
Applied Intelligence 21, 57–79, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The United States.

Instance-Based Regression by Partitioning Feature Projections

İLHAN UYSAL AND H. ALTAY GÜVENIR
Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey

uilhan@cs.bilkent.edu.tr

guvenir@cs.bilkent.edu.tr

Abstract. A new instance-based learning method is presented for regression problems with high-dimensional
data. As an instance-based approach, the conventional method, KNN, is very popular for classification. Although
KNN performs well on classification tasks, it does not perform as well on regression problems. We have developed a
new instance-based method, called Regression by Partitioning Feature Projections (RPFP) which is designed to meet
the requirement for a lazy method that achieves high levels of accuracy on regression problems. RPFP gives better
performance than well-known eager approaches found in machine learning and statistics such as MARS, rule-based
regression, and regression tree induction systems. The most important property of RPFP is that it is a projection-
based approach that can handle interactions. We show that it outperforms existing eager or lazy approaches on many
domains when there are many missing values in the training data.

Keywords: machine learning, regression, feature projections

1. Introduction

Predicting values of numeric or continuous attributes
is known as regression in statistics. Predicting real val-
ues is an important challenge for machine learning be-
cause many problems encountered in real life involve
regression.

In machine learning, much research has been per-
formed for classification, where the single predicted
feature is nominal or discrete. Regression differs from
classification in that the output or predicted feature in
regression problems is continuous. Even regression is
one of the earliest data analysis approaches studied in
statistics, machine learning community also study on
this problem since large number of real-life problems
can be modelled as regression problems. Various names
are used for this problem in the literature, such as func-
tion prediction, real value prediction, function approx-
imation and continuous class learning. We will prefer
its historical name, regression, in this article.

The term eager is used for learning systems that in-
duce rigorous models during training. These models
can be used to make predictions for instances drawn

from the same domain. Induced models allow inter-
pretation of the underlying data. Decision trees and
decision rules are such models. On the other hand, lazy
approaches do not construct models and delay process-
ing to the prediction phase. In fact, the model is usually
the normalized training data itself [1].

An important drawback of lazy learners is that they
are not suitable for interpretation, since data itself is
not a compact description when compared with other
models such as trees or rules. Hence, the major task
of these methods is prediction. A second limitation is
that they generally have to store the whole data set in
memory, resulting in a high space complexity.

However, lazy approaches are very popular in the
literature because of some important properties. They
make predictions according to the local position of
query instances. They can form complex decision
boundaries in the instance space even when relatively
little information is available, since they do not gen-
eralize the data by constructing global models. An-
other advantage is that learning in lazy approaches
is very simple and fast, since it only involves storing
the instances. Finally lazy approaches do not have to

58 Uysal and Güvenir

construct a new model when a new instance is added
to the data.

The most significant problem with lazy approaches
is the one posed by irrelevant features. Some feature se-
lection and feature weighting algorithms have been de-
veloped in the literature for this purpose [2]. However,
these algorithms have also the common characteristic
that they ignore the fact that some features may be rel-
evant only in context. Some features may be important
or relevant only in some regions of the instance space.
This characteristic is known as context-sensitivity
or adaptivity in the literature, and discussed in
Section 4.4.

This paper describes a new instance-based regres-
sion method based on feature projections called Re-
gression by Partitioning Feature Projections (RPFP).
Feature projection based approaches store the train-
ing instances as their projected values on each feature
dimension separately [3–5]. These projections can be
generalized into feature intervals. In predicting the tar-
get value of a query instance, each feature makes a
separate prediction using only the value of the query
instance for that feature, then all the feature predictions
are combined to make the final prediction.

Feature projection based techniques have been ap-
plied to many classification problems successfully. The
main advantage of feature projection based classifica-
tion methods is their short classification time. The con-
cept representation in the form of feature intervals can
be transformed into decision rules easily. They are also
robust to irrelevant features and missing values. How-
ever, the main shortcoming of feature projection based
methods is that they ignore the interactions between
features.

The RPFP method described in this paper is adaptive
and robust to irrelevant features. It is not a simple first-
order projection-based technique; it uses projections
and also handles interactions between input variables.

Conceptually, consider a geographical surface plot-
ted on a 2-dimensional plane. For a given geograph-
ical location, we try to catch a rectangle by cutting
each dimension one by one. This operation is done
carefully such that, on the remaining rectangle we
should see the significant properties of the place, where
the given location (query) falls in, by looking at the
location from every direction separately. This tech-
nique enables interactions to be handled. The tech-
nique described in this paper consider the hyperspace
instead of a restricted 2D-space, where the data set is
placed on it and forms an hyper-rectangle by employ-

ing some computational and statistical measures and
algorithms.

On the other hand, RPFP can cope with the curse of
dimensionality problem, making it suitable for high-
dimensional data. It does not require any normalization
of feature values and successfully handles the cases
with missing feature values. RPFP should be designed
as a lazy, non-parametric, non-linear, and adaptive in-
duction method that is based on feature projections in
implementation.

The next section gives a short overview on related
regression methods. In Section 3, RPFP algorithms are
described. Important properties of the RPFP method
are described in detail in Section 4. Section 5 gives a
short summary of the theoretical comparisons of RPFP
with many important regression algorithms. Detailed
empirical comparisons are given in Section 6. The last
section concludes the paper with some directions for
future work.

2. Regression Overview

If the parametric form of the function to be approxi-
mated is known a-priori, the best approach is to esti-
mate the parameters of this function. If the function is
linear for example, the linear least squares regression
can produce accurate results in the following form.

f̂ (xq) =
p∑

j=1

β j · xq j + β0 (1)

here, p is the number of features, xq is the query point,
xq j is the j th feature value of the query, β j is the j th
parameter of the function and f̂ (xq) is the estimated
value of the function for the query point xq .

However, the assumption that the approximated
function is linear is a very strong one and causes
large bias error, especially for many real domains.
Many modern techniques have been developed, where
no assumption is made about the form of the ap-
proximated function in order to achieve much bet-
ter results. Tree and rule induction algorithms of ma-
chine learning are examples of such non-parametric
approaches.

Additive regression models and feature projection
based classification methods of machine learning such
as Classification with Feature Projections (CFP) [3] im-
prove the linear parametric form of the (1) by replacing
the parameters in this equation with non-parametric

Regression by Partitioning Feature Projections 59

functions of the following form.

f̂ (xq) =
p∑

j=1

ĝ j (xq j) (2)

where ĝ j is the estimation for feature j .
With this form, the assumption that the approximated

function is parametric is removed. However, we assume
that the input features or variables additively form the
approximated function. It is shown that for classifica-
tion tasks of many real world domains, for example that
of the datasets used for classification in the UCI repos-
itory [6], additive forms achieves high accuracy [3, 7].
Even though regression and classification are similar
problems, one predicting a continuous target and the
other predicting a categorical one, their characteristics
are different, and they are investigated independently
in the literature.

There are many approximation techniques that can
cope with interaction effects. KNN and partitioning
approaches such as rule-based regression [8, 9], tree-
based regression [10, 11] and MARS [12] are such tech-
niques. Among projection-based methods, only projec-
tion pursuit regression, PPR [13], handles interactions
with the following model.

f̂ (xq) =
M∑

m=1

fm

(
p∑

j=1

βmj · xq j

)
(3)

where M is the number of projections, βmj is the j th pa-
rameter of the mth projection axis and fm is the smooth
or approximation function for the mth projection axis.
Here the instances are not projected to feature dimen-
sions. Instead, they are projected to projection axes.
The whole model is constructed with M successive
steps, and at each step of the model construction pro-
cess, a new projection is found which is a linear equa-
tion. However, if there are both interactions and addi-
tive (main) effects in a domain, most models that handle
interactions, including PPR, may loose some informa-
tion by not evaluating main effects using individual
features.

f̂ (xq) =
∑

R′ ∈{Rs ,X}

p∑
j=1

ĝ j,R′ (xq)I (j) (4)

where R′ is either the whole instance space X or the
region obtained after s partitioning steps, Rs ; and I (j)
is an indicator function whose value is either 0 or 1,
according to the feature j .

RPFP incorporates interactions by partitioning the
instance space. However, this partitioning does not pro-
duce disjoint regions, as C4.5 [14] does for classifi-
cation and CART [10] for regression. Instead, these
are overlapping regions similar to MARS, DART and
KNN. Query instances are always close to the center
of these regions, which is the case in most lazy ap-
proaches. If some features do not have interactions with
others, which is the situation in most cases, RPFP in-
corporates the main effects of these features as much as
possible by using the whole instance space, with more
crowded instances as additive methods. It decreases the
effects of the curse of dimensionality, which is a prob-
lem for almost all other approximation techniques ex-
cept projection-based approaches. On the other hand, if
a feature has interactions with others, the region formed
after partitioning, Rs , is used for the contribution of that
feature for prediction.

