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Abstract

There is a construction which lies at the heart of descent theory. The combinatorial

aspects of this paper concern the description of the construction in all dimensions.  The

description is achieved precisely for strict n-categories and outlined for weak n-

categories.  The categorical aspects concern the development of descent theory in low

dimensions in order to provide a template for a theory in all dimensions.  The theory

involves non-abelian cohomology, stacks, torsors, homotopy, and higher-dimensional

categories.  Many of the ideas are scattered through the literature or are folklore; a

few are new.   
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1. Introduction
Descent theory, as understood here, has been generalized from a basic example

involving modules over rings.  Given a ring morphism    f R S:  → ,  each right R-module

M determines a right S-module   M SR⊗ . This process is encapsulated by the

“pseudofunctor”    Mod from the category of rings to the category of (large) categories;  to

each ring  R  it assigns the category    ModR of right R-modules and to each morphism  f

the functor    − ⊗R S :   ModR ModS → .  The reason that    Mod is not quite a functor is that

the composite of ring morphisms is not taken precisely to the composite of the functors,

but only up to a well-determined isomorphism.  Descent data come into play when we

contemplate what is needed on a right S-module  N  in order that it should be isomorphic

to    M SR⊗ for some  M.

The author’s interest in pseudofunctors was aroused many years ago by their

appearance in group cohomology as “factor systems”.  It seemed inevitable that one day we

would need to study even higher-dimensional weakenings of composition preservation:
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up to isomorphism, then up to equivalence, and so on.  Then I learned from John Roberts

that cohomology itself dealt with higher-dimensional categories (where there are not only

morphisms, but morphisms between morphisms — called 2-cells, and so on) and higher

functors between them.  He suggested studying higher-dimensional categories as the

coefficient objects for non-abelian cohomology (see [Rts]).  I was really taken by this idea

which led to my work (see [St5]) on making a precise definition of the simplicial nerve of a

strict higher category.

There are various possibilities for what we might mean by higher-dimensional

categories.  Initially we will concentrate on the strict ones called n-categories.  While these

were originally defined by Charles Ehresmann, let us recall how they were defined

inductively by Eilenberg and Kelly [EK] in terms of hom enriched categories.  

For any symmetric monoidal category  V,  there is a symmetric monoidal category

    V - Cat whose objects are categories with homs enriched in V ;  that is,  V-categories.  (We

will need enriched categories again later on; suitable references are [Ky] and [Bo; Chapter 6].)

Starting with the category    Set of sets using cartesian product for the monoidal structure,

we can iterate the process    V Va - Cat yielding the following sequence of definitions: 

  Set ,      Cat : =   Set Cat- ,        2 - at -Cat C Cat: = ,       3 2- -Cat Cat Cat: = ( ) − .  .  . 

all terms having cartesian product as monoidal structure.  Sets are called 0-categories,

categories are called 1-categories, and, as we have indicated, objects of    Set Cat Cat- -( ) are

called 2-categories;  and so on.  Each set can be regarded as a discrete category so there are

inclusions  

  Set Cat Cat Cat⊂ ⊂ ⊂ ⊂2 3- - . . .  .  

The union of this chain is the category    ω - Cat of (strict) ω-categories 1.  

When  V is closed,  it is enriched in itself.  Each    n Cat- is cartesian closed and hence

  n Cat- is itself  naturally an (n+1)-category.  
The n-cells in an ω-category can be defined recursively: the 0-cells of a set are its

elements;  the (n + 1)-cells of  A  are the n-cells of some hom n-category  A ⁄(a⁄,⁄⁄b)  for  a, b

objects of  A.  It is an important fact that n-categories are models for a finite-limit theory, i n

fact, a 1-sorted finite-limit theory where the one sort is “n-cell”.  In particular, this means

that we can model n-categories in any finitely complete category  E.  

Cohomology involves a “space” and a coefficients object.  A fairly general notion of

space is a simplicial object in some category  E.  For example, in combinatorial homotopy

theory, simplicial sets can act as spaces.  In topos theory, the topos  E itself is a generalized

space; however, to the calculate cohomology of  E,  we consider hypercovers; these are

particular kinds of simplicial objects of  E.  

2

1 Although sometimes something a bit bigger than this union  is given that name; as in [St5].  
The term “∞-category” is also used.



Let  ∆∆∆∆ denote the usual topologists’ simplicial category; that is, the category of non-

empty finite ordinals and order-preserving functions. Consider a “space”  R  which we

consider to be a functor      R
op: ∆∆  → C of  C (that is, a simplicial object of  C )  and

consider a coefficients object  A  which is an ω-category in  C. Form the functor     C R A,( ) :

  ∆∆  → ω - Cat.  We wish to construct the cohomology ω-category H ⁄(R⁄⁄,⁄⁄A)  o f R  with

coefficients i n A.  Some people would call this the “cocycle ω-category” rather than

cohomology, but the spirit of category theory has it that our interest in cells of any ω-

category is only up to the appropriate equivalence, and this very equivalence is the

appropriate notion of cobounding.

Jack Duskin pointed out to me (probably in 1981) that the construction, called (lax)

descent, should be done for any cosimplicial ω-category      E : ∆∆  → ω - Cat and should

yield an ω-category    DescE .  He proceeded to draw the diagrams for this construction i n

low dimensions.  These diagrams are reproduced in Section 1.  It then became a

combinatorial challenge to make the general definition precise for all dimensions.

It was immediately clear that the objects of    DescE were related closely to the

“orientals” that I had introduced to define the nerve of an ω-category.  The   n
th oriental is

the “free n-category on the n-simplex”.  It took me quite a bit longer (surprisingly i n

retrospect!) to realize that the higher cells of      DescE were based on the products of

simplexes with “globes” (an n-globe is a “free living n-cell”).

This led me to abstract the properties of simplexes that allowed the construction of

free n-categories thereon. The result was the combinatorial notion of parity complex which

I wanted to be closed under product.  Meanwhile Michael Johnson and Robert Walters [JW]

were taking a new approach to the orientals, and, in his PhD thesis, Johnson abstracted the

combinatorial notion of pasting scheme.  When I presented my ideas about descent and

parity complexes in an Australian Category Seminar, I gave a simplistic suggestion for the

product of two parity complexes.  The very next week, Johnson had the correct

construction.  I was able to prove that parity complexes were closed under product.  This

involved the invention of a new order, called the “solid triangle order”, on the elements of

a parity complex.

We shall describe all these combinatorial matters in the present paper.  We shall show

how they lead to a precise definition of     DescE .  

This paper started as a revised version of my Oberwolfach notes [St8].  However, quite

a lot has happened since then. Most significantly there have been announcements of many

competing definitions of weak n-category: see Leinster [Lr] for a readable discussion of most

of the approaches to date.   The path towards comparison of the approaches is being trod.

These developments present a further combinatorial challenge: how to construct
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cohomology with weak n-categories as coefficients.  We shall provide some indication of

an approach to this involving ideas of Batanin on computads.     

Apart from the combinatorics establishing definitions and constructions, there needs

to be a fully fledged theory of descent.  This is worked out fairly well in what we would call

dimension 2.  So many of the sections of this paper are concerned with that.  It is intricately

related with the theory of stacks (champs in French) begun by Giraud [Gd].  

2. Low-dimensional descent

In broad terms descent is about the higher categorical notion of limit.  When an n-

category B is a limit of a diagram  E of n-categories, we can determine what data we need

from the diagram  E to “descend” to a cell of  B,  uniquely up to the appropriate kind of

equivalence. 

For example, when  n = 0,  we know what it means for a set  B to be the equalizer of a

diagram  E consisting of two functions     ∂0 and    ∂1 with the same domain      E0 and

codomain      E1.  An element  F  of     E0 descends to a unique element of  B if and only if

  ∂ = ∂0 1F F .

The example can be made slightly more complicated.  Suppose we have a diagram  E :

  

E E
d

d
1 0

0

1

 →
 →

and a morphism    p E B: 0 → in a category  C.  For any object  X  of  C,  we can take the set

B to be the homset      C ( , )B X and the functions     ∂0 and    ∂1 to be     C ( , )d X0 and      C ( , )d X1 .  If

p  exhibits  B as the equalizer of  E =    C ( , )E X ,  we may say that  X  sees B  as a coequalizer

of  E.  If this is true for all  X,  we might say that  B  is the codescent object of the diagram  E.

Alternatively, if  E  is the kernel pair of  p,  an  X  for which this is true is called a sheaf for

the cover   p E B: 0 → of  B.   

Now let us look at  n = 1.  The construction of general limits of categories can be

broken into various steps just as the limits of all diagrams of sets can be constructed from

products and equalizers.  The analogue of equalizer is what is called the descent category

    DescE of a diagram  E of the form 

  

E E E0 1 2

0

0

1

0

1

2

∂

∂

∂

∂

∂

 →
← 
 →

 →
 →
 →

ι

satisfying the usual identities for a truncated cosimplicial category: 

  ∂ ∂ = ∂ ∂ −s r r s 1 for  r < s  and    ι ι0 0 0 1∂ = ∂ .  
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The objects of      DescE are pairs    F f,( ) where  F  is an object of      E 0 and    f F F: ∂  → ∂1 0 is

a morphism of      E1 satisfying the conditions that    ι 0 f is the identity morphism of  F  and

that    ∂1 f is the composite of    ∂2 f and    ∂0 f (a commutative triangle).  A morphism

  u F f G g: , ,( )  → ( ) in      DescE is a morphism    u F G: → in     E 0 such that

  ∂ = ∂0 1u f g uo o .  Composition of morphisms in    DescE is as in    E 0 .

In particular, for categories  A and  X ,  the functor category   A X,[ ] (whose objects are

functors    A X→ and whose morphisms are natural transformations) is the descent

category for the a cosimplicial category obtained as follows.  The nerve     NerA of  A is the

simplicial set which begins

  

ob ar cp

d

i

d

d

d

d
A A A

0

0

1

0

1

2

← 
 →
← 

← 
← 
← 

. . .

where      obA ,      arA and      cpA are the sets of objects, arrows (= morphisms), and composable

pairs of arrows of  A , where the left-hand functions    d0 ,   i0,  and    d1 assign codomain,

identity arrow, and domain to each arrow, object, and arrow, and where the right-hand    d1

assigns the composite to each composable pair of arrows.  We can regard each set  S  as a

discrete category; then    S , X[ ] is the category of S-indexed families in  X .  The cosimplicial

category we want is    NerA X,[ ].  We leave it as an exercise (although one can see a

generalization in the proof of Proposition 3) to verify that there is an isomorphism of

categories:

  Desc NerA X A X, ,[ ] ≅ [ ] .

Because this holds naturally for all categories  X ,  we can re-interpret this isomorphism as

saying that  A is the codescent category of      NerA ,  showing that every category is obtained

by codescent from a cosimplicial set.

The reader will need to know a little about 2-categories and (especially for the n = 2

case below) about pasting; an appropriate reference is [KS]. 

Suppose we have a truncated simplicial diagram  E :

  

E E E

d

d

d

d

i

d
2 1 0

0

1

2

0

0

1

 →
 →
 →

 →
← 
 →

and a morphism    p E B: 0 → in a 2-category  C.  For any object  X  of  C,  we can take the

category  B to be the homset     C ( , )B X and the functions     ∂ r and    ι r to be      C ( , )d Xr and

  C ( , )i Xr .  If  p  exhibits  B as the descent category of  E =     C ( , )E X ,  we may say that  X  sees
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B  as a codescent object of  E.  If this is true for all  X,  we might also say that  B  is the

codescent object of the diagram  E.  Alternatively, if  E  is the simplicial kernel of  p  (that is,

  E E EB1 0 0= × is the binary product of  p  with itself in the slice 2-category     C / B,  and

  E E E EB B2 0 0 0= × × is the ternary product,  where the morphisms    dr are the projections)

an  X  for which this is true is called a stack for the cover   p E B: 0 → of  B.

