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Abstract 
In this paper, we present discrete-time, nonspatial, macroscopic models able to 
capture the dynamics of collective aggregation experiments using groups of 
embodied agents endowed with reactive controllers. The strength of the proposed 
models is that they have been built up incrementally, with matching between models 
and embodied simulations verified at each step as new complexity was added. 
Precise heuristic criteria based on geometrical considerations and systematic tests 
with one or two embodied agents prevent the introduction of free parameters into the 
models. The collective aggregation experiments presented in this paper are 
concerned with the gathering and clustering of small objects initially scattered in an 
enclosed arena. Experiments were carried out with teams consisting of one to ten 
individuals, using groups of both constant and time-varying sizes. In the latter case, 
the number of active workers was controlled by a simple, fully distributed, threshold-
based algorithm whose aim was to allocate an appropriate number of individuals to a 
time-evolving aggregation demand. To this purpose, agents exclusively used their 
local perception to estimate the availability of work. Results show that models can 
deliver both qualitatively and quantitatively correct predictions and they represent a 
useful tool for generalizing the dynamics of these highly stochastic, asynchronous, 
nonlinear systems, often outperforming intuitive reasoning. Finally, in addition to 
discussions of small prediction discrepancies and difficulties in generating 
quantitatively correct macroscopic models, we conclude the paper by reviewing the 
intrinsic limitations of the current modeling methodology and by proposing a few 
suggestions for future work. 
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1 Introduction 
Swarm Intelligence (SI)[6,8] is an innovative computational and behavioral metaphor for 
solving distributed problems that takes its inspiration from the biological examples 
provided by social insects [8,9] such as ants, termites, bees, and wasps and by swarming, 
flocking, herding, and shoaling phenomena in vertebrates [18,35]. The abilities of such 
natural systems appear to transcend the abilities of the constituent individual agents. In 
most biological cases studied so far, the robust and capable high-level group behavior has 
been found to be mediated by nothing more than a small set of simple low-level 
interactions between individuals, and between individuals and the environment.  The SI 
approach emphasizes self-organization, distributedness, parallelism, and exploitation of 
direct (peer-to-peer) or indirect (via the environment) local communication mechanisms 
among relatively simple agents. 

The main advantages of the application of the SI approach to the control of multiple 
robots are four-fold: (i) scalability: the control architecture can be kept exactly the same 
from a few units to thousands of units; (ii) flexibility: units can be dynamically added or 
removed, they can be given the ability to reallocate and redistribute themselves in a self-
organized way; (iii) robustness: the resulting collective system is robust in facing a priori 
unknown environmental and team changes not only through unit redundancy but also 
through an adequate balance between exploratory and exploitative behavior; (iv) 
individual simplicity: a simple way to obtain an adequate explorative-exploitative balance 
and at the same time allow for unit miniaturization and overall system cost reduction is to 
minimize individual complexity.  

 
 Probabilistic modeling – The main motivation for developing a modeling 
methodology for swarm robotic systems is that, while SI principles are appealing from 
scalability, robustness, and individual simplicity points of view, they do not provide us 
with a way to quantitatively predict the swarm performance according to a particular 
metric or analyze further possible optimization margins and intrinsic limitations of this 
approach from an engineering point of view. In other words, if we want to achieve 
coordinated, self-organized group behavior based on local interactions, we need to have 
appropriate tools for understanding how to design and control individual units so that the 
swarm can achieve target behaviors and levels of performance. Models allow the 
engineer to capture the dynamics of these nonlinear, asynchronous, potentially large-scale 
systems at more abstract levels, sometimes achieving even mathematical tractability. 
More generally, modeling is a means for saving time, enabling generalization to different 
robotic platforms, and estimating optimal system parameters, including control 
parameters and number of agents in a team.  
There are fundamentally two different categories of models: microscopic and 
macroscopic models. While in microscopic models each robot has a separate 
representation, in macroscopic models, such as those presented in this paper, a single 
probabilistic representation (in our case a Markov chain) summarizes the whole robotic 
team. Therefore, macroscopic models offer a direct description of the collective group 
behavior and are computationally more efficient than their microscopic counterparts 
since, even if they must be solved numerically, their computation time is independent of 
the number of agents in the system. 
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 Although for a long period early in collective robotics research there was relatively 
little work in modeling of multi-robot systems, recently physicists and engineers have 
dedicated more attention to this problem (see, for example, related work performed by 
Kazadi et al. [17], Lerman and Galstyan [23], and Sugawara and Sano [36,37]). 
Moreover, modeling methodologies for swarm robotics systems must take into account 
mobility, individual intelligence, intrinsic stochastic properties of the collective 
coordination based on SI-principles, and, potentially, several different modalities of 
interaction among individuals and between an individual and the environment (e.g., 
mechanical, electromagnetic, chemical). This extremely rich combination of system 
features has drastically reduced the applicability of modeling techniques developed and 
commonly used in other fields. 
  In this paper, we combine the expertise accumulated while building probabilistic 
microscopic models of aggregation [25,26] with that from devising macroscopic models 
[1,3,22,28,29,30] for various distributed manipulation experiments including aggregation. 
In contrast to other classical approaches adopted in robotics, the originality of our models 
is that instead of being derived first in highly abstracted environmental conditions, where 
everything is noise-free and accurate, where global information about the world is 
available, and then moving down to reality by relaxing certain assumptions, we proceed 
along the path in reverse. Much as natural system scientists do, we start from real 
experimental data, gradually increasing the level of abstraction of the system description.  
Unlike biologists and physicists, however, we engineer our artificial systems and can 
therefore incrementally remove or add system details from a certain description level in 
order to understand their influence on the metric chosen for evaluating the performance 
of the swarm.  Therefore, in contrast to contributions which traded quantitative prediction 
accuracy for model simplicity [17,22], our research aims to obtain quantitatively correct 
predictions without free parameters through an incremental development and 
corresponding validation of models using less abstracted tools (sensor-based, embodied 
simulator or real robots). 
 