3. Regression by Partitioning Feature Projections

In this section we describe the new regression method
called Regression by Partitioning Feature Projections
(RPFP). RPFP incorporates some advantages of ea-
ger approaches, while eliminating most limitations of
both eager and lazy methods. Like other instance-based
methods it is local, memory-based and lazy.

3.1. RPFP Algorithm

In statistics, for the prediction of an outcome (target) the
predictors (attributes or features) are employed in dif-
ferent ways in different methods according to their as-
sumptions. For example, linearity is one major assump-
tion in multivariate linear regression: It is assumed that
each predictor involves separately and linearly on the
outcome. Separate effects of predictors on the target are
called as “main effect”. On the other hand if some fea-
tures collectively make a different effect on the target
it is called as “interaction”. RPFP is a projection-based
approach that can handle interactions. However, if main
effects are larger than interaction effects in a domain,
or some features have only main effects, which is prob-
ably the case for most real world regression problems,
the functional form of RPFP, given below in (4), en-
ables those effects to be incorporated into the solution
properly.

An important property of RPFP is that a dif-
ferent approximation is done for each feature by
using the projections of the training instances on each

60 Uysal and Güvenir

feature dimension separately. These approximations
may be different for each feature and for each query
point. A partitioning strategy is employed and some
portion of the data is removed from the instance space
at each step. The same approximations are repeated for
a sequence of partitioning steps, until a partition con-
taining a number of instances greater than a predefined
parameter k, is reached. Figures 2 to 5 illustrate the
RPFP method on a sample data set.

The procedure described above is applied for all
query instances. This produces different regions and
different contribution of features for each query in
the instance space, thus providing context-sensitive
solutions.

3.1.1. Training. Training involves simply storing the
training set as their projections to the features. This is
done by associating a copy of the target value with each
feature dimension, then sorting the instances for each
feature dimension according to their feature values. If
there are missing values for a feature, the corresponding
instances are placed at the end of the list for that feature
dimension. Missing values of features are not included
in the computations.

3.1.2. Approximation Using Feature Projections.
Approximation at feature projections is the first stage in
the prediction phase of the RPFP algorithm. Since the
location of the query instance is known, the approxima-
tion is done according to this location. At each feature
dimension, a separate approximation is obtained by us-
ing the value of the query instance for that feature.

Taylor’s theorem states that if a region is local
enough, any continuous function can be well approx-
imated by a low order polynomial within it [11]. By
determining a different linear equation for each differ-
ent query value at feature dimensions, we can form the
function ĝ j,R′ (xq) in (4), even though it is complex.

Given the linear equation to be approximated in the
following form (6), the classical approach is to approxi-
mate coefficients of this equation using the least squares
error criterion in (6).

ŷq f = β0 f + β1 f xq f (5)

E f =
n∑

i=1

(yi − ŷi f)2 (6)

where n is the number of training instances, ŷq f is the
approximation for query at feature f , and yi is the
actual target value.

RPFP employs the weighted linear least squares ap-
proximation for the feature predictions. Similar to the
standard linear least squares approach, the parameters
of (5), β0 f and β1 f for each feature are found by em-
ploying a weight function to the least squares error,
in order to determine the weighted linear least squares
approximation.

E f =
n∑

i=1

wi f (yi − ŷi f)2 (7)

where

wi f = 1

(xi f − xq f)2
(8)

The weight measure (8) implies that each instance is
weighted according to the inverse square of its distance
from the query. The weighted linear least squares ap-
proximation is not appropriate for categorical features.
Since there is no ordering between most categorical fea-
tures, extracting a linear relation is not useful. On the
other hand, if the categorical values have an ordering,
weighted linear least squares approximation shall be
employed. By taking the derivatives of (9) to minimize
the error E f , the parameters β0 and β1 for weighted
linear least squares approximation are found.

E f =
n∑

i=1

wi f (yi − β0 f − β1 f xi f)2 (9)

From ∂ E
∂β0 f

= 0

β0 f

(
n∑

i=1

wi f

)
+ β1 f

(
n∑

i=1

xi f wi f

)
=

n∑
i=1

yiwi f

(10)

From ∂ E
∂β1 f

= 0

β0 f

(
n∑

i=1

xi f wi f

)
+ β1 f

(
n∑

i=1

x2
i f wi f

)
=

n∑
i=1

xi f yiwi f

(11)

By solving the above equations, β0 f and β1 f are found
as follows.

β0 f =
∑n

i=1 yiwi f − β1 f
∑n

i=1 xi f wi f∑n
i=1 wi f

(12)

β1 f = SP f

SSx f
(13)

Regression by Partitioning Feature Projections 61

where

SP f =
n∑

i=1

xi f yiwi f −
(∑n

i=1 xi f wi f
)(∑n

i=1 yiwi f
)

∑n
i=1 wi f

(14)

and

SSx f =
n∑

i=1

x2
i f wi f −

(∑n
i=1 xi f wi f

)2∑n
i=1 wi f

(15)

If all the instances have the same linear value for a
particular feature dimension, the slope of the equation
will be infinity. This situation can be determined by ex-
amining the value of SSx f in (15). If SSx f = 0, we can
not employ the weighted linear least squares approxi-
mation. In this case, we employ an averaging procedure
instead of linear regression. In RPFP, means of the tar-
get values are used as an approximation for such cases
as given in (16). The same approximation is used for
categorical features. If the value of a categorical feature
does not match the feature value of the query instance,
the contribution of that feature in the final prediction is
excluded.

ŷq f =
∑n

i=1 yi

n
(16)

3.1.3. Local Weights. Some regions on a feature di-
mension may produce better approximations than oth-
ers. If the region that the query point falls in is smooth,
a high weight is given to that feature in the final pre-
diction. In this way, the effects of irrelevant features,
and that of the irrelevant regions on feature dimensions
are eliminated. This gives an adaptive or context sensi-
tive nature, where at different locations in the instance
space, the contribution of features on the final approx-
imation differs.

In order to measure the degree of smoothness for
continuous features we compute the distance weighted
mean squared residuals. Residuals are differences be-
tween target values of the instances and their predicted
values found by weighted linear least squares approxi-
mation for the feature value of each instance. We denote
this measure by V f as defined in (18). By subtracting
it from Vall, the variance of the target values of all in-
stances, defined in (17), we find the explained variance
according to the region the query instance falls in and
by normalizing it with the variance of the training set,
we obtain a measure, called prediction index (PI) (20).

We use the squared PI as the local weight (LW) for each
feature (21).

Vall =
∑n

i=1(yi − ȳ)2

n
(17)

where ȳ is the mean of target values of training set.

V f =
∑n

i=1 w′
i f (yi − β0 − β1xi f)2∑n

i=1 w′
i f

(18)

where w′
i f is defined in (19).

w′
i f = 1

1 + (xi f − xq f)2
(19)

PI f = Vall − V f

Vall
(20)

LW f =
{

P I 2
f if P I f > 0

0 otherwise
(21)

To compute local weights for categorical features, a
refinement is required. By replacing (18) by (22) for
such features, we can use the same procedure as for
continuous features to compute local weights. Note that
w′

i f in (19) will be 1 if all of the categorical values are
the same.

V f =
∑Nc

i=1 w′
i (yi − ŷq f)2∑Nc
i=1 w′

i f

(22)

where Nc is the number of instances having the same
categorical value, and ŷq f is the average of their target
values.

3.1.4. Partitioning Algorithm. Partitioning enables
us dealing with interactions among features. If there
are no interactions among some features, we use the
results obtained and recorded for these features before
the partitioning of the instance space. Partitioning is
an iterative procedure applied to each query instance,
where the remaining final region may differ for each
query instance.

Partitioning is an iterative procedure that goes on,
as far as, there are more than k instances in the final
region. Partitioning improves the context-sensitive na-
ture of RPFP, such that the edges of the final region, a
hyper-rectangle, are not equal in length for each query,
according to the relevancy of features for the prediction
of the query. This causes longer edges for less relevant
features, and much shorter edges for relevant ones (see
Figs. 2 to 5).

62 Uysal and Güvenir

In the first step of partitioning, the predictions and
local weights of the features are found and recorded.
The feature having the highest local weight is used first.
Partitioning is done on this feature dimension. The in-
stances farthest from the query value on this feature
dimension are marked. The number of these instances
are determined by using the local weight of that fea-
ture, then they are removed on all feature dimensions.
If the feature selected for partitioning is nominal, then
all the instances having different nominal values on that
feature are also removed. After shrinking the marked
instances on all feature projections, partitioning con-
tinues by selecting a new feature at each step.