Now let us look at  n = 2. We shall describe the descent 2-category   DescE of a

truncated cosimplicial 2-category  E :

  

E E E E0 1 2 3

0

0

1

0

0

1

1

2

0

1

2

3

∂

∂

∂

∂

∂

∂

∂

∂

∂

 →
← 
 →

 →
← 
 →
← 
 →

 →
 →
 →
 →

ι

ι

ι
.

The objects    F f, ,φ( ) consist of an object  F  of     E 0 , a morphism    f F F: ∂  → ∂1 0 of      E1 for

which has    ι 0 1f F= ,  and a 2-cell

  ∂1f
  ∂ ∂ = ∂ ∂2 1 1 1F F   ∂ ∂ = ∂ ∂1 0 0 0F F

  ∂ ∂ = ∂ ∂2 0 0 1F F

⇓ φ
  ∂0f  ∂2f

of     E 2 which has    ι φ0 1= f and    ι φ1 1= f and is such that the following equation between

pasting composites holds in    E 3 :

⇓

⇓
⇓

⇓

  ∂1 φ

  ∂ 3 φ   ∂ 0 φ

  ∂ 2 φ
=

(a commutative tetrahedron).  The morphisms   u F f G g, : , , , ,υ φ ψ( ) ( )  → ( ) consist of a

morphism    u F G:  → in      E 0 and a 2-cell

6



⇓

  f

  g

υ   ∂0u  ∂1u

of    E1 which has    ι υ0 1= u and is such that the following equality (a commutative

triangular cylinder) holds in      E 2 .     

⇓

⇓⇓

⇓

⇓

  ∂1f

φ
  ∂0f  ∂2f

=

  ∂1f

ψ
  ∂0g   ∂0g

  ∂1g

  ∂2g   ∂2g

  ∂1υ

  ∂2υ   ∂0υ
  ∂ ∂2 1u   ∂ ∂0 0u   ∂ ∂1 1u   ∂ ∂1 0u

Composition of morphisms uses composition in     E 0 for the first component and vertical

stacking of the 2-cells in   E1 for the squares in the second component. The 2-cells

  α υ ν φ ψ: , , : , , , ,u v F f G g( ) ⇒ ( ) ( )  → ( ) are just 2-cells    α : :u v F G⇒  → in      E 0 such

that the following equality (a commutative circular cylinder) holds in   E1.

⇓

  f

  g

υ   ∂0u  ∂1u ⇓

  f

  g

  ∂0u=   ∂1v ν   ∂0v⇐ ⇐  ∂1v   ∂1α   ∂0α

The compositions of 2-cells are those of     E 0 . 

Generally then, we begin with a cosimplicial ω-category E (which is simply a functor

    E : ∆∆  → ω - Cat where  ∆∆ is the (topologists’) simplicial category whose objects are the

non-empty finite ordinals) and hope to produce a descent ω-category     DescE .  The purpose

of this paper is to make this construction precise for the case of strict ω-categories, to suggest

a precise construction in the case of so-called weak ω-categories, and to indicate some

reasons why the construction is important. 

3. Exactness of the 2-category of categories
At the heart of modern algebra is the following exactness property of the category    Set
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of sets. Every morphism factors, uniquely up to isomorphism, as a composite of a

surjective morphism followed by an injective morphism, and the surjective morphisms

are precisely those that occur as coequalizers.

When it comes to exactness properties of the 2-category    Cat of categories, there are

numerous possibilities.  In particular, we may be interested in studying    Cat as a mere

bicategory in the sense of Bénabou [Bu] and work only with objects of    Cat up to

equivalence.  However, for the moment, we wish to regard it as a (strict) 2-category and

work up to isomorphism.  The factorization we wish to highlight involves expressing each

functor    f A B:  → as a composite of functors    s A C:  → and    j C B:  → where  s  is

bijective on objects (b.o.) and  j  is fully faithful (f.f.).  

This defines a factorization system on the category    Cat.  For a given functor  f ,  to

produce such a factorization, define  C  to have the objects of  A  and the homs

  C a a B fa fa( , ) ( , )′ = ′ ;  then in fact  s  is the identity on objects and  j  is the identity on homs.

Moreover, given a commutative square of functors

A B

C D

s

j

u v

,

if  s  is b.o. and  j  is f.f. then there exists a unique functor    w B C:  → with    j w v= and

  w s u= ; for fixed  s and  j ,  and varying  u   and  v,  we call this the diagonal fill-in property.

This last property can be expressed by saying that the square

  B C,[ ]   B D,[ ]

  A D,[ ]  A C,[ ]
  A j,[ ]

  B j,[ ]

  s D,[ ]  s C,[ ]

is a pullback after applying the functor    ob Cat Set:  → .  Actually, this last square is a

pullback already in    Cat.  It follows that a functor    s A C:  → is b.o. if and only if it has the

diagonal fill-in property for all f.f.    j C B:  → .

On the other hand,  given  s, j, u, v  as above, but instead of    j u v s= ,  merely an

isomorphism    σ : j u v s≅ ,  one finds that there is a unique pair    w B C:  → ,    τ : j w v≅

such that    w s u= and    τ σs = .  This implies that the last displayed square of functor

categories is a pseudopullback in    Cat as well as a pullback (see [JS4]).
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One might feel that the b.o. functors are not the correct higher version of surjective

function since a b.o. functor between discrete categories is not merely surjective but an

isomorphism.  This is where the bicategorical view of    Cat plays its role.  We call a functor

  f A B:  → essentially surjective on objects (e.s.o.) when, for all object  b  of  B,  there exists

an object  a  of  A  and an isomorphism    fa b≅ .  Clearly an e.s.o. functor between discrete

categories is precisely a surjective function.  However, every e.s.o. functor  f  is equivalent

to a b.o. functor;  indeed, factorize  f = j s  with  s  b.o.  and   j  f.f.,  then  f  e.s.o. implies  j  is

an equivalence.   This means that, when regarding    Cat as a bicategory, the b.o. functors are

indistinguishable from the e.s.o. functors.

Now we turn to the main aspect of exactness: the higher analogue of surjective

functions being coequalizers.

Proposition 3 A functor is bijective on objects if and only if it exhibits its codomain as t h e

(2-categorical) codescent category of some simplicial category. 

Proof Suppose    p E B: 0  → exhibits  B  as the codescent category for a simplicial

category  E.  This means that, for all categories  X, the functor  p  induces an isomorphism

of categories

  B X Desc E X, ,[ ] ≅ [ ] .

We show that  p  is b.o. by showing it has the diagonal fill-in property with respect to all f.f.

  j C D:  → .  This amounts to showing that the square

  E C0 ,[ ]   E D0 ,[ ]
  E j0 ,[ ]

  Desc E C,[ ]   Desc E D,[ ]

is a pullback at the level of objects, where the vertical functors are the obvious forgetfuls.

An object of    Desc E D,[ ] consists of a functor    g E D: 0  → and a natural transformation

  γ : gd gd1 0 → satisfying conditions.  So an object of the pullback consists of such data

together with an object  h  of    E C0 ,[ ] such that    g jh= .  Since  j  is f.f.,  there exists a unique

natural transformation    κ : hd hd1 0 → such that    jκ γ= .  Again, since  j  is f.f.,  h  and  κ

satisfy the descent data conditions required for  h  and  κ to be an object of    Desc E C,[ ].  So

the square is indeed a pullback.

Conversely, for any functor    s A B:  → there is a “higher kernel” which is a

simplicial category  E  defined as follows. Put    E A0 = .  Let    E1 be the comma category    s s↓
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(in the notation of Mac Lane [ML]): the objects are triples  
  
a sa sa a1 2 1 0, ,β →( ) where the

  ar are objects of  A  and  β is a morphism of  B  —  the functor    dr takes such a triple to    ar

and the functor    i0 takes an object  a  of  A  to  
  
a sa sa asa, ,1 →( ) ;  the morphisms of    s s↓

are pairs of morphisms in  A  making the obvious square commute in  B.   Let    E2 be the

category we might call    s s s↓ ↓ :  the objects are quintuplets  

  
a sa sa a sa sa a2 2 1 1 2 1 0

2 0, , , ,β β →  →( ) . 

Then there is an obvious natural transformation    λ : sd sd1 0 → equipping  s  with the

structure of an object of    Desc E B,[ ].  (Notice that, if  s  is an identity-on-objects functor from

a discrete category, then  E  is the nerve  NerB  of  B.)    

We claim that  s  exhibits  B  as the codescent category of  E  if  s  is b.o.  To see this take

any category  D  and an object  g ,    γ : gd gd1 0 → of    Desc E D,[ ].  We shall define a functor

  h B D:  → unique with the property that    hs g= and    h λ γ= .  On objects we put

  h b gs b= −1 .  Each morphism    β : b b1 0 → gives an object  e  =  
  
s b s b− −( )1

1
1

0, ,β of    s s↓

and we define    h eβ γ= .  The descent conditions imply that  h  is indeed a functor as

required. Q.E.D.

The final aspect of exactness of    Cat that we wish to point out (making the situation

much like that in a regular category in the sense of Barr [Br]) is the simple observation that

the pullback of a b.o. functor along any functor is b.o. (After all, pullbacks in    Cat are

preserved by the set-of-objects functor.) There is a bicategorical analogue of this: t h e

pseudopullback of an e.s.o. functor along any functor is e.s.o. 

4. Parametrized categories

We are interested in 2-categories of categories varying over some fixed category  C.

For our purposes we take a category varying over  C to be a pseudofunctor

  X Catop: C  → (that is, a homomorphism of bicategories in the sense of [Bu]); a functor

preserves composition and identities on the nose, whereas a pseudofunctor only preserves

them up to coherent natural isomorphism. Between pseudofunctors there are

pseudonatural transformations: these have isomorphisms in the naturality squares which

satisfy the obvious coherence conditions.

We should explain a little of the folklore intuition behind such pseudofunctors.

Suppose  C is a category of sets in some universe such that  C is actually an object of    Cat.

Suppose we are interested in studying categories of mathematical structures based on the
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sets in  C.  For example, we would be interested in the category     GpC of groups whose

underlying sets are in  C.  Then we have no problem speaking of families of such groups

parametrized by sets  I  belonging to  C:  they are merely functors     I Gp → C .  We actually

have a functor      −[ ], GpC :      C op Cat → taking  I  to     I Gp, C[ ].  Notice that     I Gp, C[ ] is

equivalent to the category      Gp IC /( ) of groups in the slice category    C / I.  The assignment

      I Gp Ia C /( ) becomes the object function of a pseudofunctor psudonaturally equivalent

to      −[ ], GpC .      

Suppose now that C is the category of topological spaces in the universe mentioned

above.  One can certainly consider the category     GpC of topological groups (in the

universe). However, in doing this, we are availing ourselves of nothing more than usual

category theory.  We wish to take advantage of parametrization by objects  I  of  C.  There is

no obvious topology on the set of objects of    GpC so a functor    I Gp → C makes no use

of topology; this time we do not have a functor      −[ ], GpC :      C op Cat → available to us.