 Macroscopic models and division of labor – Generally speaking, we are interested in 
understanding task allocation and labor division mechanisms exploited in social insect 
societies that are suitable for artificial, embedded systems such as multiple mobile robot 
platforms. Recently, several models have been proposed to explain these mechanisms in 
natural colonies [5]: some of them based on threshold responsesb [7,38], others focus 
only on task-switching probabilities [34]. However, none of these publications has 
attempted to compare the macroscopic description of the system (which matches the 
experimental data) with a microscopic characterization, for instance by investigating how 
workers gather the information necessary to decide whether or not to switch task or to 
engage in a task performance. More specifically, they have not taken into consideration 
the partial perception in time and space of the demand and the embodiment of the agents. 
For instance, partial perceptions of the demand combined with real world uncertainties 
could strongly influence the optimal distribution of thresholds among teammates or the 
switching mechanism itself (e.g., probabilistic vs. deterministic). Therefore, our task as 

                                                 
b In threshold-based systems, the ‘propensity’ of any agent to act is governed by a response threshold. If the 
demand is above the agent’s threshold then that agent continues to perform the task; conversely, if the 
demand is below its threshold, then the agent stops performing that particular task. 
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engineers is to use our intuition and engineering knowledge to concretely design 
individual robots, from software to hardware, which then allows the swarm as a whole to 
achieve self-organized division of labor.  

Our efforts do not necessarily target the mimicking of natural, microscopic 
mechanisms since the available models of natural systems do not tell us implementation 
details at lower level and, moreover, natural and artificial hardware substrates show 
fundamental differences. However, we hope that this paper will not only contribute to the 
autonomous robotic literature but also stimulate the discussion among biologists about 
possible low-level mechanisms used by social insect societies for achieving division of 
labor. 
 Krieger and Billeter provide us one of the first examples of an engineering 
interpretation of the macroscopic allocation models presented in the social insect 
literature in [19]. In this experiment, the individual decision of whether or not to 
undertake a foraging mission was regulated by an internal threshold. A regulation of the 
foraging activity translated in this particular setup into a reduction of traffic jams at the 
nest entrance. The stimulus used for regulating the individual robot’s activity was the nest 
energy, a software value which was assessed by an external supervisor as a function of 
the foraging success of the robotic colony and globally transmitted to all the robots. By 
implementing the threshold-based algorithm in this way, each individual robot must be 
endowed with a different threshold in order to achieve regulation of the overall colony 
activity. This in turn not only forced the experimenters to select an ad hoc distribution of 
thresholds but also resulted in a different exploitation of the teammates, the one endowed 
with the lowest threshold systematically being more active than that with the highest 
threshold.  
 In contrast with the engineering interpretation described above, in this paper we 
propose a threshold-based, distributed, scalable worker allocation algorithm that is based 
exclusively on the local estimation of the demand by the individuals. The individuals are 
all characterized by the same threshold but, since the agents do not perceive the demand 
globally but rather estimate it locally, they do not work or rest all at the same time, a 
behavior that would arise if the demand was broadcasted from an external supervisor. 
 

The case study – The experiments presented in this article are the follow-up of 
experiments performed with real robots reported by Martinoli et al. [24,25,26].  The task 
is to collect small objects, referred to as “seeds”, in a square arena and to gather them in a 
single clusterc using simulated Khepera robots [32] equipped with grippers and capable 
of distinguishing seeds from obstacles (walls, teammates) with their frontal sensors. As 
the robots have only local sensing capabilities and do not exploit a fully connected 
communication network, there is neither central nor global coordination among robots. 
Collective coordination is purely probabilistic and happens based on local interactions, 
strictly following the SI-principles mentioned above (see the experiment description in 
Section 2). In the experiments modeled in this paper, robots do not exploit any form of 
specific wireless peer-to-peer communication; stigmergic communication via the 
aggregation process is the only way to (indirectly) communicate. Moreover, as the robots 
do not have a global perception of the environment, they do not know when the task is 
                                                 
c Although these experiments are not intended to reproduce a biological system, they present several 
similarities with the nest cleaning and dead ants clustering performed by some ant colonies [11]. 
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finished, motivating the need for a distributed task allocation mechanism to allow each 
individual to stop working based on its own estimate of the availability of work. Robots 
that decide to stop working can rest in a dedicated parking zone adjacent to the main 
arena. Allocation algorithms relying on direct peer-to-peer wireless communication have 
been published elsewhere [2] and are briefly mentioned in Subsection 7.2. 

 The specific interest for modeling this particular aggregation experiment lies in the 
fact that, although the control algorithms used for aggregation and individual activity 
regulation are both deterministic (and therefore easy to model), the whole system 
depends on and exploits randomness to achieve its final state, i.e., a single cluster and all 
the robots resting. Indeed, the stochastic nature of the robot-environment interactions 
combined with noisy sensory readings automatically generates probabilistic transitions 
between system (i.e., the robots’ and environment’s) states. As we will see more 
specifically in the next sections of the paper, first, randomness combined with irreversible 
elimination of isolated seeds prevents the aggregation process from getting stuck in 
multiple-cluster configurations, and second, randomness combined with an irreversible 
decision to rest achieves a self-regulation of the swarm activity which gracefully follows 
the evolution of the aggregation process. 
 
 Paper organization – In Section 2, we give a detailed description of the setup and of 
the embodied agents’ control algorithms. In Section 3, we introduce the modeling 
methodology and we specifically address how we derived and calibrated the models 
presented in this paper. In Section 4, we first introduce and analyze two simple systems 
in which the robots search, avoid obstacles, and eventually interact with objects without, 
however, manipulating them. We validate model predictions with embodied simulations. 
In Section 5, we present the full aggregation experiment without worker allocation while 
in Section 6 we illustrate how the model can be extended for capturing the worker 
allocation mechanism. In both sections, we validate model predictions with embodied 
simulations. In Section 7, we discuss problems in building accurate models, strength and 
limitations of the modeling methodology, and briefly introduce (but do not model) 
possible, more efficient and/or robust variations of the worker allocation algorithm. 
Section 8 concludes the paper and presents a few suggestions for future work.  