The partitioning algorithm applies a strategy to se-
lect the right feature for partitioning. For example, if
the feature selected in the first step has the highest local
weight again in the second step, then the feature hav-
ing the second highest local weight is selected. In this

Figure 1. Partitioning algorithm.

way, we can pass possible ridges in the data set and we
give chance to different features even if they have less
local weight. This selection may lead to an increase in
their local weights in forthcoming steps. However, at a
particular step the features with zero local weights are
not used for partitioning for that step, unless all local
weights in a particular step are zero. This strategy de-
creases the effect of irrelevant features, especially in
high-dimensional domains. Since all the features may
have been selected in previous steps, a counter is asso-
ciated with each feature in order to give opportunity to
different features at each step. Different strategies can
be developed further to increase the efficiency of the
partitioning.

A different strategy is applied for nominal features.
If a nominal feature is selected for partitioning once,
it is never used again for partitioning. The partitioning
algorithm of RPFP is shown in Fig. 1. The partitioning

Regression by Partitioning Feature Projections 63

is repeated for all query instances by using a copy of the
feature projections of the data obtained in the training
phase.

At line 30, in Fig. 1, the number of steps for the par-
titioning is recorded to be used in the final prediction
phase. At line 27, a partitioning of the remaining train-
ing set, D′, is employed along the feature dimension,
MaxF, selected for partitioning. The partition call at
line 27 refers to a simple procedure which is not de-
scribed in Fig. 1. It simply removes the instances lo-
cated far to the query value on feature MaxF.

At any particular step of partitioning, we must de-
termine the number of instances, n′, that will remain
after partitioning according to the local weight of the
selected feature. If we use local weight directly as a
criterion for removing instances, since it takes val-
ues between 0 and 1, all the instances may remain
or all of them may be removed for extreme values
(e.g. for 0 or 1). The solution to this problem is found
by windowing the local weight to a narrower inter-
val. Its size is determined by a windowing constant,
cw, that takes values between 0 and 0.5, giving a local
weight interval, [0.5 ∓ cw]. Local weights are trans-
formed to this interval. Thus, for cw = 0.3, the value
we have used in experiments, the largest local weight
becomes LWmax = 0.8 and the smallest one becomes
LWmin = 0.2 after this transformation. The equation
used to determine the number of instances that will
remain is given below (23).

na = (nb − mf)(LWmax − (LWmax − LWmin)LW f) + m f

(23)

where na and nb are number of instances after and
before partitioning respectively, and mf is the number
of missing values at dimension f .

Once we determine the number of instances that will
remain, we keep that many instances by removing the
farthest instances from the query. The instances having
missing values for that feature are excluded from this
marking process, and they are preserved as their differ-
ent feature values may be useful in the final prediction.
However, we exclude missing values in the computa-
tions.

An example training set and its partitioning on fea-
tures x and y is illustrated in Figs. 2–5. In this example,
we suppose k is 5, that is partitioning goes on as far as
k ≥ 5.

3.1.5. The Prediction. After the partitioning, we ob-
tain a final region, with the query instance in the center

of it. We compare local weights obtained for a feature
for the instance space before partitioning.

This comparison is performed for each feature sep-
arately. If the local weight of a feature on the ini-
tial projections of the instances is larger than the pro-
jections, main effects of those features are regarded
in the final prediction. Otherwise, we use the feature
predictions and local weights computed on the final
region.

If a value for a feature is missing, that feature is
not used in the final prediction. Finally a prediction is
done for a query instance by computing the weighted
average of feature predictions, where weights are the
local weights. The prediction algorithm is shown in
Fig. 6.

3.2. RPFP-N Algorithm

We have developed the RPFP-N algorithm by modify-
ing RPFP in order to use it for domains having noisy
target values. Instance-based algorithms are robust to
noisy or extreme input feature (predictor) values since
the query instances will be far from these instances
and their effect will be very small. However, if the tar-
get values of training instances are noisy, this situation
must be handled.

We have modified the RPFP algorithm, by chang-
ing only the feature prediction phase, described in
Section 3.1.2 in order to cope with noisy target values.
RPFP-N employs an averaging procedure, instead of
weighted linear least squares approximation for feature
prediction. This is distance weighted median measure
and its algorithm is described in Fig. 7, which is used
for both categorical and continuous features. For cat-
egorical features, the instances which are in the same
category with the feature value of the query instance
are used for computation of both feature prediction and
local weights. In the algorithm, Eq. (19) is used as the
weight function for feature prediction.

After determining the prediction for a feature; in or-
der to determine its local weight, Eq. (22) is employed
in Eqs. (20) and (21), for both categorical and continues
features.

4. Properties of RPFP

In this section, we discuss important properties and
problems for regression algorithms and evaluate RPFP
according to them.

64 Uysal and Güvenir

0 1 2 3 4 5 6 7 8 9 10
x

0

1

2

3

4

5

6

7

8

9

10

y

Top View (xy)STEP 0

 1.1

 1.5

 2.2

 1.3

 0.7

 2.0

 1.7

 1.4

 1.5
 1.1

 0.7

 1.3

 1.4

 1.5

 0.9

 0.4

 1.3 0.3

 1.2

 0.7

 1.4

 0.4

 1.3

 1.8

0 1 2 3 4 5 6 7 8 9
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

Front View (x-target)

0 1 2 3 4 5 6 7 8 9
y

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

Right View (y-target)

q

LW=0.028

LW=0.086

Figure 2. Data set before partitioning. Step 0.

4.1. Curse of Dimensionality

The curse of dimensionality is a problem for nearly
all learning and prediction methods that do not apply
strong assumptions about the domain. There are some
models that handle this situation with assumptions. For
example in additive models it is assumed that features
separately contribute to the solutions, as in (2). Another
solution to this problem comes with projection pursuit
regression, which projects the instance space to a lower
dimensional space (generally one or two dimensional).
However, this approach assumes that the information
in data can be evaluated by using only the projection of
data to some projection axes. Assuming linearity be-
tween input features and the target in prediction prob-
lems can be seen as a sub-category of additive models
by comparing (1) and (2); and it is a strong assump-
tion that is employed in classical linear regression and
linear discriminant analysis, which induce parametric
models.

The problem can be illustrated with a simple exam-
ple. Consider a one dimensional input space, where all

instances are uniformly distributed and feature values
range from 0 to 1. In this situation half of the feature
dimension contains half of the instances. If we add one
more feature with the same properties to the instance
space, using half of each feature dimension will include
1/4th of the instances. One more feature will decrease
this ratio to 1/8, and so on exponentially. Adding new
features will cause instance spaces to become even
more sparse. In order to keep the same ratio for the
number of instances in a region we have to increase the
volume of the region exponentially. This is because in
high dimensional spaces it is impossible to construct
regions that have small size simultaneously in all di-
rections and yet contain sufficient training data; thus,
using large regions for approximation causes large bias
errors. The following expression, described by Fried-
man (1996), explains the problem for KNN [15].

size(Rk)

size(R0)
=

(
k

n

)1/p

(24)

where k is the number of training instances in re-
gion Rk and R0 is the instance space.Thus, in high

Regression by Partitioning Feature Projections 65

0 1 2 3 4 5 6 7 8 9 10
x

0

1

2

3

4

5

6

7

8

9

10

y

Top View (xy)STEP 1

 0.7

 2.0

 1.7

 1.4

 1.5
 1.1

 0.7

 1.3

 1.4

 1.5

 0.9

 0.4

 1.3 0.3

 1.2

 0.7

 1.4

0 1 2 3 4 5 6 7 8 9
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

Front View (x-target)

0 1 2 3 4 5 6 7 8 9
y

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

Right View (y-target)

q

LW=0.091

LW= 0.108

CUT CUT

Figure 3. Step 1.

dimensions the size of the region will be close to R0

even for k = 1.
The strong assumptions made in prediction tasks

cause large bias errors in most domains. This is also
what the curse of dimensionality causes in other non-
parametric learning methods. Therefore, generally the
choice is whether to put up with strong assumptions
or with the curse of dimensionality. This problem was
discussed in detail in the literature [11] and it is a crit-
ical issue for lazy and instance based approaches such
as KNN [2], especially for regression problems.

RPFP is a member of the class of instance-based
approaches that are local, memory-based, lazy, non-
parametric and do not depend on strong assumptions
such as those described above. However, RPFP uses
measures to decrease the effect of the curse of dimen-
sionality.

In the final prediction phase of RPFP, a subset of
features are used in additive form, only for their main
effects on the target. The curse of dimensionality does
not affect their contributions, since the feature predic-

tions are determined on a single dimension. For remain-
ing features, the effect of the curse of dimensionality is
not severe. Either the partitioning algorithm does not
allow irrelevant features to affect partitioning (if their
local weights are 0), or their effects are small since
a dynamic partitioning occurs according to their lo-
cal weights. The partitioning strategy of RPFP forms
adaptive regions. According to the position of each
query instance, the edge lengths of these regions for
each feature dimension may change. For remaining fea-
tures, predictions are done on these regions.

