
Guided Cluster Discovery with Markov Model

C.H. Li (chli@comp.hkbu.edu.hk) ∗

Department of Computer Science, Hong Kong Baptist University

Abstract. Cluster discovery is an essential part of many data mining applications.

While cluster discovery process is mainly unsupervised in nature, it can often be

aided by a small amount of labeled data. A probabilistic model on the clustering

structure is adopted and a novel unified energy equation for clustering that incor-

porates both labeled data and unlabeled data is introduced. This formulation is

inspired by a force-field model integrating labeling constraint on labeled data and

similarity information on unlabeled data for joint estimation. Experimental results

show that good clusters can be identified using small amount of labeled data.
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1. Introduction

In machine learning for classification problems, there are two distinct

approaches to learning or classifying data: the supervised learning and

un-supervised learning. The supervised learning deals with problem

where a set of data are labeled for training and another set of data

would be used for testing. The un-supervised learning deals with prob-

lem where none of the labels of the data are available. Unsupervised

clustering can be broadly classified into whether the clustering algo-

rithm is hierarchical or non-hierarchical. Hierarchical methods often

model the data to be clustered in the form of a tree, or a dendrogram [1].
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The lowest level of the tree is usually each datum as a cluster. A dissim-

ilarity measure is defined for merging clusters at a lower level to form

a new cluster at a higher level in the tree. The hierarchical methods

are often computationally intensive for large number of samples and

is difficult to analyze if there is no logical hierarchical structure in the

data.

Non-hierarchical methods divide the samples into a fixed number

of groups using some measure of optimality. The most widely used

measure is the minimization of the sum of squared distances from each

sample to its cluster center. The k-means algorithm, also known as

Forgy’s method [2] or MacQueen [3] algorithm is a classical algorithm

for non-hierarchical unsupervised clustering. However, the k-means al-

gorithm tends to cluster data into even populations and rare abnormal

samples in medical problems cannot be properly extracted as individual

clusters. Recent progress in clustering includes the modeling of prox-

imity structure [4], the dynamic programming approach to hierarchical

clustering using graphs [5] and spectral method to clustering [6]. How-

ever, these methods do not make use of prior knowledge on dataset

such as possible labels or possible structures within the dataset.

In recent years, important data mining tasks have emerged with

enormous volume of data. The labeling of a significant portions of the

data for training is either infeasible or impossible. Sufficient labeled

data for training are often unavailable in data mining, text categoriza-

tion and web page classification. A number of approaches have been

proposed to combine a set of labeled data with unlabeled data for

improving the classification rate. The co-training approach has been

proposed to solve the problem of web page classification where the web

pages can be represented by two independent representations [7]. The

drawback of this co-training approach is that not all data have two

forceaai.tex; 18/06/2003; 18:20; p.2



3

independent representations and the algorithm is thus not easy to be

generalized. Subsequently, a similar co-training method is invented for

combining labeled and unlabeled data by co-training with two learning

algorithms [8]. Instead of using two representations of the data, this

co-training algorithm uses two learning algorithms. The naive Bayes

classifier and the EM algorithm have been combined for classifying

text using labeled and unlabeled data [9]. A modified support vector

machine and non-convex quadratic optimization approaches have been

studied for optimizing semi-supervised learning [10].

In this paper, a novel approach for clustering using guidance is intro-

duced. We model the data as objects in input feature space under the

influence of mutual attractive force. The guidance or a priori knowledge

will act as anchors and the rest of the data will be attracted towards the

different anchors where natural clusters will emerge. In Section Two,

the idea of guided cluster discovery is introduced. In Section Three,

the force field model and its Markov approximations are introduced. In

Section Four, experiments and results will be presented.

2. Guided Cluster Discover and Classification

The guided cluster discovery is closely related to classification prob-

lem. In this section, we will look at the similarity and the differences

between guided cluster discovery in data mining and the general pattern

classification problem.