2 A Case Study: The Aggregation Experiment 
 The case study described in this paper and used for assessing the efficiency of the 
worker allocation algorithm is concerned with the gathering and clustering of small 
objects scattered around an enclosed arena. We refer to these small objects as “seeds.” In 
most of the work done so far, for instance that performed by Holland and Melhuish [15], 
and more specifically that published by Martinoli et al. [25,26], the size of the working 
team was kept constant during the whole aggregation process. These latter experiments 
define the baseline for an efficiency comparison with and without the worker allocation 
algorithm. In this paper, we are using three primary team performance measurements: the 
average cluster size, the average number of clusters, and the average number of active 
workers in the environment.  
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2.1 Embodied simulations 
In order to systematically investigate the aggregation dynamics and at the same time 

validate with a realistic simulator the prediction of our models, we implemented the 
experiment in Webots [31], a 3D, kinematic, sensor-based simulator of Khepera robots 
(see Figure 1). Teams of one to ten robots were simulated using Webots. The simulator 
computes trajectories and sensory input of the robots in an arena corresponding to a given 
physical setup. The resulting simulation is sufficiently faithful for the controllers to be 
transferred to real robots without changes and for the simulated robot behaviors to be 
very similar to those of the real robots, as shown in several previous papers 
[14,16,25,26]. It is worth noting that throughout this paper we will use the words 
“embodied agent” and “robot” for describing the same realistically simulated entity. The 
mean speed-up ratio for this experiment with five robots between Webots and real time is 
about 10 on a Pentium III, 933 MHz machine. 

2.2 The setup 
In the experiments presented in this paper, the arena consists of an inner working 

zone of 80 x 80 cm2, in which the cluster formation takes place, and a surrounding 
parking zone of 40 cm in width, in which the robots that decide to stop working go and 
stay in an idle state to save energy. 20 seeds, 1.7 cm in diameter and 2.5 cm in height, are 
randomly scattered in the working zone at the beginning of the experiment. The picture 
presented in Figure 1 shows a 178 x 178 cm2 working zone; this is chosen for clarity, as 
robots, seeds, working zone, and parking zone are more easily distinguishable in this 
picture than in a picture of an 80 x 80 cm2 working zone. 

Groups of one to ten embodied agents equipped with gripper turrets are used to 
collect and cluster the seeds. Agents can distinguish seeds from walls and other robots 
because of their thinness, simply using their six frontal proximity sensors. Furthermore, a 
floor-color sensor allows each agent to distinguish between the working and parking 
zones. 

 

   

Figure 1 Left: close-up of a simulated robot equipped with a gripper, ready to grip a seed. 
Center: corresponding setup in the embodied simulator (10 robots, 20 seeds, 178 x 178 cm2 
arena). The inner area represents the working zone and the surrounding area is the 
parking/resting zone where robots that decide to stop working stay idle. Right: typical end of 
aggregation experiment, e.g., 5 hours of simulated time, in a 178 x 178 cm2 arena. 
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2.3 The robot’s controller 
The behavior of each robot is determined by a simple hand-coded program that can 

be represented with a standard flow chart or a Finite State Machine (FSM), as depicted in 

Figure 2. The behavioral granularity shown in Figure 2 is arbitrary and is chosen by the 
experimenter so that the FSM captures all the details of interest.  

Without considering the mode-switching behavior (i.e., the worker allocation 
mechanism explained in detail in Section 6), we can summarize each agent’s behavior 
with the following simple rules. In its default behavior, the agent moves straight forward 
within the working zone looking for seeds. When at least one of its six frontal proximity 
sensors is activated, the agent starts a distinguishing procedure. Basically, two cases can 
occur: the agent might be in front of either a large or a small object. If the agent is in 
front of a large object (a wall, another agent, or the long side of a cluster of seeds) the 
object is considered to be an obstacle and the agent avoids it with an appropriate 
maneuver. In the second case, the small object is considered to be a seed. If the agent is 
not already carrying a seed, it grasps this one with the gripper, otherwise it drops the seed 
it is carrying close to the one it has found; then in both cases, the agent resumes searching 
for seeds. With this simple individual behavior, the team is able to gather objects in 
clusters of increasing size. A cluster is defined as a group of seeds whose neighboring 
elements are separated by at most one seed diameter. We note that, since agents can 
identify only the two ends of a cluster as seeds (as opposed to obstacles), clusters are 
built in a line.  

 

Figure 2: FSM representing the robot controller. Transitions between states are 
deterministically triggered by sensory measurements. This representation does not include 
the distributed worker allocation mechanism introduced and detailed in Section 6.  
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3 Macroscopic Modeling 
 The central idea of the probabilistic modeling methodology is to describe the 
experiment as a series of stochastic events with probabilities computed from the 
interactions' geometrical properties. The absolute location of the events in the arena is not 
considered in the models and the models’ parameter calibration is achieved with 
systematic experiments using one or two embodied agents. The flowchart of the 
controller of the embodied agent (see Figure 2) serves as a blueprint for implementing the 
corresponding models, either microscopic or macroscopic. The FSM characterizing the 
embodied agent’s controller becomes a Probabilistic Finite State Machine (PFSM) or 
Markov chain in the models whose state-to-state transitions depend on the interaction 
probabilities of a robot with other teammates and with the environment. While in 
microscopic models each robot is represented by its own PFSM, in macroscopic models, 
such as those presented in this paper, a single PFSM summarizes the whole robotic team, 
each of its states representing the average number of teammates in a particular state at a 
certain time step. In both types of models, the robots' PFSM(s) are then coupled with the 
environment. This coupling among robots via the environment (or in other experiments, 
direct peer-to-peer coupling, for example, through explicit communication) shapes the 
microscopic-to-macroscopic mapping, in particular, determining its linear or nonlinear 
properties. Moreover, in distributed manipulation experiments, the environment can be 
considered to be a passive, shared resource whose modifications are generated by the 
concurrent actions of the robots. For instance, in order to compute the arbitrary nonspatial 
aggregation metrics we are interested in (average cluster size, average number of 
clusters), we keep track of average modifications of environmental quantities in the 
macroscopic model.  