4.2. Bias-Variance Trade-off

Following the considerations presented by Friedman
[15], two important error types collectively affect the
success of learning approaches according to the un-
derlying problem to which they are applied. They are
bias and variance errors, caused by under-fitting and
over-fitting respectively in the learning application. A
decrease in one of these errors, generally causes an

66 Uysal and Güvenir

0 1 2 3 4 5 6 7 8 9 10
x

0

1

2

3

4

5

6

7

8

9

10

y

Top View (xy)STEP 2

 2.0

 1.7

 1.4

 1.5
 1.1

 1.3

 1.4

 1.5

 0.9

 0.4

 1.2

 0.7

0 1 2 3 4 5 6 7 8 9
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

Front View (x-target)

0 1 2 3 4 5 6 7 8 9
y

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

Right View (y-target)

q

LW= 0.300

CUT CUT

CUT

CUT

LW= 0.128

Figure 4. Step 2.

increase on the other. However the behavior of inter-
action between bias and variance differs according to
the algorithm and the problem to which it is applied.
To illustrate these error components with an example,
large k values in the application of KNN algorithm may
cause large bias error, while small k values may cause
large variance error.

Many factors affect these error components in-
cluding the curse of dimensionality, model complex-
ity, model flexibility, local vs. global approximations,
assumptions of the learning approach, noise, miss-
ing attribute values, the number of features and the
number of observations in applications. For example,
large number of features, small number of training in-
stances, many missing values, large local approxima-
tion regions, strong assumptions and simple models
are among the reasons for bias error. The effect of
these issues on RPFP will be discussed in the following
sections.

An important result presented by Friedman is that for
classification tasks the major component of the error is

formed by variance [15]. In contrast, bias error is more
important for regression tasks. This is the main rea-
son for the success of the simple nearest neighbor ap-
proach, which outperforms some sophisticated meth-
ods for many classification tasks, even though the curse
of dimensionality problem causes large bias. However,
this is not the situation for regression, and the effect of
bias error is much greater, unless the underlying domain
includes a small number of features or a large number of
observations.

In learning problems, this trade-off is unavoidable
and RPFP employs many techniques to decrease bias
while sacrificing variance error. Its method for handling
bias error caused by the curse of dimensionality is de-
scribed in the previous section. In addition, it makes
weaker assumptions than non-parametric methods. It
develops flexible, adaptive and locally weighted ap-
proximations in small local projections at each feature
dimension for each query instance. All these things
may increase over-fitting, which causes an increase in
the variance error.

Regression by Partitioning Feature Projections 67

0 1 2 3 4 5 6 7 8 9 10
x

0

1

2

3

4

5

6

7

8

9

10

y

Top View (xy)STEP 3

 1.5
 1.1

 1.3

 1.4

 1.5

 0.9

 0.4

0 1 2 3 4 5 6 7 8 9
x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

Front View (x-target)

0 1 2 3 4 5 6 7 8 9
y

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

Right View (y-target)

q

LW= 0.270

CUT CUT

CUT

CUT

LW= 0.195

Prediction=1.16

CUT CUT

Prediction=1.0

Figure 5. Step 3. We suppose there is interaction between x and y, as their local weights after partitioning process (step 3) are larger than their
initial local weights (step 0). Final prediction = 1.16 × 0.270 + 1.0 × 0.195 = 1.09.

Figure 6. Prediction algorithm.

68 Uysal and Güvenir

Figure 7. Weighted median algorithm.

For the bias-variance dilemma, we voted for the vari-
ance error in order to decrease the bias error, which is
more important for regression problems. On the other
hand, the local weight applied to feature predictions,
prevent in some extent this error component since if
there are noisy or extreme instances around the query
in one dimension, its local weight will be low, and its
effect will be prevented or decreased.

Empirical results show that RPFP yields lower error
rates than KNN on regression tasks (as we will show),
and decrease the variance error which is major part
(error component) for regression.

4.3. Irrelevant Features and Dimensionality

An important advantage of RPFP is that it is very likely
for those features to take lower local weights, since the
distribution of target values of nearest instances at any
query location will be very close to the distribution of
the whole target values in the training set (20).

4.4. Context-Sensitive Learning

RPFP is an adaptive or context-sensitive method in the
sense that in different locations of the instance space the
contributions of the features are different. This prop-
erty is enabled by two characteristics of RPFP. One of
them is its partitioning algorithm. The region formed
around the query instance is determined adaptively;
different features have different lengths of edges in the
final region according to the location of the query. The
other one is the use of local weights. Features may
take different local weights according to the location
of the query. In addition to this, the local weights of
features will differ because different instances will be
the neighbors at different feature dimensions.

Different sets of neighbors in different dimensions,
on the other hand, reduce possible over-fitting by estab-
lishing an implicit boosting. Boosting methods in the

literature produce multiple versions of data by mak-
ing bootstrap replicates of the learning set and using
these as new learning sets. A similar aprroacgh, bag-
ging predictors [16], for example, is a method for gen-
erating multiple versions of a predictor and using these
to get an aggregated predictor. RPFP has the properties
of both bagging and boosting implicitly. It is similar
to bagging since predictions for different features are
made seperately and they are aggregated to reach the fi-
nal result; and similar to boosting since the same data is
used again for different features on different distances
from the query, leading to a different sampling for each
feature.

Nearly all eager approaches, to some extent, are
context-sensitive, which is an advantage over KNN.

4.5. Missing Feature Values

It is very likely that some feature values may be
unknown in the application domain. In relational
databases, the most suitable type of databases for most
current learning techniques, the problem occurs fre-
quently because all the records of a table must have the
same fields, even if values are non-existent for most
records [17].

RPFP deals with missing values in a similar way
to additive or previous feature projection based mod-
els, and also resolves the interactions between features
by applying a partitioning process. RPFP does this by
applying approximations on feature projections using
only known values, and in partitioning, for a selected
feature dimension along which the partitioning occurs,
by keeping missing valued instances of that feature.

4.6. Interactions

If some input features have inter-relationships such that
the effect of any feature on the target is dependent on

Regression by Partitioning Feature Projections 69

one or more different input features, those relations
are called interactions. Appropriate handling of inter-
actions may have an important impact on accuracy in
some data sets. By making predictions in local query
regions, RPFP can handle interactions properly.

Some research on classification methods and real
data sets shows that generally the main effects of the
features are sufficient to determine the target values [3,
8]. If some features have only main effects on targets,
RPFP makes predictions for those features by using the
whole instance space (instead of the local region deter-
mined by partitioning) since a large number of training
instances allows better approximations. Another limi-
tation of some partitioning methods, such as regression
tree induction, is that the partitioning always occurs
with many variables and this allows handling of only
high-order interactions. This problem makes it difficult
to approximate even some simple forms such as linear
functions [12].

Dealing with interactions is particularly important in
regression problems since bias error is more important
to achieve better prediction accuracy. Refer to the ear-
lier discussions about bias-variance trade off and com-
parison between RPFP and RPFP-A in the following
sections, where empirical experiments are presented.
The bias error for additive methods comes from the as-
sumption that we can predict an outcome by evaluating
features seperately. This can be illustrated by a simple
example. Suppose there are two features representing
edges of a rectangle; an additive method may well ap-
proximate the peripheral of the rectangle, however it
is difficult to make a similar success for the predic-
tion of the area of it. The assumption here, leading to
bias error, is that the data has an additive nature as for
the prediction of the peripheral. Handling interactions
properly will be useful to decrease bias error for re-
gression problems.

4.7. Complexity Analysis

Since RPFP is a lazy approach, and stores all instances
in memory, a space proportional to the whole train-
ing data is required. Given a data set with n instances
and m features this space is proportional to m × n.
In the training phase, the computational complexity of
projecting instances to input features, which requires
a sort operation on each feature, is O(m × n × log n).
The computation of variance (O(n)) of target values for
all training data is also computed in the training phase,
and it does not change the above complexity.

Taking a copy of projections for a feature requires
a complexity of O(n). The computation complexity
of local approximation in the first step of partition-
ing is again O(n). The complexity of computing local
weights is in fact O(n), which is also the total com-
putation complexity at the first partitioning step. The
partitioning at each step removes, on the average, half
of the instances. For the whole partitioning process the
total computation for a single feature will be propor-
tional to 2n since n + n/2 + n/4 + · · · ≈ 2n. If we
compute the complexity for all features we obtain a
complexity proportional to O(m × n), which is equal
to the complexity of KNN. If we consider situations
for nominal features, this complexity does not change
much. Prediction time is even shorter for nominal fea-
tures then for linear features. In the worst case where
a nominal feature has two values, it requires on the
average the same complexity. The test times of the al-
gorithms, run on the real datasets, also show that the
running time of RPFP is proportional to KNN.

