optimal
to invest at t = 0, while for P0 such that P ′

0 � P0 < P
∗
0 continuation will be the

optimal strategy. (We will see that for values below P ′
0 the optimal strategy is to invest

immediately in NP.) Similarly, we can define critical values for N0. The SQ choice is
optimal provided that neither P0 or N0 reach the barriers P ∗

0 and N∗
0 , respectively. In

the present work, the QOV corresponds to the difference, when positive, between the
traditionally measured value of the land and the value calculated by using the dynamic
model, such that

QOV = max
[
0,W ∗

0 −WENPV

]
. (19)
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The QOV can capture the value regarding waiting for the availability of new infor-
mation before making any decision.

1.2. Environmental quality uncertainty

Up to this point we have made the assumption that the NP revenues are a constant stream
of cash flow, known from period zero. A more realistic approach is to assume that it is
not possible to know the environmental quality of a site and the efficiency of the recovery
process beforehand. In particular, the environmental quality of an area will depend on a
series of uncertain attributes of the site, such as biodiversity, rareness, size of the area,
naturalness, level of representation of the inhabitant species (i.e., their uniqueness, etc.).
These attributes may be combined in an overall evaluation index of the site. In this
work we follow a criteria-based evaluation method based on (Gaston et al., 1998) and,
in particular, we consider here three possible states of nature,1 each characterized by a
prior probability measure.

(1) When either size is insufficient or the unnaturalness of the site is classified as per-
manent, due to previous damage, the NP value, say, NL is low (with probability pL,
0 � pL � 1).

(2) When the site attributes are combined to give an high value, the investment is effi-
cient and the NP value, say, NH is high (with probability pH , 0 � pH � 1 − pL).

(3) When the site attributes are combined to give a middle value, the NP value, say,
NM is a medium range, such that NM , NL < NM < NH with probability pM =
1 − pL − pH ).

Prior probabilities of each environmental quality index state are given by experts
or deduced from similar studies. In figure 4, we add this new source of uncertainty,
environmental quality uncertainty, represented by black nodes to distinguish it by market
uncertainties affecting the DV price process, represented by white nodes. In the next
section we discuss how this new source of uncertainty can be included in the overall
valuation procedure.

2. Valuation methodology

We still have not made any specific assumption neither on the probability distribution nor
on the discount rate to be used in the valuation. It is not sensible, though, to discount un-
certain cash flows using the risk-less discount rate, r, without making any specification.

However, to value the DV investment, we can assume that there exists a complete
market for the produced good and, therefore, the associated risk can be perfectly hedged
by trading securities. Investment can take place at time period t = 0, 1, . . . , T and
market uncertainty is resolved at periods t = 0, 1, . . . , T , . . . ,∞, thus waiting gives us
revised information about the initial price of the project. In a more rigorous way we



UNCERTAINTY AND OPTION VALUE IN LAND ALLOCATION PROBLEMS 173

Figure 4. Decision tree with specified uncertainty types.

can say that the decision maker’s state of information at each period t is denoted by 
t ,
formally modelled as elements of a filtration on a suitably defined probability space.

As most of the real options literature assumes, the decision maker can either decide
to invest in the project (all-or-nothing decision) or to invest in shares of securities at
market prices, as well as lending and borrowing money at the risk-free interest rate r.

Four assumptions on the securities market should be met. Firstly, there are no
arbitrage opportunities. Secondly, the market is complete, i.e., market uncertainties can
be hedged by trading securities. Thirdly, the market is efficient and does not depend on
private information and, finally, there are no transaction costs. Under these assumptions,
we can always construct a portfolio whose payoffs exactly replicate the payoffs of the
DV project (Eichberger and Harper, 1997). Thus, we can determine the unique “risk-
neutral” distribution such that the current market price of a vector of securities, s(0), that
generates a random dividend stream, c(t), is given by the expression

s(0) =
T∑
t=0

Eπ [c(t)]
(1 + r)t , (20)
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where Eπ is the expectation with respect to the “risk-neutral” probability, π (with
π ∈ (0, 1)), and c(t) equals the random stream of revenues arising from the project.
Whenever the riskiness of a project is diversifiable, it is possible to compute the value
of the project applying the “risk-neutral” probability distribution and using the risk-free
interest rate. By using (20) to compute the “risk-neutral” probability distribution for the
DV and the NP alternatives, we obtain:2

q̂ = (1 − d)
(u− d) . (21)