The mean speed-up ratio between the macroscopic model (implemented in C) and 
embodied simulations for this experiment with five robots is approximately 5000 on a 
Pentium III, 933 MHz machine. This comparison is based on the time it takes to obtain a 
macroscopic model prediction of an experiment and to conduct a single embodied 
simulation, although several runs of the latter are needed to obtain statistically significant 
information. For instance, for each experimental result presented in this paper 30 runs 
were performed using Webots, corresponding to a speed-up ratio of 150,000 between the 
macroscopic model and the embodied simulator for predicting the average swarm 
performance according to one of the three aforementioned metrics. 

3.1 Modeling assumptions 
The current modeling methodology relies on two main, slightly overlapping 

assumptions: spatial uniformity and the fulfillment of Markov properties, each of them 
briefly described in turn. 

 
Nonspatial models – The methodology relies on the assumption that the coverage of 

the arena by the groups of robots is as uniform as if the robots could hop around 
randomly on the surface. Therefore, robots' trajectories or specific robot spatial 
distributions are not considered in the current models. We also assume that the absolute 
position of any given object in the arena does not play a role. For instance, a seed in a 
given cluster has the same probability of being manipulated whether the cluster is placed 
in the center or in the periphery of the arena. 
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Semi-Markovian models - We assume that each robot's future state depends only on 

its present state and on how much time it has spent in that state. This assumption is 
correct for a reactive robot controller extended with a time-out (e.g., the threshold used in 
the worker allocation algorithm) or following a predetermined sequence of actions (e.g., 
grasping or dropping a seed) that last a certain amount of time. The robots (and the 
environment) in the aggregation case study clearly obey this Markov property if we 
assume that we are considering all robot and environment states of interest for computing 
the desired nonspatial metric (e.g., trajectory states - position and heading - can be 
neglected). 

 
 Both assumptions are valid in all the experiments presented in this paper. In Section 

7, we discuss in detail the limitations of such assumptions under special experimental 
conditions. 

3.2 Time discretization 
The current probabilistic methodology generates discrete-time models. In this 

subsection we will explain the motivation behind this choice. At a first glance, one might 
think that, since the physical setup operates in continuous, real time, and robots are 
working in a completely asynchronous way, each of them following its own internal 
digital clock, the best way to obtain a faithful model would also be a continuous-time 
model. As usual, we would emulate time continuity in simulation by choosing a small 
time step combined with a standard numerical integration algorithm (e.g., Runge-Kutta). 
However, if we look more closely, we realize that the description of the system we are 
interested in (see Figure 2) is at a behavioral level, that the time accuracy used for 
measuring characteristic system delays (see Subsection 3.3.1) and representing the 
metrics of interest is not infinite (in this paper, we use 1 s), and that the fastest 
environmental modification which can happen (picking up or dropping a seed) requires at 
least 10 s.  Therefore, a discrete-time description would capture accurately these 
characteristic time constants and delays without extra computation in between.  

These are the main reasons why we believe discrete-time models are the most 
adequate solution for the level of description we are aiming at. Further emulation of time 
continuity would simply add simulation time (because macroscopic models are, in 
general, nonlinear, they must be solved numerically) without bringing any additional 
accuracy to the models’ predictions. 

3.3 Calibration of models’ parameters 
The models presented in this paper are characterized by two different categories of 

parameters: delays and transition probabilities. In the following two subsections, we will 
describe how we calculated and measured all the parameters belonging to either one or 
the other category. 

3.3.1 Delays and discretization interval 
 Table 1 summarizes the values of delays used in all the models presented in this 
paper. The chosen discretization interval T = 1 s allows for a description of all delays 



10 

without introducing any rounding error. All the parameters presented in Table 1 were 
obtained by systematic experiments using 1 or 2 embodied agents. 
 

Table 1: mean durations of the robot’s maneuvers described in Subsection 2.3. Index d = 
dropping,  p = picking up, w= wall, r = robot. 

 Seed dropping and picking up Obstacle Avoidance Interference 
Measured delay [s] τd =τp = 10 τw =1 τr =2 

Model parameter [iterations] Τd =Τp = 10 Τw=1 Τr=2 
 

 

3.3.2 Transition probabilities 
Consistent with previous publications [1,3,16,22,25,26,27,28,29,30], we compute the 

transition probabilities from one state to another based on simple geometrical 
considerations and the robots’ sensing and interaction capabilities (e.g., detection areas, 
approaching perimeters). However, instead of tightly linking space and time granularity 
using the smallest object appearing on the arena as we have done in the majority of the 
previous publications, we introduce here a computation of transition probabilities based 
on object encountering rates. The numerical values used for the robot speed, the 
approaching angle for decreasing/increasing the size of a cluster, and the different 
detection radii of the objects have been measured in systematic tests with one or two 
embodied agents and are summarized in Table 2. In Table 2, the construction 
(respectively, destruction) angle corresponds to the angle of the access perimeter for 
incrementing (respectively, decrementing) a cluster of seeds. More details are given in 
Martinoli et al. [25,26,27]. 

Table 2: parameters used in the models of the aggregation experiment. Detection distances 
are measured from the center of the robot to the center of the object detected. 

Mean 
robot 
speed 

v [cm/s] 

Cluster 
construction 

angle 
αinc (n) 

[degrees] 

Cluster 
destruction 

angle 
 αdec (n) 

[degrees] 

Wall 
detection 
distance 
Rw [cm] 

Seed 
detection 
distance 
Rs [cm] 

Robot 
detection 
distance 
Rr [cm] 

Arena size 
[cm2] 

8 65 if n > 1 
180 if n = 1 

60 if n > 1 
180 if n = 1 

6 6.4 10 80 x 80   
 

 

From these experimental interaction parameters we can calculate the encountering 
rates used in the models: the rate at which a robot encounters the wall (γw), the rate at 
which it encounters another robot (γr), the rate at which it encounters a cluster of size n 
and decreases ( dec

cn
γ ) or increases ( inc

cn
γ ) the size of that cluster. To achieve this 

transformation we proceed as follows. 
As suggested by Lerman and Galstyan [23], and Agassounon and Martinoli [3], as 

the robot travels through the arena at an average speed v, it sweeps out a detection area 
during time interval dt. This detection area is vwodt, where wo is the width of the field of 
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view of a specific sensory apparatus used by the robot to detect objects of type o (see [26] 
for further explanatory pictures). Hence a robot will detect an object o at a rate γo = 
vwo/Aa, where Aa is the total area of the arena. For instance, a robot will encounter a 
specific seed at a rate of γc1= vws/Aa= 2vRs/Aa (and any of 20 seeds at rate 20γc1) and 
another teammate at rate γr = vwr/Aa= 2vRr/Aa (and any of 4 teammates at rate 4γr).  

dec
cn

γ and inc
cn

γ  can then be calculated from 
ncγ by multiplying this coefficient with the ratio 

defined by the destruction angle/180o and construction angle/180o, respectively (see 
Table 2 for numerical values).  