5. Comparison of Regression Methods

In the previous sections we have discussed the main
features and limitations of RPFP. In this section,
we summarize its properties in comparison with
other important approaches in the literature. The ap-
proaches considered in the literature are instance-
based regression, KNN [18], locally weighted regres-
sion, LOESS [19], rule-based regression, RULE [8],
projection pursuit regression, PPR [13], partitioning
algorithms that induce decision trees, CART [10],
DART [11] and multivariate adaptive regression
splines, MARS [12]. Properties of RPFP and the other
seven approaches are summarized in Table 1. It can be
seen from Table 1 that all partitioning methods (RULE,
CART, DART, MARS) except RPFP have similar prop-
erties. A detailed overview and comparison of these
regression techniques is given in [1].

The shortfall of RPFP is it does not perform well
for smooth and simple mathematical functions, since
it applies heuristic approach for nonlinear and non-
parametric prediction. The reason for this shartfall for
RPFP is it works on feature dimensions seperately and
it applies a partitioning on tha data that may prevent
it to catch the smooth global properties. Even though
RPFP apllies some mathematical calculations on the lo-
cal data on seperate feature dimensions, it is a heuristic
approach when the global data is under consideration.
For example for a globally linear function least squares

70 Uysal and Güvenir

Table 1. Properties of Regression Algorithms. The (
√

) is used for cases if the corresponding
algorithm handles a problem or it is advantageous in a property when compared to others.

Properties RPFP KNN LOESS PPR RULE CART DART MARS

Adaptive
√ √ √ √ √ √

Continuous
√ √ √ √ √ √

Categ.&Num.F.
√ √ √ √ √ √

Dimensionality
√ √

Incremental
√ √ √

Interactions
√ √ √ √ √ √ √ √

Interpretable
√ √ √ √ √

Irrelevant F.
√ √ √ √ √

Local
√ √ √ √ √ √ √

Memory Cost
√ √ √ √ √

Missing Val.
√

Noise RPFP-N

Normalization
√ √ √ √ √

Regions Overlap
√ √ √ √ √ √

Partitioning
√ √ √ √ √

Testing Cost
√ √ √ √ √

Train Cost
√ √ √

linear regression and neural network models are bet-
ter choises. Multivariate adaptive regression splines, is
also an appropriate method for simple linear, quadratic
and cubic mathematical functions. Projection pursuit
regression and a similar approach recently developed,
Locally Weighted Projection Regression (LWPR) [20]
are shown to be succesful on mathematical functions.
LWPR puts an additional property to PPR such that,
projections are done on local instances instead of the
global instance space. It is additionally adaptive, local
and incremental when compared to PPR.

Another shartfall of RPFP method is that the pro-
jections are done on feature dimensions, and the re-
gion left after partitioning is a smooth hyper-rectangle.
This shorfall can be compared to Projection Pursuit
Regression the Locally Weighted Projection Regres-
sion, projections are done to different projection di-
rections, which is appropriate for oblique data. How-
ever, this shortfall is not so severe as regression tree
induction algorithms - they also produce such hyper-
rectangles, since local weight of RPFP apllied to in-
stances make closer instances more dominant on pre-
dictions and the boundaries of the rectangles are not
dominant on predictions.

Dimentionality reduction property of Locally
Weighted Linear Regresson and Projection Pursuit Re-

gression are also absent in RPFP, as this property is
useful in decreasing the computation time in the test-
ing phase. However these methods works on data sets
having only continuous features, and handling miss-
ing values is a disadvantage when compared to RPFP.
Noise is an other problem for such methods developed
for mathematical functional prediction.

6. Empirical Evaluations

In this section empirical results of RPFP and other im-
portant regression methods are presented. Though the
main purpose is to measure the performance of RPFP
and to compare it with contemporary regression algo-
rithms, another goal is to present a comparison of those
methods on a large number of real domains, since it is
difficult to find such comparisons in the literature.

The algorithms are carefully selected according to
certain criteria. All of them can handle high dimen-
sional domains and accept both categorical and contin-
uous input features. Because it accepts only continu-
ous features, we did not include LOESS for example,
even though it is a lazy approach like RPFP. The al-
gorithms use different approaches, such as regression
tree induction, instance-based learning and rule-based
learning. Most of them have been recently developed

Regression by Partitioning Feature Projections 71

and outperform earlier algorithms using the same ap-
proach. Finally, all of them are publically available.

The algorithms chosen are KNN (instance-based),
which is the most significant one since it belongs to the
same category as RPFP, RULE (rule-based learning),
DART (regression tree induction), and MARS (spline-
based, partitioning regression).

In the next section, we describe the evaluation
methodology which is commonly used to measure ac-
curacy of regression methods. Later, algorithms and
real datasets are described and empirical results are
presented, including accuracy performance, robustness
of the algorithms to irrelevant features, missing values
and noise.

6.1. Performance Measure

The accuracy performance of the regression methods is
based on the prediction error of the algorithms. Since
the target values are continuous, the absolute differ-
ence between the prediction and the true target value
in the test example is used. One common measure is
mean absolute distance (MAD) [8, 9]. It is the mean of
absolute error found for all test examples.

MAD =
∑T

i=1 |yi − ŷi |
T

(25)

where T is the number of test instances.
However in order to get similar performance values

for all datasets a modified version of MAD, namely
relative error (RE), is used in the experiments. Relative
error is the true mean absolute distance normalized by
the mean absolute distance from the median.

RE = MAD
1
T

∑T
i=1 |yi − median(y)| (26)

Performance results in the experiments are reported
as the average of relative errors measured by applying
10-fold cross-validation on datasets.

6.2. Algorithms Used in Comparisons

In this section the properties of algorithms used in the
experiments are briefly described.

6.2.1. RPFP. K is the parameter of RPFP1 that de-
fines the minimum number of instances allowed for a
region determined by the partitioning algorithm; it is set

to 10. RPFP-N is also used for artificial noisy domains
extracted from real datasets, to measure robustness to
noise.

6.2.2. KNN. The weighted KNN2 algorithm de-
scribed by Mitchell [18] is used. It performs better than
simple KNN which employs simple averaging. The in-
stances close to the query have larger weights, and these
weights are determined by inverse squared distance.
The distance measure used is the Euclidean distance.
Normalization of test and train input feature values is
applied in order to obtain values in the range between
0 and 1. For matching nominal values the difference is
measured as 0, and for different nominal values on a
single dimension 1 is assigned.

Missing values were filled with mean values of the
feature if it is continuous, or filled with the most fre-
quent categorical value if the feature is nominal.

6.2.3. RULE. The latest rule-based regression imple-
mentation, written by Weiss and Indurkhya [9] is used
in our experiments. The program is available in the
data mining software kit (DMSK), attached to Weiss
and Indurkhya’s book.

6.2.4. DART. DART is the latest regression tree in-
duction program developed by Friedman [11]. It avoids
the limitations of disjoint partitioning, used for other
tree-based regression methods, by producing overlap-
ping regions with increased training cost. In the exper-
iments, the parameter maximum dimension (features)
is increased from 100 to 200, in order to enable exper-
iments for irrelevant features.

6.2.5. MARS. The latest shared version of MARS,
mars3.6, is used in experiments, which is developed by
Friedman [12]. The highest possible interaction level is
enabled and linear spline approximation is set, which
generally produces better results than cubic splines for
the real datasets used in the experiments.

6.3. Real Datasets

It is possible to obtain a large number of real world
datasets for classification, however this is not easy for
regression. For this reason, datasets used in the ex-
periments were collected mainly from three sources
[6, 21, 22].3 Properties of the datasets are shown in Ta-
ble 2. In order to save space, they are coded with two
letters (e.g., AB for Abalone).

72 Uysal and Güvenir

Table 2. Datasets.

Features Missing Target
Dataset Code Instances (C + N) values feature

Abalone [6] AB 4177 8 (7 + 1) None Rings

Airport [21] AI 135 4 (4 + 0) None Tons of mail

Auto [6] AU 398 7 (6 + 1) 6 Gas consumption

Baseball [21] BA 337 16 (16 + 0) None Salary

Buying [22] BU 100 39 (39 + 0) 27 Husbands buy video

College [22] CL 236 20 (20 + 0) 381 Competitiveness

Country [22] CO 122 20 (20 + 0) 34 Population

Electric [22] EL 240 12 (10 + 2) 58 Serum 58

Fat [21] FA 252 17 (17 + 0) None Body height

Fishcatch [21] FI 164 7 (6 + 1) 87 Fish weight

Flare2 [6] FL 1066 10 (0 + 10) None Flare production

Fruitfly [21] FR 125 4 (3 + 1) None Sleep time

Gss2 [22] GS 1500 43 (43 + 0) 2918 Income in 1991

Homerun [21] HO 163 19 (19 + 0) None Run race score

Normtemp [21] NO 130 2 (2 + 0) None Heart rate

Northridge [23] NR 2929 10 (10 + 0) None Earthquake magnit.