Suppose the classification task is to classify a set of data denoted by

xi (i = 1, ..., m) into two classes denoted with labels [A, B] respectively.

The classification algorithm is to find a corresponding label yi ∈ [A, B].
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Table I. Classification and Guided Cluster Discovery

Classification Guided Cluster Discovery

No. of labeled data n(xL) Large Small(a few)

Labeled data Well-defined Ill-defined/To be discovered

No. of unlabeled data n(xU ) Small Large

Use of unlabeled Data xU Testing Training/Analysis

The set of all data in the dataset is denoted as x and the set of all labels

y. The cardinality of both x and y is m.

In the classification problem, a fraction of data in the dataset are

labeled and the remaining data are to be classified. The set containing

all labeled data are denoted as xL where for each element xi ∈ xL, the

label yi for that data is known. Similarly, the set of unlabeled data are

denoted by xU and the set of unknown labels are denoted by yU . The

usual non-intersecting requirement is followed where xL ∪xU = x, yL ∪
yU = y. Using this notation, the distinction between the data available

in data mining and general machine learning is shown in Table I. In

traditional classification, a large amount of labeled training data is

usually available for training a mapping between the training data and

the corresponding labels. In data mining, a large amount of unlabeled

data is available and it is often costly or even impossible to assign labels

to a significant portion of the unlabeled data for learning.

In order to fully utilize the unlabeled data, guided cluster discovery

significantly improves classification accuracy by incorporating unla-

beled data for training. In traditional classification, the training phase

is carried out by constructing a mapping between the training samples
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pair though the labeled dataset {xL, yL}. In the estimation phase, the

labels of the unknown testing data xi ∈ xU will be obtained. This

situation is generally applicable to different areas of pattern recognition

and machine learning, especially for situations where the unknown

testing data are obtained sequentially in time. However, in the case

of data mining, the unlabeled data xU are already available for the

learning algorithm and the only unknown is the set yU . The guided

cluster discovery is similar to semi-supervised learning where there is a

small amount of knowledge about the possible labeling in the dataset.

When the amount of supervised data is very small, the learning process

depends mainly on cluster discovery and a small number of constraints

defined by the prior knowledge or assumed hypotheses. As demon-

strated by the co-training method in classifying web pages and the

color tracking with transductive learning method, the use of unlabeled

data xU can significantly increase the classification accuracy in machine

learning tasks.

3. Probability Force Field For Guided Cluster Discovery

The learning of the value of the labels in the dataset is a process that

finds the set of labels yU given the data xU , xL and yL. Instead of a

direct estimation on the actual labels yi we estimate the probability of

labels being a given label. For a two class classification problem with

class labels [A, B], we represent the probability of the data i taking the

labels A as Pi = P (yi = A). For labeled data xi ∈ xL, if yi = A, then

Pi = 1, else if yi = B, then Pi = 0. The probabilistic guided cluster

discovery is to estimate the Pi for all i where xi ∈ xU .
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The construction of the probabilistic force-field model depends on

the following assumptions:

− Data vectors with small Euclidean distances between them will

have similar probabilities

− Labeled data vectors has fixed probability of either 1 or 0

− The probability Pi of unlabeled data vectors freely distributes

themselves to settle in a optimal configurations as defined by en-

ergy equation defined by the above two constraint.

The first assumption of spatial close data vector having similar prob-

ability can be modeled using attractive force between data vectors in

high dimension vector spaces. The force between two data vectors i and

j with inverse power law is given by,

Fij =
G

rc
ij

(1)

where rij is the Euclidean distance between i-th vector and j-th vector,

c is an integer constant, and G is a fixed positive constant defining the

strength of attraction. For example, the gravitation law is an inverse

square law with c equals to 2. Suppose that the data vector xi is in m-

dimensional space, we embed the probability into the data vector xi to

form a m+1-dimension vector [xi, αPi], where α is a constant balancing

the scale of the probability and the data vector. The Euclidean distance

between two extended vectors in the m + 1 space is given by,

rij =
√
|xi − xj |2 + α(Pi − Pj)2 (2)

where |xi −xj | is the Euclidean distance in the m-dimension space and

α is a positive constant balancing the scale of probability to the data

vector space.
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Figure 1. Force vector between two probability vectors