In order to calculate the encountering rate with the surrounding walls (γw), we used a 
slightly different procedure. This is mainly due to the fact that this encountering rate is 
heavily influenced by shape, size, and accessibility of walls:  the walls have a “stretched” 
detection area (in contrast to the compact, rotation-symmetric detection areas of the seeds 
and robots), a size much larger than any other object in the arena, and are accessible only 
from the arena-internal side.  Thus, a better way to estimate γw is by dividing the average 
speed by the mean distance traveled before encountering a wall. The mean distance we 
consider is the length of the side of the arena (S) minus twice the wall detection range 
(Rw); mathematically, γw = v/(S-2Rw).  

From constant rates over the time step, it is easy to calculate the corresponding 
transition probabilities for the small time interval T given the corresponding encountering 
rate: 

(1) Tdtp x

Tk

k
xx γγ∫

+

==  

4 Models of Simplified Collective Experiments 
 Before describing implementation details and results of the full aggregation system, 
we introduce two simplified scenarios as examples. The first example represents a key 
sub-chain used in both the second example and the full aggregation system’s Markov 
chain, which we will describe in Sections 5 and 6. In the second example, robots are 
characterized by the same controller used in the aggregation experiment, with the 
difference that seeds are not actually manipulated when found.  Consequently, in the 
second example, no aggregation can occur.  
 It is worth noting that while the sets of difference equations (DEs) describing these 
two simplified systems at the macroscopic level are linear, though affected by time-
delays, the model of the full aggregation system at the macroscopic level will be a set of 
nonlinear, time-delayed DEs due to the (time-dependent) modification of the 
environment (e.g., seeds are moved and placed in different clusters whose sizes therefore 
vary over time). 

In the embodied simulation presented in this section we estimated the steady-state 
values by averaging each variable over a 1-hour simulation time window. In all the 
histograms that follow, the height of the embodied simulations columns represents the 
mean value of the steady-state estimation while error bars represent the standard 
deviation over 30 runs. At the macroscopic level, of course, one run suffices since only 
swarm’s mean values are predicted. 



12 

4.1 Search and obstacle avoidance in an empty arena  
Many robotic experiments involve delays for one reason or another. A delay state 

may simply represent a particular behavior that the robot performs for a certain duration. 
In this first simplified scenario, the robot’s default state is the search state. While in this 
state, the robot may encounter the wall or another robot with probability pw and pr, 
respectively. Upon encounter with the wall (respectively, another robot) the robot enters 
the wall avoidance state (respectively, interference state), staying in that state for a hand-
coded duration Τw (respectively, Τr). The probabilities with which the robot leaves those 
states are independent of the robot’s interaction with the environmentd. As described in 
subsection 2.2, since the default behavioral state in the aggregation experiment is the 
search state, a first key sub-chain of the system is represented by the search state coupled 
with an obstacle avoidance state (in this experiment, walls are the only obstacles in the 
arena) and an interference state (teammate avoidance).  

Figure 3 represents graphically the state diagram of the robot’s controller and at the 
same time the model’s PFSM. The numerical values used in this example have been 
derived from the values in Table 1 and Table 2 using parameters for a generic obstacle: 
Τw = 1 s, Τr = 2 s, and pw and pr are functions of the setup (for example, pw = 0.158 and pr 
= 0.157 for the wall and robot encounter rates in an arena of 80 x 80 cm2 with a group of 
10 robots). Ws, Wr, and Ww represent the average numbers of workers in the search, 
interference, and obstacle avoidance states, respectively.   

Since the state variables of the macroscopic model are represented by non-discrete 
quantities (real values), the PFSM of Figure 3 representing the whole swarm can be 
described by the following system of DEs: 

(2) ( ) ( ) ( ) ( ) ( ) ( )rsrwswsrwss TkWpTkWpkWppkWkW −+−++−=+1  

(3) ( ) ( ) ( ) ( )wswswww TkWpkWpkWkW −−+=+1  

                                                 
d This is an approximation. Depending on the controller used (e.g., neural-network based, behavior-based) 
and the environmental density of objects, the time spent in a certain behavior may show significant 
variations over several situations in which the robot assumes this specific mode. A more realistic way to 
introduce delays in the models would be to consider not only their mean values but also, for instance, their 
standard deviation, both available from systematic experiments performed with one or two embodied 
agents. 

 

Figure 3: a simple sub-chain consisting of a search state, an interference state, and an 
obstacle avoidance state. 
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(4) ( ) ( ) ( )kWkWWkW wsr −−= 0  

k= 0, 1 , 2, …, represents the current iteration. In general, Wx(k) represents the value 
of the state variable Wx at time kT. 

In Equations (2)-(4), W0 represents the total number of workers in the arena while 
Ws(k), Wr(k), and Ww(k) represent the number of robots in search, interference, and 
obstacle avoidance states at time step k, respectively. Equation (2) states that the average 
number of robots in the search state at iteration k decreases when one or more robots 
encounter either a wall or other robots and increases when some robots finish interfering 
with each other or finish avoiding the wall. Equation (3) represents the dynamics of the 
delay state of obstacle avoidance. In Equation (4) we simply exploit the conservation of 
the total number of robots for calculating the average number of robots in interference 
state. We assume that no robots exist before k=0 (a standard convention for this type of 
time-delayed DE). Mathematically speaking, 

(5) ( ) 0if0)()( <=== kkWkWkW rws   

The initial conditions for the DE system are 
T

0
T ]00[])0()0()0([)0( WWWWW rws ==  (i.e., all robots are in search state at the 

beginning of the experiment). 
 