Plastic [22] PL 1650 2 (2 + 0) None Pressure

Poverty [21] PO 97 6 (5 + 1) 6 Death rate

Read [22] RE 681 25 (24 + 1) 1097 Reader satisfaction

Schools [22] SC 62 19 (19 + 0) 1 Reading score

Servo [6] SE 167 4 (0 + 4) None Rise time of a servo

Stock [22] ST 950 9 (9 + 0) None Stock price

Television [21] TE 40 4 (4 + 0) None People per TV

Usnews [21] UN 1269 31 (31 + 0) 7624 Rate of Ph.D.’s

Village [24] VL 766 32 (29 + 3) 3986 Number of Sheep

C : Continuous, N : Nominal.

6.4. Accuracy

The relative errors of algorithms on 25 real data sets
are shown in Table 3. The best results, smallest relative
errors, are shown in bold type. RPFP achieves best
results in 9 of these datasets. MARS and DART achieve
best results in 7 and 4 of these datasets respectively.

As can be seen, when the average relative errors of
the algorithms on real data sets are compared, RPFP
outperforms the other algorithms and achieves the
smallest mean relative error (0.778). Another impor-
tant result extracted from Table 3 is the distribution
of relative errors for different datasets. We have com-
puted the variance of errors for each algorithm on all
datasets. These variance values show that the perfor-
mance of RPFP (0.109) is not affected much by dif-
ferent domains. This shows the domain independence

characteristic of RPFP, important for large databases
today, where data from many domains are collected to-
gether. The diversity of domains in databases is one of
the reasons that increase the need for automatic knowl-
edge discovery tools and inductive learning algorithms.

On the other hand, on some data sets, we see that
RPFP do not produce better results as some other al-
gorithms. Some reasons that may prevent RPFP’ suc-
cess may be listed as follows: Locality—on some data
sets global algorithms may produce better results, if
there is a relation between instances on the global
space and there interactions on the data globally. Bias-
variance trade-off: RPFP is tuned for regression prob-
lems and it may not produce better results if the data
is biased, in other words variance error or error com-
ing from noise and over-fitting is important, especially
for data appropriate for classification algorithms and

Regression by Partitioning Feature Projections 73

Table 3. Relative errors of algorithms. Best results are
shown in bold type.

Dataset RPFP KNN RULE MARS DART StdDev

AB 0.675 0.661 0.899 0.683 0.678 0.101

AI 0.473 0.612 0.744 0.720 0.546 0.115

AU 0.334 0.321 0.451 0.333 0.321 0.056

BA 0.664 0.441 0.668 0.497 0.525 0.102

BU 0.792 0.951 0.944 0.883 0.858 0.066

CL 0.692 0.764 0.290 1.854 0.261 0.646

CO 1.301 1.642 6.307 5.110 1.845 2.300

EL 1.009 1.194 1.528 1.066 1.095 0.207

FA 0.667 0.785 0.820 0.305 0.638 0.204

FI 0.243 0.582 0.258 0.190 0.284 0.155

FL 1.218 2.307 1.792 1.556 1.695 0.397

FR 1.056 1.201 1.558 1.012 1.077 0.222

GS 0.566 0.654 0.218 0.359 0.342 0.177

HO 0.868 0.907 0.890 0.769 0.986 0.078

NO 0.962 1.232 1.250 1.012 1.112 0.128

NR 0.947 1.034 1.217 0.928 0.873 0.134

PL 0.415 0.475 0.477 0.404 0.432 0.034

PO 0.703 0.796 0.916 1.251 0.677 0.233

RE 1.008 1.062 1.352 1.045 1.194 0.142

SC 0.319 0.388 0.341 0.223 0.350 0.062

SE 0.527 0.619 0.229 0.441 0.337 0.153

ST 0.729 0.599 0.906 0.781 0.754 0.110

TE 1.659 1.895 4.195 7.203 2.690 2.281

UN 0.666 0.480 0.550 0.412 0.444 0.101

VL 0.970 1.017 1.267 1.138 1.131 0.116

Mean 0.778 0.904 1.203 1.207 0.846

Variance 0.109 0.231 1.775 2.482 0.327

pruning methods. In the light of above discussion;
DART (improved version of CART—classification tree
algorithm) and RULE (a partitioning algorithm that
produce hyper-rectangles on global space and make
approximations on the whole partitions) algorithms, as
being global partitioning algorithms, and it is known
that their classification counter parts of these algo-
rithms produce better results on the classification data,
achieve better performance on CL data (CL data has
ordered 8 integer target values). An other shortcoming
of RPFP on CL data may be because it makes local
linear approximation on local regions and target val-
ues may not always enable linear approximations well,
especially if they have categorical nature as CL target
values.

In fact it is difficult to measure the error compo-
nents (error coming from properties of the algorithms
and variance and bias components of the error) of
algorithms on real data sets is difficult, we consid-
ered to artificially modify the real data sets to test the
behaviour of algorithms against noise, irrelevant fea-
tures and missing feature values. The final column of
Table 3 shows the standard deviation of the results for
each dataset, and it is used in the following sections. It
is used to determine a small number of datasets, to be
used for further comparisons of algorithms for noise,
irrelevant features and missing values. We have deter-
mined a subset of datasets that have similar results for
the comparison of algorithms for increasing missing
values, irrelevant features and noise. Selected datasets,
that have small standard deviations, are indicated in
the last column with bold type. In only one of these
selected datasets does RPFP performs best.

6.5. Robustness to Irrelevant Features

The performance of five algorithms on the selected
datasets (AU, BU, PL and SC), when new irrelevant
features are added, is shown in Fig. 8. From the graphs
it is seen that the performance of RPFP is not affected
by irrelevant features except in PL dataset. RULE and
MARS are also robust to irrelevant features. Note that,
in only one of these data sets (BU) does RPFP per-
form best initially. It is affected by irrelevant features
in PL probably because it is a low dimensional data
set, initially having only two input features. Most ad-
vantages of RPFP are generally manifested in higher
dimensions.

These graphs show that RPFP is not affected much
by irrelevant features. This is the major drawback of
KNN, the other lazy algorithm in these comparisons,
and this is apparent in the graphs. This robustness of
RPFP is achieved by the local weight assigned to each
feature and by making computations on each feature
separately.

A comparison of algorithms on all datasets where 30
irrelevant features are added to each of them is shown
in Table 4. RPFP outperforms other algorithms for the
robustness to irrelevant features according to this table.

6.6. Robustness to Missing Values

With current relational databases, the issue of missing
values is a common problem for most domains. RPFP
handles missing values naturally by simply ignoring

74 Uysal and Güvenir

0 10 20 30 40 50 60 70 80 90 100

PL (Number of Irrelevant Features)

0.0

0.2

0.4

0.6

0.8

1.0
RE

0 10 20 30 40 50 60 70 80 90 100

AU (Number of Irrelevant Features)

0.0

0.2

0.4

0.6

0.8

1.0
RE DART

KNN
MARS
RPFP
RULE

0 10 20 30 40 50 60 70 80 90 100

BU (Number of Irrelevant Features)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
RE

0 10 20 30 40 50 60 70 80 90 100

SC (Number of Irrelevant Features)

0.0

0.2

0.4

0.6

0.8

1.0
RE

Figure 8. Relative errors of algorithms with increasing irrelevant features.

0 10 20 30 40 50 60 70 80 90

PL (Missing Values %)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RE

0 10 20 30 40 50 60 70 80 90

AU (Missing Values %)

0.0

0.2

0.4

0.6

0.8

1.0
RE DART

KNN
MARS
RPFP
RULE

0 10 20 30 40 50 60 70 80 90

BU (Missing Values %)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
RE

0 10 20 30 40 50 60 70 80 90

SC (Missing Values %)

0.0

0.2

0.4

0.6

0.8

1.0
RE

Figure 9. Relative errors of algorithms with increasing missing values.

Regression by Partitioning Feature Projections 75

Table 4. Relative errors of algorithms, where 30 irrelevant
features are added to real datasets. Where no result is avail-
able due to a singular variance/covariance matrix, it is shown
with (*). Best results are shown in bold type.