A useful notion of topological group parametrized by  I  is a goup in    C / I,  and we do still

have a pseudofunctor       Gp C / −( ) :      C op Cat → .  In the language of parametrized category

theory (in the terminology of [SS], or “indexed” category theory [PS], [Je]) over  C,  the

pseudofunctor      Gp C / −( ) is the category of groups.  We should point out here that groups

give a slightly false impression of the general case since they are models of an algebraic

theory — the axioms are equational.  When the structures are defined using richer logic

(fields or local rings, for example), it is not sufficient to take mere models in the slices   C / .I

Another good reason for looking at pseudofunctors is provided by Heller [Hr] who

defines a homotopy theory to be a pseudofunctor  T :      C op Cat → where  C is the

category of categories in the universe we have been using above.  There are some axioms

on such a homotopy theory  T  including the condition that, for each morphism  f  of  C,

the functor    T f should have both adjoints.  For example, let  T be the category of

topological spaces in the universe and define  TC  to be the homotopy category (inverting

the obvious weak homotopy equivalences) of the functor category      C, T[ ].  The adjoints of

  T f are given by left and right homotopy Kan extensions along  f .  In other words, rather

than considering the mere stagnant homotopy category  T1  of  T with its unattractive

categorical properties,  we consider the whole pseudofunctor  T  which, as a category

parametrized by  C,  turns out to be nicely complete and cocomplete.           

Let  C be any finitely complete category and put

  
F C= ( )Hom Catop , ,
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the 2-category whose objects are pseudofunctors, whose morphisms are pseudonatural

transformations, and whose 2-cells are modifications (for example, see [KS] for precise

definitions).  The objects of  F are to be thought of as large categories parametrized by  C.  

A category i n C can be defined to be a simplicial object     A
op: ∆∆  → C of  C such

that, for all objects  U  of  C,  the simplicial set      C ( , )U A is the nerve of a category.  Note that

we are using the convention that    d A A0 1 0:  → is the codomain morphism and

  d A A1 1 0:  → is the domain morphism for  A  as when we were defining the nerve of a

category.  A functor between categories in  C is a simplicial map in  C.  Natural

transformations in  C are defined in the obvious way yielding a 2-category     CatC of

categories in  C.  Each object  C  of  C gives a discrete category i n C;  it is the constant

functor      ∆∆
op  → C at  C.  In this way we regard  C as a full subcategory of      CatC .  The

opposite   A
op of a category  A  in  C is obtained by composing     A

op: ∆∆  → C with the

functor  ∆∆ ∆∆ → which reverses the order on each ordinal.

Each category  A  in  C gives a functor    C ( , )− A :   C op Cat → .  Any pseudofunctor

pseudonaturally equivalent to such a functor      C ( , )− A is said to be an essentially smal l

object of  F.  This defines a Yoneda-like 2-functor     CatC F → ;  since it is a fully faithful

2-functor, we identify categories in  C with their image under it.

A Yoneda-like argument proves an equivalence of categories

    
F ( , ) ~U X XU−

which is actually pseudonatural in objects  U  of  C.  This shows that every pseudofunctor

X  is equivalent in the 2-category F to a 2-functor     F ( , )− X .  

Given  X  in  F and a category  A  in  C,  we obtain a cosimplicial category

  ∆∆
A X

Catop → − →C F ( , )
.

Moreover,      F ( , )A X is isomorphic to the descent category for this cosimplicial category.

A pseudofunctor

   E : ∆∆  → Cat

might be called a pseudocosimplicial category : the cosimplicial identities only hold up to

coherent isomorphisms.  By incorporating these isomorphisms into the definition,  it is

possible to define a descent category     DescpE for any pseudocosimplicial category  E.

Indeed,  if  ′E is a cosimplicial category equivalent to  E then there is an induced
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equivalence of categories

   
Desc DescpE E~− ′ .

This shows that, from the bicategorical point of view, the two constructions are

indistinguishable when both can be made.

Returning to  X  in  F and the category  A  in  C,  we obtain a pseudocosimplicial

category    X A and a generalized Yoneda-like equivalence

    
F ( , ) ~A X Desc X Ap− ( ) .   

The 2-category  F is complete and cocomplete as a bicategory.  Actually, it admits what

are called pseudolimits and pseudocolimits; these can be calculated pointwise in   Cat.

Without going into too much detail: equalizers and pullbacks are n o t pseudolimits 

products, pseudopullbacks, comma categories, Eilenberg-Moore-algebra constructions, and

descent categories are.  For example, suppose we have morphisms

  X Z Yf g
 → ← 

in  F.  We can form both the comma object   f g↓ and the pseudopullback P  of  f  and  g  as

objects of  F ;  it is done componentwise:

  f g U f gU U↓( ) = ↓

and  PU  is the full subcategory consisting of the objects

  
x XU f x g y y YUU U∈  → ∈( ), ,ζ

with  ζ invertible.  Because in these definitions we are not asking any objects to actually be

equal, both    f g↓ and  P  can be defined on morphisms of  C making them objects of  F.

There are pseudonatural projections    p f g X: ↓ → and    q f g Y: ↓ → with

component at  U  taking    x y, ,ζ( ) to  x  and  y,  and a modification    λ : f p g q → with

component at  U  having component  ζ at    x y, ,ζ( ).   

Suppose  X  is an object of  F and we have an object  x  of  XU  and an object  y  of  XV

which we identify with morphisms    x U X:  → and    y V X:  → in  F (with  U  and  V

in  C).  The hom o f x  and y  is the comma object    x y↓ .  We say the hom is smal l when

  x y↓ is essentially small.  In this case there is a span    U X x y Vp q←   →( , ) in  C which is

equivalent in  F to    U x y Vp q←  ↓  → .  We call    x U X:  → (left) h o m l y when the hom

of  x  and  y  is small for all    y V X:  → .  (I have used the word “admissible” in the past but

this was met with objections!)  A morphism    f Z X:  → in  F is called h o m l y when, for
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all    z U Z:  → with  U  in  C,  the composite    f z U X:  → is homly.  

A functor    p E A:  → between categories in  C is said to be a discrete fibration when

the commutative square

  A1  E1

  E0   A0

  d1  d1

  p1

  p0

is a pullback in  C.  The composite of two discrete fibrations is a discrete fibration.  A

discrete fibration into a discrete category has discrete domain; every morphism of  C is

such.  For any functor    f B A:  → in  C,  the pullback of a discrete fibration    p E A:  →

along  f  is a discrete fibration    p E Bf f:  → .   A functor    q E B:  → between categories

in  C is called a discrete opfibration when    q E Bop op op:  → is a discrete fibration.

There is a two-sided version of discrete fibration.  A span 

  A E Bp q←   →

in    CatC is called a discrete fibration f r o m A  t o B  when, in the diagram below, where the

diamonds are pullbacks,      p i E Ar r:  → is a discrete fibration and      q i E Bl l:  → is a

discrete opfibration.

E

A B

  A0   B0

  E l     Er

p q

    il     ir

When  B  is discrete,  this reduces to the requirement that  p  should be a discrete fibration.

For all functors    u A C:  → and    v B C:  → in  C,  the span    A u v Bp q←  ↓  → is a

discrete fibration from  A  to  B.        

Let  A  be a category in  C.  We shall define an object    PA of  F called the presheaf

object o f A.  For each object  U  of  C,  the category    PA U( ) has as objects discrete fibrations

  p E q, ,( ) from  A  to  U   (sometimes written in abbreviated notation as  E ).  We make    PA

pseudofunctorial by using pullback:  that is,  for    u V U:  → ,  define    PA u( ) to take

  p E q, ,( ) to    pu E q′ ′ ′( ), , where    ′E is the pullback of  q  and  u  with projections    ′u and    ′q .

There is a yoneda m o r p h i s m    y PA A A: → whose component at  U  takes    a AU∈

to the span

14



  A A a Up q←  ↓  →

obtained as the comma object of    1A A A: → and    a U A: → in     CatC .  The fact that

the yoneda morphism is f.f. follows from the following “Yoneda lemma” in      CatC .

Lemma 4.1 Suppose    a B A:  → is a functor between categories i n C and E  is a discrete

fibration f r o m A  t o B.  Then there is an isomorphism between the category of span

morphisms from    A a↓ to  E  and the category of span morphisms f r o m   a B B, ,1( ) to  E.

The isomorphism is given by composing with the right adjoint    i B A a:  → ↓ of q.

E q

p

A

  A a↓ q

B

p E q

p

A B

p

B
  1B

f   a   f i

A morphism    u W U:  → in  C is said to be powerful (or “exponentiable”) when the

functor    C C/ U  → ,  taking    K U → to the pullback    K WU× ,  has a right adjoint.  This

is equivalent to asking that the functor      C C/ /U W → ,  taking    K U → to

  K W WU×  → ,  have a right adjoint.  It is also equivalent to the requirement that the

functor      C C/ /U U → ,  defined by taking binary product with the object  u  of    C / U,

should have a right adjoint (so that  u  can be used as a power for cartesian exponentiation

in the category      C / U).  Any pullback of a powerful morphism is powerful and any

composite of powerful morphisms is powerful.  Every morphism in a topos is powerful

and the powerful morphisms in    Cat were characterized by Giraud [Gd] and Conduché

[Cé]; it was extended to categories in a topos by Johnstone [Je].  

To see the relevance of the powerful morphisms, consider the special case of    PA

when  A  is the terminal object  1  of  C.  Then    P 1( )U is the slice category      C / U.

Morphisms    x U:  → P 1 and    y V:  → P 1 in  F can be identified with morphisms

  x S U:  → and    y S V:  → in  C.   If    x S U:  → is powerful then so too is the

morphism    x V S V U V× ×  → ×: ;   so the internal hom of the objects

  x V S V U V× ×  → ×: and     U y U T U V× ×  → ×:

of    C / U V× exists.  This provides the span    U x y Vp q←  ( )( )  →P 1 , as in the definition

of small homs.  It follows that the powerful morphisms    x S U:  → are the homly objects

of    P 1( )U .  With a little more work one can show that:
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Proposition 4.2 If A  is a category in  C and    p E q, ,( ) is an object of     PA U( ) for w h i c h

  q E U0 0:  → is a powerful morphism of  C then    p E q, ,( ) is homly.

Corollary 4.3 The yoneda morphism of  A  is homly if   d A A0 1 0:  → is powerful.

Recall that, in any bicategory  K ,  a diagram

A B

X

j

h k⇒κ

is said to exhibit  k  as a left extension of  h  along  j  when, for all morphisms    g B X:  → ,

the function

    K KB X k g A X h g j, ( , ) , ( , )( )  → ( ) ,       σ σ κa oj

is a bijection.  Assume  K admits all comma objects.  The diagram is said to exhibit  k  as a

pointwise left extension of  h  along  j  when, for all    s C B:  → ,  the diagram

A B

X

j

h k⇒κ

C

s
  j s↓

⇒λp

q

exhibits    k s as a left extension of    h p along  q .  It can be shown that pointwise left

extensions are indeed left extensions.  For  K =   Cat,  a left extension of  h  along a functor

into  1  gives the colimit  of  h;  and Lawvere’s colimit formula for the left Kan extension is

obtained from the pointwise condition with  C = 1.  For  K = F,  to test whether a left

extension is pointwise, it suffices to take  C  in  C. 

Suppose  A  is a category in  C and  E  =    p E q, ,( ) is an object of      PA U( ) .  Let

  f A X:  → be a morphism in  F.  The  colimit o f f  weighted by E  is the pointwise left

extension    col E f U X( , ) :  → of     f p along  q  (see the diagram below);  sometimes we

identify    col E f( , ) with the corresponding object of  XU.
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E U
q

p

A Xf

⇒
κ

  col E f( , )

We call an object  X  of  F (small) cocomplete when    col E f( , ) exists for all categories  A  i n

C,  all  U  in  C,  all  E  in      PA U( ) ,  and  all    f A X:  → .