4.1.1 Steady state analysis 
The DE system (2)-(4) is linear. Therefore, we can analyze its steady-state using a Z-

transform. Equation (2) can be transformed using the right shift and left shift theorems as 
follows (Wx(z) representing the Z-transform of Wx(k)). 

(6) ( ) ( ) ( ) ( ) ( ) ( ) ( ) rw T
sr

T
swsrwsss zzWpzzWpzWppzWWzzW −− +++−=− 0  

Solving for Ws(z) and applying the limit theorem brings 

(7) ( )
rrww

szs TpTp
WzWzW

++
=−=

>− 1
)1(lim 0

1

*
 

Similarly, Equations (8) and (9) follow as 

(8) ( )
rrww

ww
wzw TpTp

WTpzWzW
++

=−=
>− 1

)1(lim 0
1

*
 

(9) 
rrww

rr
r TpTp

WTpW
++

=
1

0*
 

[ ]**** ,, wrs WWWW = T represents the state vector of the DE system above in the 
steady-state regime. 
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4.1.2 Macroscopic model and embodied simulation results 
Figure 4 shows a comparison between the macroscopic model predictions and 

embodied simulations in the steady-state regime for different state variables and team 
sizes.   

Figure 4 illustrates good agreement between the macroscopic model predictions and 
the simulation results for all steady-state variables used in this simple system as well as 
for different team sizes. While this system is linear and, therefore, the mapping between a 
microscopic and a macroscopic description is straightforward, this simple example 
illustrates that with an accurate calibration of the model’s parameters, trajectories can be 
neglected in order to calculate the average number of robots in a given state. Minor 
discrepancies between the model predictions and the mean values of embodied 
simulation are due to the difficulties in measuring the model’s parameters with systematic 
experiments and limited number of runs (i.e., 30) carried out with the embodied 
simulator. These discrepancies between models and realistic simulations on steady-state 
values will be discussed further in Section 7.  

4.2 Distributed manipulation without aggregation 
In this subsection, we compare the macroscopic model predictions and embodied 

simulations for a slightly more complex experiment involving seed detection, 
identification, and “quasi-manipulation”. In this experiment, the environment contains a 
single seed which is not actually manipulated by the robots. In other words, a free 
(respectively, quasi-loaded) robot only mimics a seed-picking-up (respectively, seed-
dropping) maneuver upon encounter with the seed. Hence, no seed-clustering takes place 
here and the initial position of the seed remains the same during the whole experiment. 

This scenario is similar to the second phase of the full aggregation experiment (see 
Section 5) where there is a single cluster of seeds and the remaining manipulation sites 

Figure 4: comparison of variables in steady-state using the macroscopic model and embodied 
simulations for the simple PFSM depicted in Figure 3. Left: Ws

*, Ww
*, and Wr

* using a team of 
10 robots. Right: fraction of workers in search state in the steady-state regime (Ws

*/W0) for 
different team sizes.  
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are the two tips of the cluster. A first difference between the two scenarios is that in a 
cluster only the two seeds at the extremities can be successfully manipulated if 
approached from the appropriate angle (αinc or αdec), whereas in a single-seed scenario, 
any angle of approach works. A second difference is that the side of the cluster is avoided 
as if it were a wall. Despite these minor differences, this simplified scenario provides 
insight into the steady-state of the full aggregation experiment (i.e., to evaluate the 
numbers of robots in different states) and helps test the validity of the assumption made 
for calculating the average size of the single cluster at steady-state (i.e., the number of 
free and loaded robots in search state is predominant over the numbers of robots in all 
other states). 

The robot controller consists of exactly the same states used in the full aggregation 
experiment (compare Figure 5 and Figure 7). The only difference is that a robot, instead 
of actually picking up or dropping off the seed, simply emulates these operations leaving 
the seed where it has been placed initially. The controller is characterized by two 
different robot states, free (Wf) and quasi-loaded (Wl). While in both experiments a robot 
is free when its gripper is open and no seed is carried, in this experiment a robot is quasi-
loaded when its gripper is simply closed but no seed is being carried. In contrast, in the 
full aggregation experiment the robot is loaded when it is actually carrying a seed. 
Further states of quasi-dropping (Wd) and quasi-picking-up (Wp) represent the emulation 
of seed-picking-up and seed-dropping operations. Since a robot cannot switch from a free 
to a quasi-loaded state or vice versa by simply avoiding a wall or another robot but must 
do so exclusively by performing either a quasi-seed-picking-up or quasi-seed-dropping 
maneuver, we must introduce separate states for obstacle avoidance and interference 
actions performed in either quasi-loaded or free situations. Hence, we distinguish the free 
robots in wall and robot avoidance states (e.g., Wfw and Wfr, respectively) from the quasi-
loaded robots in wall and robot avoidance states (e.g., Wlw and Wlr, respectively). 

 

Figure 5:  the PFSM representing the ‘quasi-manipulation’ experiment in a simple scenario 
with a single seed. The numerical values used in this model were derived from Table 1 and 
Table 2. 
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The following system of DEs represents the macroscopic model for this Markov-
chain: 

(10) 
( ) ( ) ( ) ( ) ( )

( )dld
inc
c

rfrwfwfwf
dec
crfwff

TkWTkp

TkWpTkWTkpkWkppkpkWkW

−−+

−+−−+++−=+

)(

)()]()([1
 

(11) 
( ) ( ) ( ) ( ) ( )

( )pfp
dec
c

rlrwlwlwl
inc
crlwll

TkWTkp

TkWpTkWTkpkWkppkpkWkW

−−+

−+−−+++−=+

)(

)()]()([1
 

(12) ( ) ( ) ( ) ( )pfp
dec
cf

dec
cpp TkWTkpkWkpkWkW −−−+=+ )()(1  

(13) ( ) ( ) ( ) ( )dld
inc
cl

inc
cdd TkWTkpkWkpkWkW −−−+=+ )()(1  

(14) ( ) ( ) ( ) ( ) ( ) ( )wfwfwffwfwfw TkWTkpkWkpkWkW −−−+=+1  

(15) ( ) ( ) ( ) ( )rfrfrfrfr TkWpkWpkWkW −−+=+1  

(16) ( ) ( ) ( ) ( ) ( ) ( )wlwlwllwlwlw TkWTkpkWkpkWkW −−−+=+1  

(17) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kWkWkWkWkWkWkWWkW lwfrfwdplflr −−−−−−−= 0  