It is easy to check that, for such values of q̂, the value of µ as defined in (6), is
equal to one. Therefore, the risk-neutral expected value of the DV alternative, given
in (7) can now be expressed as

PVD0 (P0) = PVD0
(
P0, q̂

) = P0

[
Rn − 1

Rn−1(R − 1)

]
. (22)

This result entails that, when a project is invested in, then the decision maker has
the opportunity to contract with a buyer the selling price of the entire stream of the pro-
duced good, fixing it at the investment-time price. The second source of uncertainty,
i.e., environmental quality uncertainty, will not be resolved until the NP investment is
undertaken. This type of uncertainty cannot be hedged by tradable securities. Hence, in
order to include it in the model, a traditionally used approach is the capital-asset-pricing
model that produces a risk-adjusted discount factor, according to the risk category of the
project. However, this is not the best procedure when the level of risk of a project is not
comparable with that of other known projects and when dealing with long time horizon
projects. An alternative approach to deal with project specific uncertainty has been de-
veloped by Smith and Nau (1995) and applied to evaluate investments in the field of oil
and gas management, see (Smith and McCardle, 1998, 1999). The procedure involves
the use of subjective prior probabilities, regarding possible future states, which are com-
bined with the decision maker’s intertemporal consumption preferences. The value of
a project is considered as the buying price, that is the amount that the decision maker
would be willing to pay for participation in the project. The buying price is computed
as the lump-sum equating the maximum expected utility that would be achieved with
participation in the project and the one that would be achieved without participation,
see (Smith and Nau, 1995) for a more theoretical discussion. The buying price can be
computed easily if the utility function describing the decision maker intertemporal pref-
erences is assumed to be continuous, strictly increasing and strictly concave. Moreover,
for the constistency and separation theorems to hold, the utility function should satisfy
the property of additivity independence3 and the#-property.4 Without loss of generality
and for the sake of concreteness we can assume that the utility function takes the form:

U(xt) = − exp

(
− xt
Kt

)
, (23)
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where Kt is the decision maker’s effective risk tolerance defined as

Kt =
T∑
i=t

ρi

Ri−t
. (24)

Hence, Kt is the sum of the discounted future decision maker’s ith’s period risk toler-
ance, ρi .

Given expert probabilities and the decision maker’s utility function, we can com-
pute the effective certainty equivalent, ECEi , associated with the NP investment alterna-
tive by using the expression

ECEi
[
NPVNt (Ny)

] = −Kt lnE

[
exp

(
−[NPVNt (Ny)]

Kt

)]
, (25)

where y = L,M,H and NPVNt (NL), NPVNt (NM), NPVNt (NH) represent the net present
value of the NP project in the three possible scenarios of environmental quality, respec-
tively, E is the expected value with respect to the subjective probability andKt is the de-
cision maker’s effective risk tolerance. Now we can integrate both valuation procedures.
This involves the generation of the prices tree and the backwards valuation, starting at
the end of the tree, by applying a standard dynamic programming “rollback” procedure.
In particular, at each node representing market uncertainty, the present value will be cal-
culated by using the risk-neutral probabilities, Eq̂ , and the risk-free interest rate; at each
node representing environmental quality uncertainty, the effective certainty equivalent,
ECEi , will be calculated by using the subjective probability and then subtracting the
initial investment; finally, at each of the decision nodes the best strategy will be chosen
according to the maximization criterium. If assumptions on market completeness and
on preferences hold, this integrated procedure gives the buying price of the land. Firstly,
let us consider the value of the land according to the traditional ENPV rule, say, ŴENPV

such that it can be expressed

ŴENPV = max
[
A,PVD0 (P0)− (ID + C),ECE0

[
NPVNt (Ny)