Proposition 4.4 For all categories B  in  C,  the presheaf object     P B is small cocomplete.

Proof The category of discrete fibrations from  B  to  A  is equivalent to      F PA B,( );  given a

discrete fibration    p F q, ,( ) from  B  to  A,  there is a corresponding      f A B:  → P whose

component at  U  takes each    a U A:  → to the discrete fibration from  B  to  U  defined by

pulling back  q  and  a.  To obtain the colimit of  f  weighted by a discrete fibration  E  from

A  to  U,  one merely composes  F  from  B  to  A  with  E  from  A  to  U  to obtain     E Fo

from  B  to  U.  Then    col E f( , ) =    E Fo in    P B. Q.E.D.

Suppose    u V U:  → is a morphism of  C and  X  is an object of  F.  If the functor

  Xu XU XV:  → has a left adjoint    X u XV XU^ :  → then every morphism    y V X:  →

has a left extension along  u ;  to calculate it, we use the Yoneda-like correspondence to

identify  y  with an object of  XV  — then the left extension is the morphism    U X →

identified with the object    ( )^X u y of  XU.  Conversely, if the left extension exists for all  y

then  Xu  has a left adjoint.  Pointwiseness of the left extension is equivalent to a so-called

Beck-Chevalley condition: for every pullback

V Uu

WP

p

q

s

in  C,  the functor    Xq has a left adjoint    Xq^ and the mate

XV XU

XWXP

Xp Xs

  Xq^

  X u^

⇒

of the canonical isomorphism    Xp Xu Xq Xs. .≅ is invertible.
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In fact,  to have  X  such that each    Xu XU XV:  → has a left adjoint and the Beck-

Chevalley condition holds is equivalent to having all pointwise left extensions existing for

morphisms into  X  along morphisms in  C.  It is reasonable to say in this case that  X  has

small coproducts. (Compare the case of    Cat where all Kan extensions into  X  exist along

functors between small discrete categories if and only if  X  admits all small coproducts.)

Proposition 4.5 If      X Catop: C  → is  a functor that has small coproducts as an object o f

F then, for every category A  in  C,  the forgetful functor    DescXA XA → 0 is monadic.

The underlying functor of the monad is the composite

  XA XA XAXd Xd
0 1 0

1 0 →  →
^

.   

Proof The equation    d i0 0 1= induces a natural transformation    X i Xd0 0⇒ ^ which then

restricts along    Xd1 to give a natural transformation    η : .^1
0 0 1XA Xd Xd⇒ (where we use

  d i1 0 1= ).  Using the units of the adjunctions   Xd^
1
J

  Xd1 and then those of the adjunctions

  Xd^
0
J

  Xd0 and    Xd^
2
J

  Xd2 ,  we obtain a natural transformation

  1 2 1 0 0 1 1 1XA Xd Xd Xd Xd Xd Xd⇒ . . . . .^ ^ ^ .

Using the equations    d d d d0 1 0 0= and    d d d d1 1 1 2= ,  we see that the codomain of this

natural transformation is isomorphic to    Xd Xd Xd Xd Xd Xd0 0 0 1 1 2. . . . .^ ^ ^ and so, using

mates under the adjunctions    Xd^
0
J

  Xd0 and    Xd^
2
J

  Xd2 , we obtain a natural 

  Xd Xd Xd Xd Xd Xd^ ^ ^. . . .0 2 0 0 1 1⇒ .

Since    d0 and    d2 exhibit    A2 as a pullback of    d0 and    d1, the Beck-Chevalley condition

gives    Xd Xd Xd Xd^ ^. .0 2 1 0≅ .  So we have a natural transformation

  Xd Xd Xd Xd Xd Xd1 0 0 0 1 1. . . .^ ^ ^⇒

which has a mate    µ : . . . .^ ^ ^Xd Xd Xd Xd Xd Xd0 1 0 1 0 1⇒ . The functor    Xd Xd^ .0 1 becomes a

monad on the category    XA0 by taking  η and  µ as unit and multiplication.  A n

Eilenberg-Moore algebra for this monad is an object  x  of    XA0 together with an action

  ( . )^Xd Xd x x0 1  → which corresponds under the adjunction    Xd^
0
J

  Xd0 to a morphism

18



ξ :   ( ) ( )Xd x Xd x1 0 → ;  the action conditions translate to the conditions that    x,ξ( ) should

be an object of    DescXA.  This defines an isomorphism between the category of Eilenberg-

Moore algebras and    DescXA. Q.E.D.

5. Factorizations for parametrized functors

We shall make use of the exactness properties of    Cat (see Section 3) carried over, in a

pointwise manner to  
    
F C= ( )Hom Catop , .  Consider first the factorization into b.o. and f.f.

Let    f X Y:  → be any morphism of  F.   We can factorize each component functor

  f XU YUU :  → into a composite of a b.o.    s XU ZUU :  → and  f.f.    j ZU YUU :  → .

We would like to make  Z  into an object of  F ;  that is, a pseudofunctor.  For all

  u V U:  → in  C,  we have an isomorphism  

  j U
  ZU   YU

  j V
  ZV   YV

  XU   s U

  XV
  s V

  Xu   Yu≅
  fu

which, by the 2-categorical diagonal fill-in property, is equal to

  j U
  ZU   YU

  j V
  ZV   YV

  XU   s U

  XV
  s V

  Xu   Yu≅  Zu
  j u

for a unique functor    Zu and isomorphism    j u ,  where the left square commutes.  Using

the uniqueness of this kind of fill-in, we see that  Z  becomes a pseudofunctor and that

  s X Z:  → and    j Z Y:  → become pseudonatural; in fact,  each    s u is an identity

(that is, it is strict).

In summary, every morphism  f  of  F has the form    f j s= where  s  is pointwise b.o.

and strict, and  j  is pointwise f.f.  From the bicategorical view, this is much stricter than we

need.  Let us recall the bicategorical notion of factorization system.

Suppose  M is a bicategory with two distinguished classes  S and  J of morphisms.

We call the pair      S J,( ) a factorization system on the bicategory M when

(i)  each of  S and  J contains the equivalences and is closed under composition;

(ii) for each morphism  f  of  M,  there exist  s  in  S,  j  in  J and an isomorphism  

  f j s≅ ;
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(iii) for each    s X K:  → in  S and    j Z Y:  → in  J ,  the following square is 

equivalent to the pseudopullback of the left and bottom sides.

  M ( , )X Z   M ( , )X Y

   M ( , )K Y   M ( , )K Z

≅    M ( , )s Z     M ( , )s Y

    M ( , )K j

    M ( , )X j

The factorization system is called regular when the pseudopullback, along any

morphism, of a morphism in  S is also in  S.

For our pointwise b.o./f.f. factorization system on  F ,  condition (i) already causes a

problem since equivalences are not necessarily b.o.  It is necessary (as implied in Section 3)

to allow the more general pointwise e.s.o. morphisms in place of the pointwise b.o.  Let us

call morphisms of  F b.o.,   e.s.o.,   or f.f. when they are pointwise so. 

The analysis of Section 3 and the remarks at the beginning of this section make it easy

to see that the classes of e.s.o. and f.f. morphisms form a regular factorization system o n F
as a bicategory. Notice that the pointwiseness of the morphism classes can be expressed by

the fact that, for  U  in  C,   the 2-functor 

   F F( , ) :U Cat−  →

preserves the bicategorical e.s.o./f.f. factorization (we use the Yoneda-like equivalence

between this 2-functor and evaluation at  U).  Moreover, the f.f. morphisms in  F can be

characterized as those morphisms      j Z Y:  → for which the functors  

    F F F( , ) : ( , ) ( , )X j X Z X Y →

are fully faithful for all  X  in  F.  The e.s.o. morphisms are not preserved by all      F ( , )X − ,

however, they do enjoy the codescent characterization: 

Proposition 5.1 A morphism o f F is (pointwise) essentially surjective on objects if and

only if it exhibits its codomain as the bicategorical codescent category of s o m e

pseudosimplicial object of  F. 

Proof By using the factorization described at the beginning of this section, we can factor

each e.s.o. in  F into a pointwise b.o. followed by an equivalence.  Since we are only

interested in  F as a bicategory, we can work with this pointwise b.o.    s X Z:  → (which

can also be assumed strict).  Now we can use pointwise the “generalized kernel”

construction in the proof of Proposition 3.  Notice that the construction involves comma
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categories and the like which are pseudolimits and so create a simplicial object of  F.  Since

the descent construction is a pseudolimit too, the codescent construction of our simplicial

object of  F is formed pointwise.  It therefore follows from Proposition 3 that  s  induces an

isomorphism of  Z  with the codescent object.  

The converse also follows from Proposition 3 and the pointwise nature of the

codescent construction. Q.E.D.

Suppose now that the category  C has a class of distinguished morphisms called

covers.  We assume that covers form a calculus of left fractions; this means, they contain

the isomorphisms, are closed under composition, and, for each object  U,  the opposite of

the full subcategory   CovU of    C ↓ U,  consisting of the covers, is filtered.  A trivial example

is when the covers are precisely the isomorphisms.  A more interesting example is when  C
is a regular category and the covers are the strong epimorphisms (which are the same as

the extremal and regular epimorphisms for  C regular). 

A morphism    f X Y:  → in  F is called locally surjective on objects (l.s.o.) when,

for all objects  U  of  C and   y  of  YU,  there exists a cover    e V U:  → ,  an object  x  of

XV,  and an isomorphism    ( )Ye y f xV≅ .

A morphism    f X Y:  → in  F is called cover cartesian fully faithful (c.c.f.f.) when

it is (pointwise) f.f. and, for all covers    e V U:  → ,  the following square is equivalent to a

pseudopullback.

  XU

  XV

  YU

  YV

≅
  fe

  fU

  Xe   Ye

  fV

Proposition 5.2 The classes of l.s.o. and c.c.f.f. morphisms form a regular factorization

system on F as a bicategory. 

Proof Given any morphism    f X Y:  → in  F,  define  ZU  to be the full subcategory of

YU  consisting of those objects  y  for which there exists a cover    e V U:  → ,  an object  x

of  XV,  and an isomorphism    ( )Ye y f xV≅ .   Let    i U be the inclusion    i ZU YUU :  → .

Because covers form a calculus of left fractions, we see that, for all    u W U:  → ,  the

functor  Yu  restricts to a functor    Zu ZU ZW:  → ;  so  Z  is an object of  F and
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  i Z Y:  → is f.f. (and strict in fact).  It is readily checked that  i  is indeed cover cartesian.

Also,  since each    fU lands in  ZU,  we obtain the components of a morphism    t X Z:  →

with    f i t= .  It is clear that  t  is l.s.o.  The remaining details are routine. Q.E.D.

6. Classification of locally trivial structures

We require four ingredients:

(a)  a category  C ;

(b)  a category  X  parametrized by  C;

(c)  a cover   e V U:  → ;

(d)  a family  t  of trivial objects of  X.

More explicitly,  C can be any finitely complete category,  X  can be any pseudofunctor

  X Catop: C  → ,    e V U:  → can be any morphism of  C,  and  t  is an object of  XT  for

some object  T  of  C.  We think of  t  as a family of objects of type  X  parametrized by  T;

sometimes we identify it with the corresponding morphism    t T X:  → in  F.

Localizing will be understood with respect to the view that our morphism    e V U:  → is

a cover.

Let    Loc t e( ; ) be the full subcategory of  XU  consisting of the objects  x  for which

there exist a morphism    z V T:  → in  C and an isomorphism    ( ) ( )Xe x Xz t≅ .  So the

objects of    Loc t e( ; ) are thought of as U-families of objects of type  X  that are locally

isomorphic to trivial objects.  A more bicategorical definition of    Loc t e( ; ) is as follows.