This set of equations can be interpreted in a way similar to that done for Equations 
(2)-(5). For instance, Equation (10) tells us that the number of free robots decreases when 
free robots start an interference, obstacle avoidance, or seed quasi-manipulation 
maneuver and increases when one of these maneuvers is finished (after its characteristic 
delay) or when a quasi-loaded robot finishes its quasi-dropping operation and resumes 
search as free robot. In the last equation we exploit again the conservation of the total 
number of robots in the environment to calculate the number of quasi-loaded robots in 
interference state. 

Since in this experiment we use a single cluster consisting of one seed and no 
incrementing or decrementing operation can take place due to the emulation of 
manipulation, the probabilities of interacting with the cluster remain constant over time 
and can be expressed as: 

(18) 1
)()()()( cp

dec
c

dec
cd

inc
c

inc
c pTkpkpTkpkp =−==−=  

In the same way, obstacles are represented exclusively by static walls, therefore the 
probability of encountering an obstacle remains constant and identical for both the free 
and quasi-loaded robots, i.e.,  

(19) wwlwlwwfwfw pTkpkpTkpkp =−==−= )()()()(  

The robotic team size is constant during the experiment. Therefore, the probability of 
encountering a teammate (i.e., pr) is constant as well. 

Notice that Equations (14)-(17) are similar to Equations (2)-(5). As a matter of fact, 
the only difference is that the default states of the two sub-chains involving the variables 
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Wfr, Wfw, Wlr, and Wlw are those describing free (Wf) and quasi-loaded (Wl) robots in 
search instead of a single class of searching robots, as in the PFSM of Subsection 4.1. 
The two sub-chains can be seen in the lower left and upper right corner of Figure 5.  

The initial conditions for the DE system are 
T

0
T ]0000000[])0()0()0()0()0()0()0()0([)0( WWWWWWWWWW lwlrfwfrdplf ==

 (i.e., all robots are in free-search state at the beginning of the experiment). 

4.2.1 Steady-state analysis 
The same methodology as that used in Subsection 4.1 (i.e., Z-transform and limit 

theorem) can be used here for finding the values of state variables in stationary regime. 
However, by analyzing Figure 5 more carefully, we notice that the PFSM is symmetric. 
Moreover, since Tp and Td are identical (see Table 1) the steady-state values of the 

variables in symmetric states must be the same. In other words, **
lf WW = , **

dp WW = , 
**

lrfr WW = , and **
lwfw WW = . Solving the DE system above, we obtain 

(20) 
***

1 fpcdp WTpWW ==  

(21) 
***
fwwlwfw WTpWW ==  

(22) 
***
frrlrfr WTpWW ==  

Finally, by using the conservation of the total number of robots it follows that 

(23) 
pcrrww

lf TpTpTp
WWW

1
1

2/0**

+++
==  

4.2.2 Macroscopic Model and embodied simulation results 
Figure 6 shows a comparison between macroscopic model predictions and embodied 

simulations for different state variables and swarm sizes. Due to the symmetric properties 
of the PFSM in Figure 5, the other state variables can be derived via Equations (20)-(23) 
and achieve a similar distribution to that plotted in this histogram when measured with 
Webots. We notice good agreement between the mathematical model predictions and the 
embodied simulations. In particular, the results presented in Figure 6 confirm that, due to 
the short time lapses needed to perform seed-dropping/-picking operations and obstacle 
(wall and robots) avoidance maneuvers, the number of (free and quasi-loaded) robots in 
search state is predominant over those in the other states in the steady-state regime. This 
assumption is used in the steady-state analysis of the full aggregation experiment in 
Section 5. Minor discrepancies between models and realistic simulations on steady-state 
values will be discussed further in Section 7.  
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5 Aggregation Experiment without Worker Allocation 
In most previous aggregation experiments [4,15,25,26], the size of the working team was 
kept constant during the whole process. Furthermore, the experiments were monitored 
and terminated when a single cluster arose in the arena. Thus, the (destructive) effect of 
the lack of a mechanism to allow the robots to stop working was never clearly studied. 
Here we do not end the experiment when the robots create a single cluster of seeds, 
instead we let the experiment run for 10 hours. The outcome presented in Subsection 5.3 
justifies the need for a distributed mechanism that enables each robot to switch off when 
the aggregation task is finished. In concordance with previous works in cluster formation 
and aggregation [1,4,25,26], we are using two primary team performance measurements: 
the average cluster size and the average number of clusters. Additionally, since in some 
of our experiments the working team size is time-varying, we introduced a metric 
computing the average number of active workers in the environment. 

  

 

Figure 6: comparison of variables in steady-state using the macroscopic model and embodied 
simulations for the PFSM of Figure 5. Left: subset of state variables (Wl

*, Wlw
*, Wlr

*, and Wd
*) 

using a team of 10 robots. Right: normalized steady-state value of the mean number of free 
robots (Wf

*/W0) for different team sizes. 
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Figure 7 shows a PFSM representing the whole robotic team performing the aggregation 
task. This representation does not include the distributed worker allocation mechanism 
introduced and detailed in Section 6. Notice the time-varying coefficients characterizing 
several transition probabilities (plw, pfw, inc

cp , and dec
cp ) in this PFSM: they are the result 

of the aggregation process. As a matter of fact, the PFSM of Figure 7 has exactly the 
same structure as that of Figure 5 but, while that of Figure 5 has constant transition 
probabilities between all its states (as no aggregation process takes place), that of Figure 
7 has time-varying coefficients, which reflect environmental modifications due to the 
aggregation process. In other words, the robots’ controller is essentially the same in both 
experiments; therefore, the resulting PFSMs’ structures are the same. However, the 
transition probabilities are different because they are conditioned by the coupling of the 
robot’s PFSM with the environment, which is static in the former experiment and 
dynamic (via the active manipulation of the robots) in this case.  
 Notice that the environment could also be represented with its own PFSM whose 
states are represented by clusters of different sizes, as we did in [25]. In such a 
representation, the representation of the environmental PFSM would have time-varying 
transition probabilities that would be functions of the mean current availability of the 
workers in one state or the other in the robotic PFSM, as we will see in the next 
subsection (see Equation (29) in particular). 