The schematic representation of the embedded vector relationship

is shown in Figure 1. The forces between probabilistic vector can then

be written as

Fij =
G√

|xi − xj |2 + α(Pi − Pj)2
. (3)

As the data vector x is fixed in spaces, the degree of freedom is along

the freely distributable probability. Thus, the effective force on the

probability vector is the component of the force along the probability

axis

Fpij =
G(Pi − Pj)√

|xi − xj |2 + α(Pi − Pj)2
. (4)

Alternatively, a force-field energy approach can also be specified. In

general, an attractive force can be equivalently represented by a force

field energy equation where the energy experienced by a data point i

is given by

Ui(P ) = −
∑
j

G′

rc−1
ij

, (5)

where the dependence of P is effected through the dependence on rij .

With Pi and Pj being small, rij will be minimized and the energy will

be lowered. The estimated probability can then be solved by minimizing
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the energy of the system. The energy of the total system is given by

U(P ) = −
∑

i

∑
j

G′

rc−1
ij

. (6)

An approximation of the above system can be readily obtained by

the use of Markov assumptions [11]. Assuming that the interaction

is localized by a fixed neighborhood, the above energy equation can be

simplified to

U(P ) = −
∑

i

∑
j∈Ni

G′

rc−1
ij

. (7)

where Ni is the neighbourhood of the data vector i. There are two

choices of neighbourhood in high-dimensional space. First, we can de-

fine a hypercube with distance d centered at the data vector i. All data

vectors inside this hypercube are elements in Ni. Alternatively, we can

define Ni to be the set of k-th nearest neigbours of i. The use of nearest

neighbours in constructing the Markov assumptions allows a fixed size

neighbourhood for each data i and and a fixed computational O(kn).

4. Results and Discussions

The guided cluster discovery is tested with the iris dataset and two

synthetic datasets. Initially, the probability of known labeled samples

are assigned to their values and the unknown labels are assigned a

random values near 0.5. A gradient descent on the force field with

inverse square law is used to update the probability for 1000 iterations.

The 8-th nearest neighbourhood system is used in the two following

experiments. The only unknown parameter α is specified approximately

by balancing the ratio of the range of probability [0,1] to the ratio of

the average ranges of data x.

forceaai.tex; 18/06/2003; 18:20; p.8



9

Figure 2. Two clusters

4.1. Cluster Discovery on Non-linear Boundary

A synthetic dataset is used for testing the guided cluster discovery

algorithm. Figure 2 shows the data for a two cluster clustering problem.

The two clusters are seperated with a sinusoidal boundary. Figure 3

shows the ground truth of the dataset. Results of applying classical

cluster discovery algorithms: the k-means algorithm, the hierarchical

tree algorithms with single link, average link and complete link are

shown in Figure 4, Figure 5, Figure 6, Figure 7 respectively. The clusters

discovered by k-means and the average link tree are closer to the ground

truth with some errors along the non-linear boundaries. The single link

tree and the complete link tree have very poor performance for this

dataset.

To test the performance of the guided cluster discovery algorithm on

the synthetic data, three training samples are chosen from each classes.

Figure 8 shows the training samples where the data with known labels
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Figure 3. Solution I

are marked with circles and diamond respectively. With a small number

of labeled training samples from each class, one can judge from the

figures that inference based/decision surface based classifier will not

be able to determine accurately the sinusoidal boundary between the

cluster. Figure 9 shows the initial probability for the synthetic data.