Dataset RPFP KNN RULE DART MARS

AB 0.704 0.906 0.899 * 0.682

AI 0.500 1.539 0.744 0.658 0.682

AU 0.351 0.618 0.451 0.511 0.369

BA 0.670 0.723 0.668 0.641 0.573

BU 0.802 1.005 0.944 0.938 1.049

CL 0.716 1.320 0.290 0.306 2.195

CO 1.330 3.027 6.307 1.662 4.126

EL 1.018 1.076 1.528 1.236 1.134

FA 0.698 1.058 0.820 0.877 0.249

FI 0.295 0.985 0.258 0.350 0.208

FL 1.038 1.537 1.792 1.490 1.629

FR 0.959 1.075 1.558 1.430 1.777

GS 0.568 0.893 0.218 0.573 0.404

HO 0.876 0.974 0.890 1.165 0.847

NO 1.024 1.071 1.250 1.157 1.370

NR 0.979 1.149 1.217 * 0.916

PL 0.674 0.952 0.477 0.734 0.407

PO 0.775 0.934 0.916 1.013 1.005

RE 1.033 1.060 1.352 1.311 1.042

SC 0.362 0.673 0.341 0.391 0.305

SE 0.589 1.021 0.229 0.650 0.798

ST 0.782 1.151 0.906 0.756 0.818

TE 1.617 2.455 4.195 2.709 5.614

UN 0.671 0.856 0.550 0.906 0.394

VL 0.972 1.111 1.267 1.307 1.257

Mean 0.800 1.167 1.203 0.990 1.194

Variance 0.090 0.278 1.775 0.287 1.517

them, and using all other values provided. A compari-
son of RPFP and other algorithms on selected data sets
for increasing percentages of missing values is shown
in Fig. 9. As the values are removed from the data,
information loss and decrease in performance are evi-
dent. However, the decrease in performance is smaller
in RPFP than in other algorithms, where the missing
values are filled with means or most frequent nominal
value. The error rate of RPFP becomes relatively min-
imal in all selected datasets, when the percentage of
missing values reaches 90%, except for the low dimen-
sional data set PL. According to these results, DART
also performs well in terms of robustness to missing
values.

Table 5. Relative errors of algorithms, where 20% of val-
ues in the datasets are removed. Where no result is available
due to a singular variance/covariance matrix, it is shown
with (*). Best results are shown in bold type.

Dataset RPFP KNN RULE DART MARS

AB 0.739 0.750 0.962 0.688 0.748

AI 0.532 0.726 0.676 0.546 0.798

AU 0.393 0.414 0.526 0.363 0.414

BA 0.817 0.560 0.783 0.565 0.709

BU 0.881 0.964 0.989 0.983 0.877

CL 0.796 0.942 0.400 0.435 0.801

CO 1.439 1.856 3.698 2.377 3.733

EL 1.029 1.097 1.537 1.191 1.074

FA 0.767 0.849 0.949 0.735 0.731

FI 0.273 0.584 0.336 0.320 0.348

FL 1.377 1.851 1.751 1.421 1.557

FR 1.033 1.711 1.557 1.347 1.012

GS 0.702 0.743 0.497 0.536 0.595

HO 0.889 0.911 1.040 0.974 0.836

NO 0.986 1.229 1.363 1.222 0.989

NR 0.940 1.072 1.272 * 0.972

PL 0.668 0.733 0.686 0.420 0.679

PO 0.682 0.976 1.189 0.792 1.026

RE 1.007 1.059 1.364 1.229 1.048

SC 0.327 0.449 0.500 0.370 0.303

SE 0.938 0.921 0.849 0.495 0.733

ST 0.777 0.744 0.904 0.707 0.930

TE 1.810 4.398 3.645 2.512 16.503

UN 0.669 0.559 0.620 0.844 0.497

VL 1.014 1.056 1.410 * 1.090

Mean 0.859 1.086 1.180 0.916 1.560

Variance 0.115 0.624 0.714 0.344 10.10

A comparison of algorithms on all datasets, where
20% of the values of real datasets are removed, is shown
in Table 5. According to these results RPFP outper-
forms other algorithms in terms of robustness to miss-
ing values.

6.7. Robustness to Noise

It is apparent from the graphs in Fig. 10 that RPFP-N
outperforms the other algorithms for most of the se-
lected datasets. An interesting result is that RPFP
also achieves better than other algorithms in most
datasets. However, all algorithms except RPFP-N reach

76 Uysal and Güvenir

0 10 20 30 40 50
PL (Noise %)

0.0

2.0

4.0

6.0

8.0

10.0

12.0
RE

0 10 20 30 40 50

AU (Noise %)

0.0

1.0

2.0

3.0

4.0

5.0

6.0
RE DART

KNN
MARS
RPFP
RULE
RPFPN

0 10 20 30 40 50

BU (Noise %)

0

10

20

30
RE

0 10 20 30 40 50
SC (Noise %)

0.0

0.4

0.8

1.2

1.6
RE

Figure 10. Relative errors of algorithms with increasing target noise.

unacceptable error rates with a small increase in the ra-
tio of noise.

The main disadvantage of complex models is large
variance errors because of overfitting. This difficulty
becomes more apparent when there are noisy cases in
the data. RPFP is generally more robust to noise when
compared to other methods even though it produces
complex models on specific local regions. One reason
for this is that noisy instances on feature dimensions
cause small local weight for that feature. Another rea-
son may be the implicit boosting effect of RPFP as
described in Section 4.4 before which causes small
variance error.

6.8. Interactions

RPFP handles interactions in a similar way to other
eager partitioning approaches, by partitioning the in-
stance space. The best way to show how partitioning
in RPFP handles interactions and generally increases
accuracy for datasets having interactions is to compare
it with its additive version. All other algorithms com-
pared in the previous sections can handle interactions.

The following experiments show that RPFP also has
this property.

The additive version of RPFP is obtained by exclud-
ing partitioning from the RPFP algorithm and instead
simply combining the feature predictions and obtain-
ing the final prediction after the first step. We denote
the additive version as RPFP-A.

The first experiment is done with a simple artifi-
cial dataset having two interacting features and 100
instances formed as shown in Fig. 11. Here x1 and x2
are the input features and y is the target. The feature
x1 takes binary values and x2 and y take continuous
values from 0 to 50. The relative error of RPFP on this
data set is 0.31, which is much smaller than that of
RPFP-A, whose relative error is 1.35.

Another experiment is conducted with real data sets,
and the results are shown in Table 6. The results show
that RPFP significantly outperforms RPFP-A, which
demonstrates the ability of RPFP to handle interactions.

6.9. Computation Times

Since the computation times of lazy and eager ap-
proaches differ significantly for training and predic-

Regression by Partitioning Feature Projections 77

0 10 20 30 40 50
x2

0

10

20

30

40

50

y

x1=1

x1=0

Figure 11. Artificial data set. x1 and x2 are input features.

tion phases, training times of eager approaches and
prediction or test times of lazy approaches are given
in Table 7. Generally test times of eager approaches
and training times of lazy approaches are close to
zero. The time durations are measured on a Pen-
tium450 personal computer running Linux operating
system.

The results justify the theoretical considerations in
determining the computational complexity of RPFP
such that it is proportional to the linear prediction com-
plexity of KNN. On the average, prediction time of
RPFP is 2.5 times higher than of KNN. This is more
apparent for largest datasets (AB, GS, NR). In gen-
eral computation performances of algorithms differ for
different datasets.

Table 6. Comparison of RPFP with its additive version RPFP-A.
Best results are shown in bold type.

D RPFP RPFP-A D RPFP RPFP-A D RPFP RPFP-A

AB 0.675 0.815 FA 0.667 0.855 PL 0.415 0.819

AI 0.473 0.500 FI 0.243 0.334 PO 0.703 0.783

AU 0.334 0.430 FL 1.218 1.487 RE 1.008 1.000

BA 0.664 0.752 FR 1.056 1.041 SC 0.319 0.337

BU 0.792 0.896 GS 0.566 0.667 SE 0.527 0.944

CL 0.692 0.773 HO 0.868 0.939 ST 0.729 0.992

CO 1.301 1.354 NO 0.962 0.958 TE 1.659 1.629

EL 1.009 1.019 NR 0.947 0.956 UN 0.666 0.718

VL 0.970 0.988

Table 7. Time durations of algorithms for real data sets in
milliseconds.