Let    Q t e( ; ) denote the category obtained as the following pseudopullback.

  XU   XV
  Xe

   F ( , )V T

  t V

  Q t e( ; )

≅p

q

Then  p  factors as a composite

  Q t e Loc t e XU
p j

( ; ) ( ; )1 1 →  →

where    p1 is e.s.o. and    j1 is the f.f. inclusion.

A factorization

V U
e

P

≅s   ′e

22



in  F is said to be of effective descent for X  when  s  is e.s.o. and    ′e induces an

equivalence of categories  
    
XU P X~ ( , )− F .  It is expected that  P  should be in      CatC ,  but that

is not really necessary.

Define    X t[ ] by factoring in  F as follows:

X
t

≅
T

  s t   j t

  X t[ ]

where    s t is e.s.o. and    j t is f.f.  Again, it is expected that    X t[ ] should be in      CatC (and

there is some chance of this when  X  has small homs), but again this is not really

necessary.

The following result is essentially from [JSS] and contains the categorical version

Fundamental Theorem of Galois Theory due to [Jdz]. 

Theorem 6 There is an equivalence of categories

  
F ( , [ ]) ~ ( ; )P X t Loc t e− . 

Proof By the bicategorical factorization system property, since    s V P:  → is e.s.o. and

  j X t Xt : [ ]  → is f.f., the bottom right square below is equivalent to a pseudopullback.

  XV
  Xe

    F ( , )V T  Q t e( ; )

≅

q

   F ( , [ ])P X t    F ( , [ ])V X t

≅

    F ( , )V s t

  F ( , )V j t

   
XU P X~ ( , )− F

    F ( , )P j t

  Loc t e( ; )

≅

  p1

  j1

  p 2

It follows from the definition of    Q t e( ; ) that there exists a functor    p 2 as in the above

diagram such that the top right square is equivalent to a pseudopullback.  Since  V  is in  C
and    s t is e.s.o.,  the functor    F ( , )V s t is e.s.o.  It follows by regularity that    p 2 is e.s.o.

Thus the left-hand region of the diagram provides two factorizations of  p  into an e.s.o.

and an f.f.  The images are therefore equivalent. Q.E.D.

By way of a typical example, take  C to be the category    Top of topological spaces.

Define the pseudofunctor    X Top Catop:  → to take a space  U  to the category  XU  of

modules in    Top U/ over the ring object      pr U U2 : R ×  → where    R is the topological
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ring of real numbers.  Let  K  be the space of pairs    n x,( ) where  n  is a natural number and

x  is a vector in n-dimensional real Euclidean space.  Then the first projection      K  → N is

a module over    R N N×  → ,  where    N is the discrete space of natural numbers,  and so

is an object  t  of      XN .  Let      U = Ui( ) be an open cover of the space  U  and let  V  be the

disjoint union  
  
V Ui

i

= ∑ with    e V U:  → induced by the inclusions    U Ui  → .  Then

  X t[ ] can be taken to be the topological category      Mat( )R whose objects are natural numbers

and whose morphisms    n m → are    m n× matrices.  The topological category called  P

above is none other than the nerve    NerU of the covering   U .  Theorem 6 gives an

equivalence between the category

    Cat Top Ner Mat( ) , ( )U R( )
of topological functors from the nerve of    U to      Mat( )R and the category of real vector

bundles over  U  trivialized by the covering  U .  This yields the clutching constructions for

vector bundles and, on restricting the equivalence to the groupoids of invertible

morphisms, yields the classification of vector bundles by   Cech
∧

1-cocycles with coefficients

in the real general linear groups      GLn( )R . 

7. Stacks and torsors

Suppose (as near the end of Section 5) we have a finitely complete category  C with a

calculus of left fractions whose morphisms are called covers.   For each cover    e V U:  → ,

we can form the category    Er e( ) in  C called the equivalence relation for  e :  it is the

simplicial object

  

. . . V V V V V VU U U

pr

diag

pr
× ×

 →
→
 →

×
 →
← 
 →

2

1

.

We have a factorization

V U
e

s   ′e

  Er e( )

in which  s  is b.o.  An object  X  of  F is said to be 1-separated when the functor

    F F F′( ) ( )  → ( )e X U X Er e X, , ( ),:
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is faithful for all covers  e.  The object  X  is said to be 2-separated when the displayed

functor is fully faithful for all covers  e.  We call  X  a stack when      F ′( )e X, is an

equivalence of categories for all covers  e.

In other words, an object  X  of  F is a stack (for the given covers in  C ) when, for all

covers  e,  the above displayed factorization  of  e  is of effective descent for  X.

For any    t T X:  → with  T  in  C,  we put

    
Loc t U Loc t eX

e CovU

( ) ;= ( )
∈
U .

Then,    Loc tX( ) becomes an object of  F ;  indeed, it is the l.s.o./c.c.f.f. image of    t T X:  → .

Theorem 6 yields the equivalence

  
Loc t U co Cat Er e X tX

e CovU
( ) ~ lim ( ), [ ]− ( )( )

∈
C ,

where the right-hand side is a filtered colimit in    Cat (and so commutes with finite limits)

Let  A  be a category in C.  An A-torsor trivialized by a cover   e V U:  → is a discrete

fibration  E  from  A  to  U  for which there exist a morphism    a V A:  → and a

commutative diagram

E Uq
p

A

V

e

  A a↓

p

q

in which the square is a pullback.  In other words,  A-torsors trivialized by  e  are the objects

of the category    Loc t e( ; ) where  t  is the composite

    A A AA
0  →  →y P ;

put    Tors A e;( ) =   Loc t e( ; ) for this  t.  So “trivial” here means “representable” in the sense

of being in the image of the yoneda morphism.  An  A-torsor at U  is an A-torsor

trivialized by some cover    e V U:  → .  We put     TorsA Loc tA= P ( ),  an object of  F.     

As a corollary of Theorem 6 we have the equivalence of categories

   
Tors A e Cat Er e A; ~ ( ),( ) − ( )( )C

and the equivalence       

  
TorsA co Cat Er e A

e CovU
~ lim ( ),− ( )( )

∈
C
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in  F which interpret as saying that all A-torsors can be constructed from   C ech
∧

cocycles

with coefficients in  A.

Now we point out the fundamental relationship between stacks and torsors (see [St3]

and [St4]).

Theorem 7.1 An object o f F is a stack if and only if it admits all colimits weighted by

torsors.  These colimits are absolute: that is, preserved by all morphisms in  F.

Proof Suppose  X  is a stack.  Take any torsor  E  from  A  to  U  and    f A X:  → .  Let

  e V U:  → be a cover trivializing  E  and let    a Er e A: ( )  → be the “cocycle”

corresponding to  E.  Then we have    f a in the category     F Er e X( ),( ) which is equivalent to

XU  since  X  is a stack.  The object of  XU  corresponding to    f a is    col E f( , ).  Conversely,

suppose  X  is cocomplete with respect to torsors as weights.  We need to prove that the

functor      F FU X Er e X, ( ),( )  → ( ) induced by    ′  →e Er e U: ( ) is an equivalence.  We use

the fact that    ′ ↓e U is an    Er e( )-torsor trivialized by  e.   The required inverse equivalence

is defined by the colimit    col e U′ ↓ −( ), weighted by    ′ ↓e U.

For the second sentence of the Theorem, it suffices to show that the colimit is

preserved by any morphism    h X Y:  → into a cocomplete object  Y.  In particular,  Y  is a

stack.  So we see that    col E h f( , ) in  YU  corresponds to    h f a.  By evaluating the following

commutative square at    col E f( , ),  we obtain the isomorphism    col E h f hcol E f( , ) ( , )≅ .

    F U X,( )

    F U Y,( )

    F Er e X( ),( )

  F Er e Y( ),( )
    F ′( )e Y,

   F ′( )e X,

  F Er e h( ),( )    F U h,( )

 Q.E.D. 

Constructing the associated stack of an arbitrary object  P  of  F is therefore the

cocompletion of  P  with respect to torsors.  This can be done in various ways.  The

approach that is closest to the original associated sheaf construction described by

Grothendieck [An] is to define    LP in  F by

  
( ) lim ( ),LP U co Er e P

e CovU
= ( )

∈
F .

The morphisms    ′  →e Er e U: ( ) induce

    PU U P Er e P
e P~ ,

, ( ) , → ( )  → ( )′( )F FF
,
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and thereby a morphism    η : P LP → in  F.  The proof of the following result can

essentially be found in [St2].  It proceeds in three steps by showing that  P  in  F is 1-

separated iff  η is (pointwise) faithful,  that  P  is 2-separated iff  η is fully faithful, and that

P  is a stack iff  η is an eqivalence.  

Theorem 7.2 If  P  is any object of  F t h e n   L P3 is the associated stack o f P  in the sense

that   L P3 is a stack and, for all stacks X  i n F,  the morphism     P L P → 3 , obtained by

composing three instances of  η,  induces an equivalence of categories

   
F FL P X P X3 , ~ ,( ) − ( ).

8.  Parity complexes

Free categories on circuit-free directed graphs have particularly simple descriptions.

We generalise this to higher dimensions following [St7]. 

A parity complex  C  of dimension  n  consists of a graded set  
  
C Ck

k n

=
≤ ≤
∑

0

and

functions  −( )− and  −( )+ :      C Ck k → −P 1 for    0< ≤k n,  where    P denotes the power set.

For any subset  S  of    Ck ,  we write    S
− for the subset of    Ck−1 consisting of all elements i n

some    x
− with    x S∈ ;  similarly define    S

+ .  There are some axioms such as

  x x− +∩ = ∅ and         x x x x− − + + − + + −∪ = ∪ .

The solid triangle order ≤ on the set  C  is defined to be the smallest reflexive transitive

relation having  x ≤ y  when either    x y∈ − or    y x∈ + .  A strong axiom of loop freeness on a

parity complex is that the solid triangle order should be antisymmetric ; moreover, for the

important examples of simplexes, cubes and globes defined below, the order is linear (that

is, total).

The model for the free n-category     OC on  C  will now be succinctly described in a

purely combinatorial way.  An n-cell of     OC is a pair    M P,( ) of non-empty finite subsets  M

(for “minus”)  and  P  (for “plus”)  of  C such that the following conditions hold (where    ¬S

means the complement of  S  in  C⁄):

(i)  each of  M  and  P  contains at most one element of    C0 and, for all  x ≠ y  in    Ck

with  k⁄⁄>⁄⁄0,  if both  x, y ∈ M  or if both  x, y ∈ P,  then the set  
  
x y x y− − + +∩( ) ∪ ∩( ) is empty;

(ii)  
  
P M M M= ∪( ) ∩ ¬+ − ,  

  
M P M M= ∪( ) ∩ ¬− + ,

  
P M P P= ∪( ) ∩ ¬+ − ,   

  
M P P P= ∪( ) ∩ ¬− + .
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The k-source and k-target of    M P,( ) are defined as follows (where    S C Sk k= ∩ and

  
S Sk

h
h k

( ) =
≤
∑ for any subset  S  of  C):

  
s M P M M Pk

k
k

k, ,( ) ( )( ) = ∪( )−1 ,  
  
t M P M P Pk

k
k

k, ,( ) ( )( ) = ∪( )−1 .

An ordered pair of cells    M P,( ),    N Q,( ) is called k-composable when

  t M P s N Qk k, ,( ) = ( ) ,

in which case their k-composite is defined by

    M P N Q M N N P P Qk k k, , ,( ) ( ) = ∪ ∩ ¬( ) ∩ ¬( ) ∪( )o .