There are 500 data and the first three from each class are selected

as training samples. The data with unknown labels are assigned with

random probability in the range [0.45 0.55]. Figure 10 shows the initial

estimated label, those data with probability above 0.5 is assigned to

class I and those data with probability below 0.5 is assigned to class II.

This shows that the labels are initially random, except at three pairs

of training data.

The first step in force field based guided cluster discovery is the

calculation of the 8-th nearest neighbour distance matrix from the data.

The scale balancing constant α is chosen as 0.1. After updating the

probability for 100 iterations, the probability for the data is shown in
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Figure 4. Cluster Discovered by k-means algorithm

Figure 11. The probability is significantly modified after 100 iterations

with some of the data point have confidence in having the label value.

Those data point with probability close to 0.5 are data point whose

label value is not certain. Figure 12 shows the estimated label at 100

iterations, those data with probability above 0.5 is assigned to class

I and those data with probability below 0.5 is assigned to class II.

There are some errors in the class labels, however those closer to the

training samples are mostly correct. The final set of figures show the

probability and estimated labels after 1000 iterations. Figure 13 shows

that the probability have a wider range where more data are confidently

determined after 1000 iterations. Figure 14 shows that the estimated

labels after 1000 iterations is very accurate with only 3 errors in the

middle left region.
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Figure 5. Cluster Discovered by single link tree

4.2. Iris Dataset

The iris dataset is also used for testing the guided cluster discovery.

The iris dataset consists of 150 samples of measurement of the iris

plant. There are three species of iris in the dataset and each species

has 50 samples. Typical approaches uses 100 samples for training and

50 untrained samples for testing. The iris dataset is well studied and

results can be found in numerous literature [12].

In the first experiment in guided cluster discovery for iris dataset,

we considered using only 2 labeled data. The use of such small amount

of training data enables a ’what-if’ scenario in data mining to be han-

dled. Even if the true class is unknown, we can choose a few samples

randomly and then evaluated the resultant classifications.

The first step in force field based guided cluster discovery is the

calculation of the 8-th nearest neighbour distance matrix. After the

calculation of the 8-th nearest neighbour distance, we observed that all
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Figure 6. Cluster Discovered by average link tree

the 50 samples from class I are nearest neighbours to members of its

own class and thus these samples can be isolated without any further

classification. This is also in good agreement with previous work in

the iris dataset that the first class is linearly separable and can be

classified trivially. Now we concentrate the classification of the second

class and the third class. We pick the first sample in class II and first

sample in class III as the labeled sample and denote this experiment

as experiment (a). The initial probability before update is shown in

Figure 15. The first sample is the labeled sample for class II and has a

value of one, the 51 sample is the labeled sample for class III and has

zero probability being class II. The updated probability distribution is

shown in Figure 16. The scale constant α is set as 0.05. The probabilities

of data from 1 to 50 belongs to class II, and their values are significantly

due to the attractive force among each other and the attractive force

from the labeled data. The forces of attraction can propagated through

each other and different data feels a different level of attractive force
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Figure 7. Cluster Discovered by complete link tree
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Figure 8. Training Samples
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Figure 9. Initial Probability
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Figure 10. Initial estimated labels

according to their relative positions of the labeled data and other data

vectors. The probabilities of data from 51 to 100 belongs to class III and

their probabilities are significantly lower than those data that belongs

to class II.

In the second experiment, experiment (b), we increase the number

of training samples to 2 samples per class. The first two data from class

II is used as samples for class II and plant 51 and 52 as samples from
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Figure 11. Probability after 100 iterations
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Figure 12. Estimated labels after 100 iterations

class III. The updated probability distribution is shown in Figure 17.

The probabilities between the data in class II and class III are much

better seperated in this case. For the samples in the first 50 data, only

three have probabilities below 0.5. For the samples from 51 to 100,

there is only one data with probabilities above 0.5.