] − IN
]
, (26)

where y = L,M,H . Secondly, the flexibility in the valuation procedure can be ex-
pressed considering the value of the SQ state at time t , say, ŴSt

Ŵ St = A+ q̂Ŵ
+
t+1 + (1 − q̂)Ŵ−

t+1

R
,

where:

Ŵ+
t = max

⌊
ŴSt+1, P̂V

D

t+1

(
P+
t+1

) − (ID + C),ECEt
[
NPVNt (Ny)

] − IN
⌋
, (27)

and

Ŵ−
t = max

⌊
ŴSt+1, P̂ V

D

t+1

(
P−
t+1

) − (ID + C),ECEt
[
NPVNt (Ny)

] − IN
⌋

(28)

where y = L,M,H . Note that the expressions (27) and (28) denote the value of the
option for both price scenarios at t = 1. Similarly to the expressions shown in the



176 MESSINA AND BOSETTI

previous section, the value of land, at t = 0 can be computed recursively by applying
the principle of optimality, such that, given the terminal condition ŴST = A, it results

Ŵ ∗
0 = max

[
ŴENPV, Ŵ

S
0

]
. (29)

Again, the QOV captures the opportunity of avoiding either the irreversible de-
velopment choice or the flexible commitment to the NP sunk costs. Its value can be
expressed

QOV = max
[
0, Ŵ ∗

0 − ŴENPV

]
. (30)

3. Sensitivity analysis and a numerical example

In this section we give a numerical example in order to analyze how the two different
strategies, computed by applying the traditional and the integrated approaches, vary with
the initial value of the two investments, P0 and N0, respectively. In particular, we aim
to characterize the trigger values, for which the two approaches coincide. These cut-
off values divide the continuation from the stopping region. Moreover, to account for
the uncertainty that may affect different parameters in the model, we analyze how these
trigger values are influenced by changes in each of the parameters. Let us suppose that
the parameters in the model are defined as given in the table 1 and that decisions can be
undertaken at t = 0, 1, 2.

In example 1 we consider how strategies change, varying the initial value of the
DV investment, P0, while keeping constant the value of the NP choice, N0. Similarly, in
example 2, we let N0 change while we keep P0 constant.

Example 1. We consider the trends of ŴENPV , Ŵ ∗
0 , and QOV, as a function of P0, as-

suming that all the other parameters are fixed. In particular, figure 5 refers to the case of
N0 = 300. Until the initial DV price reaches the value P ′

0, the traditional rule coincides
with our integrated flexible approach and the suggested strategy is to immediately invest
in the NP option. The kink in the Ŵ ∗

0 curve, in point P ′
0, captures the value of future

period development opportunities for high market states, therefore the “wait and see”
strategy should now be an optimal one. In point P

′′
0 the ŴENPV curve starts to increase

because the traditional rule indicates that the optimal strategy is now immediate devel-
opment, while, according to the flexible approach, the strategy “wait and see” is still the
optimal one. The cut-off point, P ∗

0 represents the threshold value separating the contin-
uation (waiting) region from the stopping (investing in DV) region. The QOV represents
the maximum amount a rationale decision maker would accept to pay for the right to
delay any decision. This value becomes zero above the cut-off value.

Table 1

Parameter r n u d q̂ IDV c µ INP pH pM NH NL g K0
Value 0.1 10 1.3 0.8 0.4 1000 50 1 800 0.4 0.5 1.4 0.9 35 200
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Figure 5. Varying P0 for N0 = 300. The dashed line represents Ŵ∗
0 , the thick line, ŴENPV and the dotted

line QOV.

Figure 6. Varying P0 for N0 = 450. The dashed line represents Ŵ∗
0 , the thick line, ŴENPV and the dotted

line QOV.