RPFP KNN RULE DART MARS RPFP/KNNR
Dataset Test Test Train Train Train Ratio

AB 40081.2 17217.1 6593.3 458503.0 7629.1 2.3

AI 7.5 3.0 248.4 57.8 153.5 2.5

AU 124.1 41.8 407.4 1772.2 573.9 3.0

BA 261.9 50.1 429.8 3022.1 912.4 5.2

BU 51.6 49.2 284.9 667.7 738.6 1.0

CL 150.9 35.6 464.0 708.6 1039.9 4.2

CO 32.0 31.7 396.5 459.4 484.8 1.0

EL 141.1 19.5 389.1 933.2 385.6 7.2

FA 167.0 30.3 403.9 1654.4 755.8 5.5

FI 18.1 161.3 278.5 200.5 226.7 0.1

FL 1198.8 775.9 408.7 901.4 543.8 1.5

FR 9.0 44.0 234.5 42.8 99.9 0.2

GS 14241.0 6435.2 1236.6 23845.8 8797.0 2.2

HO 92.8 140.7 266.3 835.8 616.2 0.7

NO 6.0 1.7 236.8 18.0 68.1 3.5

NR 24027.0 9346.7 7006.4 81984.0 4207.3 2.6

PL 1536.4 1415.5 503.3 9343.1 670.7 1.1

PO 6.1 2.0 250.3 41.1 121.6 3.1

RE 2717.0 674.6 625.2 35541.5 2260.1 4.0

SC 7.5 2.0 251.2 78.2 283.8 3.8

SE 6.9 4.0 221.6 78.2 109.0 1.7

ST 1173.8 759.8 845.6 16203.2 1839.2 1.5

TE 0.1 0.0 235.4 3.1 25.5 *

UN 6459.7 3858.9 4834.2 153959.0 7287.0 1.7

VL 2113.9 1229.5 1101.0 107661.0 3082.9 1.7

Mean 2.5

7. Conclusion

In this paper we have presented a new regression
method called RPFP. It is an instance-based, non-
parametric, nonlinear, context-sensitive, and local su-
pervised learning method based on feature projections.
Regression is one of the oldest techniques in the litera-
ture, for which many researchers from different disci-
plines have developed great deal of methods. We have
selected appropriate eager and lazy methods in the liter-
ature in for comparisons, in terms of accuracy, robust-
ness to irrelevent features, missing values and noise,
and ability to handle interactions. We also compared
the properties of RPFP with different approaches.

RPFP achieves high levels of accuracy especially
when compared to the most common lazy approach,

78 Uysal and Güvenir

KNN. Its performance is also very good when com-
pared to important eager approaches from both ma-
chine learning and statistics. The feature projection
based construction of the method enable it to han-
dles missing values naturally, by leaving sparse fields
empty, and on the other hand, RPFP handles interac-
tions by partitioning the data as opposed to other fea-
ture projection based and additive approaches in the
literature. Additional to its success on data sets having
missing values RPFP algorithm presented in the paper
can be modified in order to achieve high accuracies in
very noisy domains, as illustrated with RPFP-N. The
concept of local weight is employed for increasing the
accuracy to deal with irrelevant features, establishing
adaptivity and as a key element to direct partitioning.
As a summary, RPFP is a new instance-based, nonlin-
ear, context-sensitive, and local approach to regression
problems; and many experiments show its performance
for different domains. The main drawback of RPFP is
the lack of interpretation and its high prediction time.
When compared to KNN, RPFP is 2.5 times slower, as
we experimented with data sets having different num-
ber of dimensions and sizes.

Further research is required to address the limitations
of RPFP so that interpretation can be enabled by deter-
mining the relative importance of features, and interac-
tions between them. Different partitioning strategies on
selecting appropriate features at each partitioning step
and on reduction of the instance space can be further de-
veloped for improving the efficiency of partitioning. In-
corporating domain knowledge for stand-alone appli-
cations where explicit domain knowledge is available
and incorporating misclassification cost for domains
where a cost function is available are also important
issues to be addressed by further research. It is also
possible to employ and test the effectiveness of RPFP
for different problems such as time-series prediction.

Notes

1. Implementation of RPFP in C code is available from the authors
upon request.

2. K is set to 10 for all experiments, and our implementation of KNN
is available from the authors upon request.

3. All of the datasets are available from the authors upon request.

References

1. İ. Uysal and H.A. Güvenir, “An overview of regression tech-
niques for knowledge discovery,” Knowledge Engineering Re-
view, Cambridge University Press, vol. 14, pp. 1–22, 1999.

2. D. Wettschereck, D.W. Aha, and T. Mohri, T. “A review and
empirical evaluation of feature-weighting methods for a class
of lazy learning algorithms,” AI Review, vol. 11, pp. 273–314,
1997.

3. H.A. Güvenir and İ. Sirin, “Classification by feature partition-
ing,” Machine Learning, vol. 23, pp. 47–67, 1996.

4. H.A. Güvenir and H.G. Koç, “Concept representation with over-
lapping feature intervals,” Cybernetics and Systems: An Inter-
national Journal, vol. 29, pp. 263–282, 1998.

5. H.A. Güvenir, G. Demiroz, and H. İlter. “Learning differential
diagnosis of erythemato squamous diseases using voting feature
intervals,” Artificial Intelligence in Medicine, vol. 13, pp. 147–
165, 1998.

6. C. Blake, E. Keogh, and C.J. Merz, “UCI repository
of machine learning databases,” [http://www.ics.uci.edu/
mlearn/MLRepository.html], University of California, Depart-
ment of Information and Computer Science, Irvine, CA, 1998.

7. R.C. Holte, “Very simple classification rules perform well on
most commonly used datasets,” Machine Learning, vol. 1,
pp. 63–91, 1993.

8. S. Weiss and N. Indurkhya, “Rule-based machine learning meth-
ods for functional prediction,” Journal of Artificial Intelligence
Research, vol. 3, pp. 383–403, 1995.

9. S. Weiss and N. Indurkhya, Predictive Data Mining: A Practical
Guide, Morgan Kaufmann: San Francisco, 1998.

10. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Clas-
sification and Regression Trees, Wadsworth: Belmont, CA,
1984.

11. J.H. Friedman, “Local learning based on recursive covering,”
[ftp://stat.stan- ford.edu/pub/friedman/dart.ps.Z].

12. J.H. Friedman, “Multivariate adaptive regression splines,” The
Annals of Statistics, vol. 19, pp. 1–141, 1991.

13. J.H. Friedman and W. Stuetzle, “Projection pursuit regression,”
J. Amer. Statist. Assoc., vol. 76, pp. 817–823, 1981.

14. J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann: California, 1993.

15. J.H. Friedman, “On bias, variance, 0/1-loss and the curse of
dimensionality,” Data Mining and Knowledge Discovery, vol. 1,
pp. 55–77, 1997.

16. L. Breiman, L. “Bagging predictors,” Machine Learning, vol. 24,
pp. 123–140, 1996.

17. C.J. Matheus, P.K. Chan, and G. Piatetsky-Shapiro, “Systems
for knowledge discovery in databases,” IEEE Transactions on
Knowledge and Data Engineering, vol. 5, pp. 903–913, 1993.

18. T.M. Mitchell, Machine Learning, McGraw Hill: New York,
1997.

19. C.G. Atkenson, A.W. Moore, and S. Schaal, “Locally weighted
learning,” Artificial Intelligence Review, vol. 11, nos. 1/5, pp. 11–
73, 1997.

20. S. Vijayakumar and S. Schaal, “LWPR: An O(n) algorithm
for incremental real time learning in high dimensional space,”
in Proc. of Seventeenth International Conference on Machine
Learning (ICML2000) Stanford, California, 2000, pp. 1079–
1086.

21. R.H. Lock and T. Arnold, “Datasets and stories: Introduction
and guidelines,” Journal of Statistics Education [Online], vol.
1, [http://www.amstat.org/publi cations/jse/v1n1/datasets.html],
1993.

22. SPSS, “Sample data sets,” [ftp://ftp.spss.com/pub/spss/sample/
datasets/], 1999.

Regression by Partitioning Feature Projections 79

23. D. Draper and G. Michailides, “UCLA statistics case studies,”
http://www.stat.ucla.edu/cases/northridge/index.phtml.

24. İ. Uysal and H.A. Güvenir, “Function approximation repository”
http://funapp.cs.bilkent.edu.tr, 2000.

25. P. Domingos, “Occam’s two razors, the sharp and the blunt,” in
Proc. KDD’98, 1998.

26. G. Webb and M. Kuzmycz, “Further experimental evidence
against the utility of Occam’s razor,” Journal of Artificial In-
telligence Research, vol. 4, pp. 397–417, 1996.

Ilhan Uysal is currently a Ph.D. candidate in the Department
of Computer Engineering at Bilkent University, Ankara, Turkey.
He received his M.S. degree from the the same department in

2000. His reserach interests include machine learning, knowledge
discovery, data mining, function approximations and time-series
prediction.

H. Altay Güvenir is currently a professor in the Department of
Computer Engineering at Bilkent University, Ankara, Turkey. He
received his Ph.D. in Computer Engineering and Science at Case
Western Reserve University in 1987. He received his B.S. and M.S.
degrees from the Istanbul Technical University in 1979 and 1981,
respectively, all in electrical engineering. Dr. Güvenir’s research in-
terests include machine learning, knowledge discovery, data mining,
function approximations, time-series prediction and cost sensitive
classification. He has (co-)authored over 80 articles in journals, con-
ference proceedings and edited books.