Table II shows the number of misclassifications of the two experi-

ments in guided cluster discovery of the iris dataset. The true labels are
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Figure 13. Final Probability
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Figure 14. Final estimated labels

taken as the class probabilities above 0.5. Similar results are obtained

using other labeled samples as training data. In general, it is found that

if the labeled samples represents typical features in the respective class,

the learning performances would be acceptable. If a selected sample

has feature vector that is similar to samples from the other class, the

performances of the learning would be significantly lower.
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Figure 15. Initial probability of class membership
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Figure 16. Updated Probability of class membership: Experiment (a)

Table II. Number of errors after guided cluster

discovery on iris dataset

errors in Class II errors in Class III

Exp. (a) 0 15

Exp. (b) 3 1
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Figure 17. Updated Probability of class membership: Experiment (b)

The errors achieved by the guided cluster discovery algorithm is sim-

ilar to classical classification algorithm. However, classical classification

algorithm often requires up to 100 training samples for achieving this

accuracy.

4.3. Gaussian Clusters

The third experiments deals with classification of three Gaussian Clus-

ters. Figure 18 shows the ground truth of the three Gaussian clusters.

The three Gaussians Clusters are of different variances and different

sizes. To test the force-field method, random points are selected from

each cluster as a labeled data from each cluster. Figure 19 shows the

training samples used for guided cluster discovery. The initial proba-

bilities estimation is calculated differently from the previous two ex-

periments. In this experiment, we use the nearest neighbour classifier

for setting up the initial probabilities for guided cluster discovery. The

result of the nearest neighbour classification on the dataset is shown

in Figure 20. As there are only one random sample chosen as the
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labeled sample, the initial classification result has quite a large amount

of errors. However, this initial classification result is utilized as the

setting up the initial probabilities for transductive learning. The initial

probabilities of the i-th data being class j, denoted as pj
i , is assigned

with the following rules:

− assign pj
i = 1 if yi = j where yl ∈ yL,

− assign pj
i = 0 if yi �= j where yl ∈ yL,

− assign pj
i = 0.75 if xi is classified by the Nearest neighbour classifier

to be class j, and

− assign pj
i = 0.25 if xi is classified by the Nearest neighbour classifier

to be any class other than j.

The initial probabilities for the Class I p1 is shown in Figure 21. As the

data from 1 to 512 belongs to class I, those data with probabilities

value 0.25 are data which are incorrectly classified by the nearest-

neighbour classifier. The guided cluster discovery algorithm is applied

to the probabilities for 1000 iterations with α set as 0.1. Figure 22 shows

the probabilities after the iterations. The probabilities of for data from

1 to 512 is raised significantly. The only data with values below 0.5 are

located around number 310. From data 513 to 703, most of the data

have probabilities below 0.5 and are thus correctly inferred as data

not belonging to class I. There are only two data with probabilities

above 0.3 in this portion. The estimation procedure can be repeated

for estimating the other two class labels. The final estimated labels after

calculating all probabilities of the three classes are shown in Figure 23.

The estimated labels are in very good agreement with ground truth

and visual assessment based on proximity criterion.
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Figure 18. Ground Truth of 3 Gaussian Clusters
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Figure 19. Training Data of 3 Gaussian Clusters

5. Conclusion

The guided cluster discovery problem is solved using attractive force-

field formulations. The guided cluster discovery algorithm achieves in-

tegration of labeled information and spatial proximity information with

force-field equations. Furthermore, the use of Markov assumptions al-

lows a computationally feasible formulations to be developed. The guided

cluster discovery approach excels in situations where a very small amount
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Figure 20. Nearest Neighbour classification of 3 Gaussian Clusters
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Figure 21. Initial probabilities for Class I, p1

of labeled data and a large amount of unlabeled data is available for

analysis. Experimental results shows that good clustering results can be

obtained with only a few training samples as guidance and the spatial

structure inherent in the problem can be readily utilized for improving

the clustering process.
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Figure 22. Final probabilities for Class I, p1
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Figure 23. Final Estimated Labels
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