Example 2. Again we leave all the parameters fixed and consider the trends of ŴENPV ,
Ŵ ∗

0 , and QOV, as a function of N0 assuming P0 = 450. As it is depicted in figure 6,
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Figure 7. Sensitivity analysis for P ∗
0 .

the best strategy for very low values of N0 is to develop immediately, according to both
approaches. In N ′

0, the Ŵ ∗
0 value begins to capture the possibility of investing in the NP

alternative, future states of nature being favourable, therefore the strategy “wait and see”
should now not be the optimal one. As a consequence, the Ŵ ∗

0 curve starts to lie above
the ŴENPV one, thus, generating a positive QOV. From the value N

′′
0 on, the ENPV rule

would suggest to commit to the NP investment, while, according to our approach, it is
just at N0 = N∗

0 that the NP investment becomes the optimal strategy. Therefore, up to
this cut-off point, N∗

0 , the QOV captures the value of not committing to sunk costs and
just wait to the second period to take any decision.

We now analyze how these trigger values P ∗
0 (see figure 7) and N∗

0 (see figure 8),
separating the continuation from the stopping region, may vary with some of the model
parameters, all remaining parameters being fixed. In particular, we consider how these
values change in respect to: A, the first year value of the SQ alternative, ID, the DV
investment, IN , the NP investment, the risk free discount rate, r, and the effective risk
tolerance factor, Kt .

P ∗
0 is positively correlated with A and with ID. In other words, the barrier that

the initial price has to reach in order to have immediate development gets higher as the
SQ alternative becomes more profitable and as the DV initial investment increases. P ∗

0
decreases with r ∈ (0.01, 0.2). In fact, the DV project produces revenues just in the next
n years, thus it is less affected by an increase in the discount rate. Finally, an increase in
the risk tolerance factor positively affects the NP present value, thus increasing the DV
trigger value.
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Figure 8. Sensitivity analysis for N∗
0 .

N∗
0 increases with A, IN and also with r. The latter relation has its economic foun-

dation in the idea that very long term projects are usually more sensitive to an increase in
the discount factor. Finally, the relationship between N∗

0 and the effective risk tolerance
factor is analogous to the one between the factor and P ∗

0 .

4. Conclusions

In this paper we have taken into account the economic as well as the environmental
aspect of irreversibility. While the former feature has been largely investigated in the
quasi-option value literature, the latter has been often ignored.

However, particularly in European applications of land allocation problems, the
importance of initial environmental expenditures should be considered, combining it
with the potential flexibility of this option. Moreover, the uncertainty related to the
environmental response to recovery and conservation interventions, should be taken into
account in addition to the uncertainty related to market prices. Therefore, the valuation
procedure has been developed to include the environmental influence on the conservation
projects. What we find is that it is possible to calculate, in a similar framework to the
Arrow–Fisher Quasi-Option Value (QOV) of preservation, an option value that can be
related either to the DV or to the NP decisions. Hence, the model capturing the flexibility,
enables us to take into account different sources of irreversibility and uncertainty, and it
proves to be a useful tool in land valuation, land allocation strategies and environmental
expenditure management. In addition, the output of the model can be easily understood
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by non-technical users and it can be helpful in promoting environmental and economical
rationale choices.
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Notes

1. This is clearly an oversimplification of the complexity of possible environmental quality scenarios, how-
ever the assumptions are useful for explanatory purposes and may be easily modified to provide a more
realistic representation of environmental quality.

2. This particular result derives from the nature of the price process, that is assumed to be a discrete mar-
tingale. Therefore, E[Pt+1 − Pt ] = E[#Pt+1,t ] = 0 such that the following expression is required
q(u− 1)+ (1 − q)(d − 1) = E[#Pt+1,t ] = 0.

3. The decision maker’s preferences for risky cash flows depend only on the marginal distribution for each
period, not on the joint distribution, see appendix in (Smith and Nau, 1995).

4. If the decision maker is indifferent to a gamble or to its certainty equivalent, then she will be indifferent
to the same gamble plus a quantity# or the certainty equivalent of the gamble plus the same quantity#,
see appendix in (Smith and Nau, 1995).
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