The k-cells of      OC are the n-cells    M P,( ) with    s M P M Pk , ,( ) = ( ).  The proof that     OC is an

n-category is non-trivial (and requires more axioms on the parity complex than those

mentioned above).  There is a dimension preserving injective function  

   x xa    : C C → O

given inductively as follows: for    x Ck∈ ,  put    x M P= ( ), where  

  M P xk k= = { } ,

  M M Mr r r−
− += ( ) ∩ ¬( )1 ,     and      P P Pr r r−

+ −= ( ) ∩ ¬( )1 for    0 < ≤r k.

My notation for this particular  M  and  P  is    µ( )x and    π( )x so that    x x x= ( )µ π( ) , ( ) .  It is

also non-trivial to prove that  O ⁄⁄C  is the f ree n-category generated by the cells    x ,    x C∈ .

The product   C D× of two parity complexes  C⁄, D  is given by

  
( ) , ( , ) { } { } ( )C D C D x a x a x an p

p q n
q

p× = × = × ∪ ×
+ =
∑ ε ε ε

for    x Cp∈ ,    a Dq∈ and   ε ∈ − +{ }, where    ε( ) ,p ∈ − +{ } is  ε for  p  even and is not  ε for p

odd. 

Parity complexes can be regarded as combinatorial chain complexes. Each parity

complex  C  gives rise to a chain complex    F C by taking the free abelian groups on each    Cn

and using the differential    d x x x( ) = −+ − ,  where we have identified    x
+ with the formal

sum of its elements.  It is easy to see that we have a canonical isomorphism of chain

complexes: 

  F C D FC FD×( ) ≅ ⊗ ,

where we remind readers that the tensor-product boundary formula is

  d x a dx a x dap⊗( ) = ⊗ + −( ) ⊗1 for    x FCp∈ and    a FDq∈ .

There are explicit formulas for    µ( , )x a and    π( , )x a in terms of    µ( )x ,   µ( )a ,   π( )x and    π( )a .

To express these, write    χ
r to denote    χ µ π∈ { }, when  r  is even and to denote the other

element of    µ π,{ } when  r  is odd.  Then
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χ χ χ( , ) ( ) ( ) .x a x an r
r

s
r s n

= ×
+ =
U

The j o in   C D• of two parity complexes  C  and  D  is given by

  

( )C D C C D Dn n p
p q n

q n• = + × +
+ + =
∑

1

in which the summands  C  and  D  are embedded as parity subcomplexes and the elements

  x a C Dp q,( ) ∈ × are written as    xa with

  xa x a xa( ) = ∪− − − and      xa x a xa( ) = ∪+ + + for  p  odd,

  xa x a xa( ) = ∪− − + and       xa x a xa( ) = ∪+ + − for  p  even,

where, for example,  
  
x a ya y x+ += ∈{ }: is taken to mean    a{ } when  p = 0.  In particular,

when  D  consists of a single element  ∞ in dimension 0, the join    C D• is called the right

cone of C  and denoted by    C
> .  Also    D C• is the left cone of C  and denoted by    C

< .

Let      I
0 denote the parity point;  it is the parity complex  C  with   C0 0= { } and

  Cn = ∅ for    n > 0.  The parity interval is the parity complex which is the join      I I I= •0 0 .  

The parity n-simplex is the (n+1)-fold join  
    
∆∆n

n

= • • •
+

I I I0 0 0

1

. . .
1 2444 3444

of parity points.  In

fact, the elements of   
  
∆∆n

k( ) can be taken to be k-element subsets of    0 1, , . . . , n{ } where    x
−

consists of the “odd faces” and    x
+ the “even faces” for such a subset  x .   For    n = 3:

0

1 2

3

⇓

⇓

03

01

12

23
02

023

012
⇒

0

1 2

3

⇓

⇓

03

01

12

23

013

123

13
0123

The parity n-cube is the n-fold product  
    
I I I In

n

= × × ×. . .
1 244 344

of parity intervals. For

  n = 3:

– – –

– – +

– + +

+ + +

+ – –

+ + –

+ – +

– – 0

– 0 +

0+ +

0 – –

+ 0 –

+ + 0

– – –

– – +

– + +

+ + +

+ – –

+ + –

– + –

– – 0

– 0 +

⇒

⇒ ⇒

⇒ ⇒

⇒
+ 0 +

0 – + + – 0

0 – 0

0 0 + + 0 0

0 0 0+ 0 –

– 0 0 0 0 –

0 + 0

0+ + + + 0

0 – –

– 0 –

– + 0 0 + –
⇒
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The parity n-glob is the parity complex      G
n defined by 

    
Gn

m
m or( ) = ( ) = − +{ }ε ε, : for    m n< ,       

    
Gn

n
n( ) = { }, 

  ε , ,m m( ) = − −( ){ }− 1 ,      ε , ,m m( ) = + −( ){ }+ 1 ,      n n− = − −( ), 1 ,      n n+ = + −( ), 1 .

For  n = 3:

( – , 0 ) ( + , 0 )

( – , 1 )

( + , 1 )

3( – , 2 ) ( + , 2 )

A precise definition of the the free n-category on the n-simplex, called the n-th

oriental, is

  O On
n= ∆∆ .

A precise definition of the nerve    NerA of an ω-category  A  is then

    NerA Cat An n( ) = ω - ( , )O .

This process is quite like Kan’s definition of the “singular functor” going from spaces to

simplicial sets,  so there is also the analogue of a “geometric realization”.  From the functor

  O•  →: ∆∆ ω - Cat , we obtain the nerve functor
  
Ner Cat Setop: ,ω -  → [ ]∆∆ with a left

adjoint  Φ.  While the restriction of    Ner to 1-categories is fully faithful, it is not true that

  Ner itself is full:  simplicial maps    NerA NerB → amount to normal lax functors

  A B → .

9. The Gray tensor product of ωωωω-categories and the descent ωωωω-category

We begin by reminding the reader of the technique for left Kan extending monoidal

structures along dense functors due to Brian Day [D1], [D2]  (whose results more generally

cover promonoidal enriched categories).  

Proposition 9 Suppose   J : C X → is a dense functor from a small monoidal category

C into a complete and cocomplete category X .  The formula

    
X Y J C D

C D
⊗ = × • ⊗∫ ( )

,
( )X X(JC,X) (JD,Y)

defines a (left and right) closed monoidal structure on  X with  J strong monoidal if and

only if there exist functors   H and    ′ ×  →H op: C X X and isomorphisms

    X X XJB H C X J B C X JC B X, ( , ) ( ) , , ( , )( ) ≅ ⊗( ) ≅ ′( )H

natural in objects B  and C  o f C and X  o f X .

30



For example, when  J  is the Yoneda embedding of C,  the tensor product on the

presheaf category is convolut ion.

The technique of Proposition 9 was used by the author in [St6] to construct the Gray

tensor product of 2-categories.  This can be modified to obtain a Gray-like tensor product for

ω-categories.

The free ω-categories        O I n on the parity cubes (n ≥ 0) form a dense full subcategory  Q

of the category    ω - Cat ;  this essentially amounts to the fact that all possible composites of

cells can be found occuring in these cube.  The subcategory  Q is monoidal via the tensor

product defined by

     
O O OI I Im n m n( ) ⊗ ( ) = + .

With some work to satisfy the hypotheses of Proposition 9, we obtain a monoidal structure

on    ω - Cat .  It is n o t the cartesian monoidal structure.  We shall call it the Gray mono ida l

structure on   ω - Cat ,  although it is not really what John Gray defined; his tensor product

was on 2-Cat.  The present structure was considered by Richard Steiner [Sn] and explored by

Sjoerd Crans [C]. Dominic Verity [V] has another elegant approach using cubical sets.  To

obtain Gray’s original tensor product [Gy1] we need to render all 3-cells identities, although

his approach to coherence [Gy2] used the braid groups. To see the connection, consider the

braid category    B (as defined in [JS2]) which is the disjoint union of all the usual braid

groups as 1-object categories.  There is a 2-category    ΣB with one object, with hom-category

  B and with addition of braids as composition.  There is an ω-functor        P : O I B∞  → Σ

which is universal with the property that it equates all objects, inverts all 2-cells, and takes

all 3-cells to identities.  Actually, in [St6], the author used the “braid monoids with zero”

which are finite monoids that came out of his joint work with Samuel Eilenberg.  

Dominic Verity has shown that, for a wide class of parity complexes  C, D,  we have

  O O OC D C D( ) ⊗ ( ) ×( )≅ .

Simplexes, cubes, globes, and products of them belong to the class.  We shall make use of

this result.

To give some further feeling for this Gray tensor product, we shall make a connection

with the ordinary tensor product of chain complexes.  Each chain complex ⁄⁄R ⁄⁄gives rise to

an ω-category   ϑR ⁄whose 0-cells are 0-cycles    a R∈ 0 ,  whose 1-cells    b a a: → ′ are

elements    b R∈ 1 with    d b a a( ) = ′ − ,  whose 2-cells    c b b: → ′ are elements    c R∈ 2 with

  d c b b( ) = ′ − ,  and so on.  All compositions are addition.  A functor    ϑ ω: DG → - Cat

from the category  DG  of chain complexes and chain maps.  In fact,    ϑ ω: DG → - Cat is

a monoidal functor where  DG  has the usual tensor product of chain complexes and
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  ω - Cat has the Gray tensor product.  By applying  ϑ on homs, we obtain a (2-) functor

    ϑ∗ →: DG - Cat - CatV2 where      V2 is    ω - Cat with the Gray tensor product.  In

particular, since  DG  is closed, it is a DG-category and we can apply  ϑ∗ to it.  The     V2 -

category    ϑ∗( )DG has chain complexes as 0-cells and chain maps as 1-cells; the 2-cells are

chain homotopies and the higher cells are higher analogues of chain homotopies.  In the

next section we shall see the importance of   V2 -categories in the homotopy theory of

topological spaces, not just the homotopy theory of chain complexes (which is ordinary

homological algebra).     

We can now solve the problem of defining the descent ω-category of a cosimplicial ω-

category. We make considerable use of the fact, mentioned before, that n-categories are

models of a finite-limit theory.  Such models have their structure preserved by left-exact

functors and inherited by representing objects.  For example, the functor

  Cell -n : ω Cat Set → ,  which assigns the set of n-cells to each ω-category, is represented

by the free n-category      O Gn on the n-glob: that is,

      Cell A Cat An
n≅ ω - ( , )O G .

The set of n-cells in an ω-category forms an n-category; so      O Gn is a co-n-category in t h e

category   ω - Cat .   Now using the fact that co-n-categories are taken to co-n-categories by

right-exact functors, we see that        O Gn A⊗ is a co-n-category in   ω - Cat for all ω-categories

A.   In particular,  

      O OGn
m⊗ =        O OGn m⊗ ∆∆ =  

     
O Gn m×( )∆∆

is a co-n-category in    ω - Cat for all  m ≥ 0.  

Allowing  m  to vary, we obtain a co-n-category  
     
O Gn ×( )•∆∆ in the category

  ∆∆ , ω - Cat[ ] of cosimplicial ω-categories.  Hence, for any cosimplicial n-category  E ⁄⁄,  we

obtain an n-category

      
Desc Cat nE O E= [ ] ×( )( )•∆∆ ∆∆, ,ω - G .

We thus have our precise definition of the n-category    Desc E (with somewhat more

detail than appears in [St7]). 

10. Weak n-categories, cohomology and homotopy
There are now many plausible definitions of weak n-category; see [Lr].  For any of

these we expect a weak 0-category to be a set, a weak 1-category to be a category, a weak 2-

category to be a bicategory in the sense of Bénabou [Bu], and a weak 3-category to be a

tricategory in the sense of [GPS].  The definition we wish to concentrate on here is that of

Batanin as described in [Bn1] and [Bn2].  The starting point is the category of globular sets
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(or ω-graphs) and the monad on it whose algebras are ω-categories.

We can approach ω-graphs in the same way we approached ω-categories in the

Introduction. For any symmetric monoidal category  V,  there is a symmetric monoidal

category      V - Gph whose objects are V-graphs; a V-graph  G  has a set    G0 of vertices

together with,  for each ordered pair  x,  y  of vertices,  an object    G x y,( ) of  V (the “object

of edges”).  Starting with the category    Set of sets using cartesian product for the monoidal

structure, we can iterate the process        V Va - Gph yielding the following sequence of

definitions: 

  Set ,      Gph : =   Set G- ph,        2 - ph : = Gph - GphG ,       3 2- ph : = - ph - GphG G( ) ,   .  .  . 

all terms having cartesian product as monoidal structure.  Each set can be regarded as a

discrete graph  (the objects of edges are empty) so there are inclusions  

  Set Gph G G⊂ ⊂ ⊂ ⊂2 3- ph - ph . . .  .  

The union of this chain is the category    ω - Gph of ω-graphs  2.  We define the n-cells in an

ω-graph just as in ω-categories (see the Introduction); each n-cell has a source (n–1)-cell and
a target  (n–1)-cell.  In this way an ω-graph  G  can be regarded as having the same kind of

structure as a parity complex;  it is graded by the dimension of the cells, the sets   x
− is the

singleton consisting of the source of   x and   x
+ is the singleton consisting of the target of   x.

It follows that we can define the solid triangle order for ω-graphs.  The author [St11] has

defined an ω-graph to be a globular cardinal when the solid triangle order is linear; also see

[MZ].   

Under reasonable (co)completeness conditions on V, Wolff [W] showed the forgetful

functor      V V- -Cat Gph → to have not only a left adjoint but to be monadic; also see

[Bi].  It follows that the forgetful functor    U n Cat n Gphn : - - → has a left adjoint    Fn

for all    0 ≤ ≤n ω .  Indeed,    Un is also monadic; we write    Dn for the monad    U Fn n on

  n Gph- generated by the adjunction    Fn
J

  Un.  

The starting point of Batanin’s work was his explicit description of    Dn.  For each n-

graph  G,  the m-cells of    D Gn are to be thought of as globular pasting diagrams of k-cells

for   k m≤ .  Batanin was able to code these globular pasting diagrams in terms of plane trees

of height  m.  Each plane tree  t  of height  m  gives rise to an m-graph    t
∗.  An ω-graph is a

globular cardinal if and only if it is isomorphic to    t
∗ for some plane tree  t .  The cells of

  D Gn are n-graph morphisms    t G∗  → .

Weak n-categories are expected to have all the composition operations of the strict n-

categories, however, these operations are not expected to be strictly associative or strictly

functorial over each other as in a strict n-category.  Batanin realized that weak n-categories
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should also be algebras for some monad    Kn on    n Gph- .  Write    Wk n Cat- - for the

category of Eilenberg-Moore algebras for    Kn ;  the objects are weak n-categories but the

morphisms are very strict, preserving all the structure precisely.  Since every strict n-

category should be a particular kind of weak one, there should be a monad morphism

  K Dn n → inducing the inclusion    n Cat Wk n Cat- - - → .   The genius of Batanin’s

approach was the idea, inspired by homotopy theory 3, that    Kn should be contractible in a

suitable sense;  indeed,    Kn should be the initial contractible monad with a system o f

compositions. This “system” ensured that the composition operations and identities

available in an n-category were there in the algebras for    Kn ,  while contractibility gave the

weak associativity and functoriality.

Batanin provided a construction for    Kn in [Bn1] and [Bn2];  another arose from [Pn]

and [Bn4].  Recent work of Batanin seems to be leading to an explicit combinatorial

description of    Kn using polyhedra constructed from Joyal’s morphisms of Batanin’s trees

as appearing in [Jl] and [BS]. We shall not need much of this detail here: suffice it to say

that, like    Dn,  the endofunctor    Kn preserves filtered colimits so that its algebras (the weak

n-categories) are also models of a finite-limit theory.  This means we can take models i n

any finitely complete category  C;  that is, we can speak of weak n-categories internal to C.

What is more, if we let  A  be a weak n-category in  C and let  R  be a simplicial object

of  C,  we obtain a cosimplicial weak n-category      C R A,( ) .  It is important to realize that the

coface and codegeneracy morphisms of      C R A,( ) are strict; that is, they are morphisms of

  Wk n Cat- - .  In the following sections we shall indicate how to define the descent weak n-
category of such a cosimplicial weak n-category.  Then we define the cohomology weak n-

category   H R A,( ) o f R  with coefficients in A by

  H CR A Desc R A,( ) = ( ), .

As mentioned in the strict case, the cells of      H R A,( ) are cocycles of  R  with coefficients i n

A.  To work with cocycles up to coboundary is to work with them up to “equivalence”.  So

we shall briefly discuss equivalence in weak n-categories.

It is well known what is meant for two elements in a set to be equal (= 0-equivalent)

and what it means for an arrow in a category to be an isomorphism ( = 1-equivalence).  It is

also well known what it means for a morphism in a bicategory to be an equivalence ( = 2-

equivalence).  A 1-cell   f a b:  → in a tricategory is called a biequivalence ( = 3-

equivalence) when there exists a 1-cell    g b a:  → such that    f g and    g f are both

equivalent to identity 1-cells.  

Notice that for these kinds of equivalences no use is made of associativity or

functoriality of composition.  In fact it is possible to define m-equivalence in algebras for
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any monad with a system of compositions;  in such algebras, there is a composition of m-

cells for all    0 < ≤m n . The definition of m-equivalence is recursive: an n-cell is a 1-

equivalence when it is invertible;  an m-cell   f a b:  → is an   ( )n m− + 1 -equivalence when

there exists an m-cell   g b a:  → with   ( )n m− -equivalences   g f a → 1 and    f g b → 1 .  

We can define homotopy sets for any weak n-category  A.  We define    π0 A( ) to be the

set of n-equivalence classes of 0-cells of  A.  Let  a  be any 0-cell of  A  and let   AutEq a( )

denote the full sub-weak-(n–1)-category of  A(a⁄,⁄⁄a)  whose 0-cells are the n-equivalences

  a a → .    We define the fundamental group   π1 A a,( ) to be the set   π0 AutEq a( )( ) equipped

with the multiplication induced by composition of 1-cells in  A.  We recursively define

homotopy (abelian) groups    πn A a,( ),    n > 1,  by

  π πn n aA a AutEq a+ ( ) = ( )1 1, ( ), .

11. Computads, descent and simplicial nerves for weak n-categories

Computads were introduced in [St0] to provide presentations of 2-categories that were

more efficient than presentations by 2-graphs.  Such a computad is a 2-graph whose 0-cells

and 1-cells form the underlying category of a free category on a graph; in other words, we

are given a graph together with 2-cells between paths in the graph.  These computads were

later called 2-computads as the author had need for n-computads for all positive integers n;

see [Pr], [St9] and [St10].  

More recently, Batanin has defined computads, not just for n-categories, but for any

algebraic structure on globular sets; see [Bn3] and [Bn5].  For example, computads for

bicategories are not the same as computads for 2-categories; the 2-cells in a computad for

bicategories have chosen bracketings for their source and target paths.  We shall now

explain the general definition in terms similar to the case of computads for (strict) n-

categories.

Suppose    Tn is a monad on    n Gph- for each natural number  n  and let    T An - lg

denote the category of Eilenberg-Moore algebras.  Let    U T A n Gphn n: lg- - → be the

underlying functor with left adjoint    Fn.  Let    W n Gph n Gphn−  → −1 1: ( )- - be the

functor that forgets about n-cells and let    I n Gph n Gphn : ( )−  →1 - - be the inclusion;

indeed    I n is the fully faithful left adjoint of    Wn−1.

A second sequence of monads    Tn on    n Gph- can be constructed from the sequence

of monads   Tn .  Define    Tn−1 to be the right Kan extension of    W Tn n−1 along    Wn−1; in fact,

  T W T In n n n− −=1 1 .  (For the special case where    Tn is the monad for strict n-categories, we

have    T Tn n= .  However, when    Tn is the monad for weak n-categories,   T1 assigns the
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graph of bracketed paths in a graph, whereas    T1 assigns the usual graph of paths.)  Since

  Wn−1 is a monad morphism, it induces a functor    W T A T An n n− − →1 1: lg lg- - such that

  U W W Un n n n− − −=1 1 1 ,  where we put bars overtop data pertaining to the    Tn to distinguish

it from the corresponding data for the    Tn .                  

For all sequences of monads    Tn on    n Gph- ,  the category    Tn - Cpd of n-computads

for   Tn -algebras is defined inductively along with the functor    V T Tn n n: - Alg - Cpd →

and its left adjoint    Ln
J

  Vn.   For  n = 0,    Tn - Cpd is    T0 - Alg with    V0 and    L 0 the

identity functor.  For  n > 0,  the category    Tn - Cpd is defined by the following pullback of

categories and functors.

  Tn - Cpd

  n Gph-   ( )n Gph− 1 -

  Q n

  Pn

  Wn−1

  U Ln n− −1 1

  Tn−1 - Cpd

A functor    ′  →V T nn n: - Alg - Gph is defined by the following limit diagram of functors

and natural transformations

  ′Vn

  Un

s

t   InU Wn n− −1 1

  InU L V Wn n n n− − − −1 1 1 1

  InU counit Wn n− −( )1 1

where  s  and  t  are the natural transformations whose components assign the source and

target    ( )n − 1 -cells to each n-cell.  Notice that    W U U W W I U Wn n n n n n n n− − − − − −= =1 1 1 1 1 1 and

  W s W tn n W Un n− −= =
−1 1 1

1
;  this implies

  W V U L V Wn n n n n n− − − − −′ =1 1 1 1 1

since    Wn−1 preserves limits.  Using the pullback property of    Tn - Cpd,  there exists a

unique functor    V T nn n: - Alg - Cpd → such that    PnV V Wn n n= − −1 1 and    QnV Vn n= ′ .  It

is proved in [Bn3] that    Vn has a left adjoint    Ln.  This completes the inductive definition.  

Just as for ordinary operads, the functor    V T Tn n n: - Alg - Cpd → is monadic; again

see [Bn3].  

The author has long held the view that the orientals should be transferable to contexts

other than strict n-categories — to weak n-categories, for example.  I am grateful to Michael
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Batanin for correcting my naive view of how to do this.  He points out that each monad

morphism    θ : T Dn n → induces a functor    θ
∗  →: D C T Cn n- pd - pd.  Some choice is

involved in the definition of  θ∗ (such as a splitting of  θ as a mere natural

transformation) but all choices are essentially equivalent.  The full inductive definition of

θ∗ must await another paper, however, the idea is clear enough.  Take for example the

case where  n = 2  and    Tn is the monad whose algebras are bicategories.  Given an ordinary

computad  H, we must create a computad    θ∗H for bicategories.  This is done by choosing a

bracketing of each source and target path of each 2-cell of  H  and making that a single 2-cell

of    θ∗H.  This means that each 2-cell of  H  leads to only one 2-cell of    θ∗H ;  of course, i n

the free bicategory on    θ∗H there will be 2-cells between the other bracketings of the source

and target paths obtained by using the associativity constraints available in the bicategory.

Start with any parity complex  C  of dimension  n.  Form the free n-category     OC.

Take the underlying computad      V CnO for strict n-categories (that is, it is a   Dn-computad).

Now we apply the functor    θ
∗  →: D C T Cn n- pd - pd to obtain a   Tn -computad      θ

∗V CnO

Now we apply the functor    L T Tn n n: - Cpd - Alg → to obtain    O T C =   L V Cn nθ∗ O .  W e

call     O T C the free   Tn -algebra on the parity complex C.

In particular, for the monad    K n for weak n-categories, we have the free weak n-

category    O K C on the parity complex  C.  

One application of this is to the descent construction for weak n-categories. For we

now have the cosimplicial weak ω-category  
      
O K

nG ×( )•∆∆ ;  that is, an object of the functor

category    ∆∆ , Wk Cat- -ω[ ]. We believe it will be possible to show that 
     
O K

nG ×( )•∆∆ is

actually a co-weak-n-category in    ∆∆ , Wk Cat- -ω[ ].  Then, for any cosimplicial weak-n-

category  E ⁄⁄,  we would obtain a weak-n-category

      
Desc Wk Cat K

nE O E= [ ] ×( )( )•∆∆ ∆∆, ,- -ω G .

A related application is to obtain the simplicial nerve of a weak ω-category.  We might

call the weak n-category    O K
n∆∆ the   n

th weak oriental. For any weak ω-category  A,  define

the n e r v e   NerA of  A to be the simplicial set  
    
Wk AK- - Catω O ∆∆•( ), . 

Conjecture 11.1 A simplicial set has the f o r m   NerA for some weak ω-category A  if and

only if it is a weak ω-category in the sense of [St12].

As a third application, it seems possible to use the descent construction to produce the

weak n-category of weak morphisms from one weak n-category to another. Details will
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appear elsewhere.  For the moment we content ourselves with the following remarks on

lax functors.

Proposition 11.2 The nerve functor
  
Ner Wk Setop: ,- - Catω  → [ ]∆∆ commutes wi th πn

for all  n ≥ 0.

Simplicial maps    f NerA NerB:  → are normal lax functors between the weak ω-

categories A  and  B ⁄. (The general lax functors are the face morphisms between the

simplicial nerves — they are not required to commute with the degeneracies.)  Using the

familiar process of replacing a map by an inclusion using a mapping cylinder, we see that

each such normal lax functor gives rise to a long exact homotopy sequence.

  πn(A,a)
f ∗

 → πn(B, f (a))→ πn(f,a)→ πn−1(A,a)
f ∗

 → πn−1(B, f (a))

12. Brauer groups

Let  M denote a closed braided monoidal category which is finitely cocomplete.  W e

have in mind that  M is the category of modules over a commutative ring  R,  or the

category of finite dimensional comodules for a quantum group.  Consider the bicategory

    AlmM whose objects are monoids (also called “algebras”) in  M ,  whose morphism

  M A B:  → are left A- right B-bimodules, and whose 2-cells    f M M A B: :⇒ ′  → are

module morphisms    f M M:  → ′ ;  vertical composition is composition of functions and

horizontal composition of modules    M A B:  → ⁄,   N B C:  → is given by tensor

product    M N A CB⊗  →: over  B  (where    M NB⊗ is the coequalizer of the two arrows

from    M B N⊗ ⊗ to    M N⊗ given by the actions of  B  on  M  and on  N ).

Since  M is braided, the tensor product    A B⊗ of algebras is canonically an algebra.

This makes    AlmM into a monoidal bicategory.  Let    ΣAlmM denote the 1-object

tricategory whose hom bicategory is    AlmM and whose composition is tensor product of

algebras.

In the particular case of the tricategory      ΣAlmM ,  there it is an easy way to find a 3-

equivalent Gray category.  First replace  M by an equivalent strict monoidal category (see

[JS2]). We identify modules   M A B:  → with left adjoint functors  
  
A Bop op, ,M M[ ]  → [ ]

where  
  
Aop ,M[ ] is the category of right A-modules in  M⁄⁄.  The point is that tensor product

  M NB⊗ of modules then becomes composition of functors.

Let     Br M( ) ⁄⁄denote the sub-Gray-category of      ΣAlmM ⁄consisting of the arrows ⁄⁄A
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⁄⁄which are biequivalences, the 2-cells ⁄⁄M ⁄⁄which are equivalences, and the 3-cells ⁄⁄f ⁄⁄which

are isomorphisms.  The morphisms  A  of      Br M( ) are called Azumaya algebras in  M.  The

2-cells  M  of      Br M( ) are called Morita equivalences in  M.

We can form the nerve      NerBr M( ) of     Br M( ).  It is a simplicial set whose homotopy

objects are of special importance.  In particular,     π0NerBr M( ) is a singleton set,

    π1NerBr M( ) is called the Brauer group   Br( )M o f M,  and     π2NerBr M( ) is the Picard group

    Pic( )M o f M.  If  M is equivalent to    Mod(R) for a commutative ring  R,  these are the

usual Brauer and Picard groups of  R;  also     π3NerBr M( ) is then isomorphic to the group

  υ(R) of units of  R.  Compare the approach of Duskin [Dn1].

Now suppose     F : M N → is a right-exact braided strong-monoidal functor between

finitely cocomplete closed braided monoidal categories.  (We have in mind the functor

  Mod( ) : Mod(R)φ  → Mod S( ) induced by a commutative ring homomorphism

  φ : R  → S.) Such an F determines a weak morphism (compositions are preserved up to

equivalence) of tricategories    AlmF Alm: M    → AlmN .  Weak morphisms preserve n-

equivalence for all n.  So a weak morphism    Br Br M Br N( ) : ( ) ( )F  → is induced, and a

simplicial map     Ner F Ner NerBr Br M Br N( ) : ( ) ( ) → is induced.  This leads to the nine

term exact sequence

  

1  → Aut(IM )
F∗ → Aut(IN )  → Aut(F)  → Pic(M )

F∗ → Pic(N )

 → Pic(F)  → Br(M )
F∗ → Br(N )  → Br(F)  → 1

in which  
  
Aut IM( ) denotes the abelian group of automorphisms of the unit      IM for the

tensor product in  M.  Compare with [DI] when  M =    Mod R( ).

§13. Giraud’s  H 2 and the pursuit of stacks

We use Duskin’s [Dn2] amelioration of Giraud’s theory [Gd2] to show that Giraud’s

H⁄2 really fits into our general setting for cohomology.  We work in a topos  E.

A groupoid  B  in  E is connected when    π0B ≅ 1.

Lemma 13.1 Locally connected implies connected.

Proof If    R  → 1 is an epimorphism (“a cover”) then the functor     R R× −  →: /E E

reflects isomorphisms (that is, is conservative), and preserves terminal objects and

coequalizers.  Hence it also reflects coequalizers.  So, to see whether
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B B 1
1 0

is a coequalizer in  E,  it suffices to see that

 R
1 0R × BR × B

is a coequalizer in      E / R . Q.E.D.

A functor  f : A aAB  in  E is called e.s.o. (essentially surjective on objects, as before)

when the top composite  of  q  and  d1  in the diagram below is an epimorphism    P B→ 0

and the square is a pullback (here I is the category with two objects and an isomorphism

between them).

  A0   B 0

P   B 0

q

p

  f 0

  d0

  d1 I 
  B 0

A groupoid  B  is called a weak group when there exists an e.s.o.    b B: 1→ .  In this

case, if  G  denotes the full image of  b,  we have a weak equivalence (that is, e.s.o. fully

faithful functor)    G B→ where  G  is a group. 

Lemma 13.2  A groupoid is connected iff it is a locally weak group.

Proof By Lemma 13.2, “if” will follow from “weak group implies connected”. Suppose

  b B: 1→ is e.s.o.; form the pullback  P  as above with    A = 1 and    f b= .  To prove

B B 1
1 0

d
0

d1

t

is a coequalizer, suppose    h B X: 0 → has    h d h d0 1= .  Then

  h d q h d q h b p h b t d q1 0 1= = =

implies    h h b t= since    d q1 is epimorphic.  So  h  factors through  t.   However  t  is a

retraction (split by  b),  so the factorization is unique.

Conversely, assume  B  is connected.  Certainly    B X0 → is epimorphic,  so we pass

to      E / B0 where we pick up a global object    ∆ : B B B0 0 → × over    B0 which we will see is

e.s.o.
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  B 0  B1   B B0 1×   1 1× d

  B B0 0×

  1 0× d

∆  B 0

  d0

What we must see then is that    d d B B B0 1 1 0 0, :( )  → × is epimorphic.  Take the

epi./mono. factorization of    d d0 1,( ) and let  K  be the image.  Since  B  is a groupoid,  K  is

an equivalence relation on    B0.   Since  E is exact,  K  is a kernel pair of its coequalizer. The

coequalizer is  1  since  B  is connected.  So the kernel pair is    B B0 0× . Q.E.D.

Recall that the category of groups in a category with finite products is actually a 2-

category since group homomorphisms can be regarded as functors; so there are 2-cells

amounting to natural transformations.  (In fact, we can make it a 3-category by taking

central elements of the target group as 3-cells, but this will not be needed here.)  So we have

a 2-functor

  Gp Cat Cat: ×  → 2 -

from the 2-category    Cat× of categories with finite products and product-preserving

functors. 

There is a pseudofunctor    E E/ :−  →op Cat taking an object  X  of  E to the slice

category  E/X  and given on morphisms by pulling back along the morphism.  It is easy to

find an actual 2-functor      E : E op Cat → equivalent to      E / − .  The composite 2-functor

    E
op E

 → Cat ×
Gp

 → 2 − Cat

defines a 2-category  G in the presheaf category  
  

E op Set,[ ].

It is natural then to look at the cohomology 2-category     H E G,( ) of  E with

coefficients in  G.   What I mean by this is the colimit of all the 2-categories      H GR,( ) over

all hypercovers  R  in  E,  which we regard, via the Yoneda embedding, as special simplicial

objects in the category  
    

E op Set,[ ].  

What Giraud actually looks at is obtained from    H E G,( ) by lots of quotienting.  First

form the composite 2-functor

   E
op G

 → 2 − Cat
π 0 ∗

 → Cat

where    π 0∗ is the 2-functor which applies    π 0 to the hom categories of each 2-category.  Let

    L E: op Cat → denote the associated stack of that composite 2-functor.  The category

  L X( ) is called t h e category of X-liens of E;  in particular,    L 1( ) is the category of l iens of  E.
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The stack condition implies that each epimorphism    R  → 1 induces an equivalence

between the category      L 1( ) of liens and the descent category of the following truncated

cosimplicial category.

    

L L LR R R R R R( )
 →
← 
 →

×( )
 →
 →
 →

× ×( ) . 

Each connected groupoid  B  determines a lien      lienB ∈ ( )L 1 as follows.  By Lemma

13.2, there exists an epimorphism    R  → 1 and    G R∈ ∗π0 G( ).  The quotient functor

    π0∗  → ( )G L( )R R gives an R-lien      G R[ ] ∈ ( )L which can be enriched with descent data.

These descent data are determined up to isomorphism by  B.  It follows that there is a lien

  lienB ∈ ( )L 1 taken to  B  by the functor      L L1( )  → ( )R .

For any lien  L,  let    H E2 ,L( ) denote the category whose objects are connected

groupoids  B  with    lienB L≅ ,  and whose arrows are weak equivalences of groupoids.  W e

leave as a future quest the study of the 2-category    H E G,( ) versus the categories    H E2 ,L( ).
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