5.1 Macroscopic model 
The macroscopic model for this aggregation experiment is represented again by 

Equations (10)-(17). However, here Wf refers to free robots, Wl to loaded robots, Wp to 
robots picking up seeds, and Wd to robots dropping off seeds (as opposed to the free, 
quasi-loaded, quasi-picking-up, and quasi-dropping robots of Subsection 4.2). 

 

Figure 7:  PFSM representing the whole robotic team performing the aggregation task.  
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As mentioned above, the major difference between the two experiments is that the 
probabilities with which the robots encounter obstacles and seeds to manipulate are 
functions of time in the aggregation experiment rather than being time invariant. 
Concretely, the aggregation process modifies wall-encountering probabilities since the 
sides of clusters represent obstacles robots must avoid and, of course, reduces the number 
of available seeds to manipulate. Due to actual manipulation, Equation (18) is 
transformed as follows: 

(24) ( )∑
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n  
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c TkNpTkp

n  

M0 and Nn represent the total number of seeds in the arena and the number of clusters 
of size n, respectively. The dynamics of Nn are described later in this subsection. 

Equation (19) is no longer valid since the probability of encountering a wall evolves 
with seed aggregation. The probability of encountering a wall as a free or loaded robot is 
also slightly different since the free and loaded workers cannot approach a cluster for 
manipulating it with the same angle (the incrementing and decrementing angles are 
different, see Table 2) and, as a consequence, they do not perceive the same obstacle 
length upon encounter with the side of a cluster. Therefore, pfw and plw must be 
considered as two different, time-varying parameters of the model. pfw can be expressed 
as follows (note that to obtain plw one must replace αdec by αinc in the expression below): 
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( ) ss

sdecss
M

n

ns

w
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In the right-hand side of Equation (28), the first term of the main sum (i.e., pw= 
vT/(S-2Rw)) represents the usual probability with which a robot encounters the 
surrounding border separating the working and the parking zones as for the experiments 
of Section 4. The second term of the main sum (i.e., pfcw) corresponds to the probability 
with which a free robot encounters the body side of a cluster of size n. In this second 
term, the first expression (whose denominator is S2) refers to the probability of 
encountering a cluster of size n and the other expression corresponds to the probability of 
an unsuccessful approach. 
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The last variables of the aggregation system are the numbers of clusters of different 
sizes that arise and/or disappear over time during the aggregation process. We describe 
the quantitative dynamics of the clusters as follows: 

(29) 
( ) ( ) ( ) ( ) ( )
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Equation (29) shows a system of M0 DEs, M0 being the total number of different 
cluster sizes (in this experiment it corresponds to the total number of seeds used in the 
experiment). The DE system represents the environmental PFSM whose individual states 
are defined by the cluster size. Equation (29) tells us that the number of clusters of size n 
can be increased by either removing a seed from a cluster of size n+1 or by dropping a 
seed in a cluster of size n-1. The number of clusters of size n can instead be decreased by 
either picking up a seed or dropping one in the cluster. 

5.2 Steady-state analysis 
As shown by Martinoli et al. in [27], if the robots do not withdraw (i.e., the team size 

remains constant), do not drop a seed unless it is next to another seed, and do not pick up 
an internal seed from a cluster, the number of clusters monotonically decreases and 
eventually a single cluster always arises. A practical way of defining the steady-state 
value is that it represents the average size of the single cluster remaining in the 
environment as the robots continue picking up and dropping seeds at its extremities. 

Based on the assumption above, intuitively, the size of the remaining cluster 
corresponds solely to the total number of seeds in the arena minus the number of those 
being held by the loaded workers, i.e., 

(30) 
****

0
*

dlrlwl WWWWML −−−−=  

where L* is the average size of the single cluster remaining in the arena in the steady-
state. L* is obviously a function of several steady-state variables whose values cannot be 
derived in closed form based solely on the equations above. Therefore, we proceed with 
an approximation of L* by neglecting the number of robots in obstacle avoidance, 
interference, seed-picking-up, and seed-dropping states at steady-statee, i.e., 

0
** WWW lf ≈+ . Thus, by introducing Equation (24)-(27) in Equation (10)-(17), setting all 

delay state variables to zero, and calculating the steady-state situation (Wx(k+1) = Wx(k)) 
we obtain:  
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(32) 
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* WML  

                                                 
e This assumption holds as long as the density of robots in the arena is low and the different maneuvers, 
e.g., obstacle avoidance, interference, seed-picking-up/dropping durations are short. Its validity has been 
demonstrated in Subsection 4.2.2. 
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where 
dec

inc
dec
c

inc
c

n

n

p

p

α
α

ρ ==  is a constant for all n such that 1 < n < M0. 

 
This approximation of the average size of the unique cluster remaining in the arena 

agrees with the embodied simulation results presented in the next section. Note that L* is 
a decreasing function of the team size W0. 

5.3 Results 
Figure 8 and Figure 9 present the model predictions and the simulation results of the 

aggregation experiment without the use of any worker allocation algorithm with groups 
of 1, 5, and 10 robots in an 80 x 80 cm2 arena. Figure 8 and Figure 9, left, present the 
increasing average size of the clusters over time while Figure 8 and Figure 9, right, show 
the decreasing average number of clusters over time. Each experiment characterized by a 
different team size has been repeated for 30 runs and the depicted error bars represent the 
standard deviation over runs. Good agreement between the results collected at both 
implementation levels shows how reliable the macroscopic model’s prediction of the 
outcome of the aggregation experiment is. 
 With a team of 10 robots (Figure 9, left), the aggregation process clearly has two 
phases. In the first phase, the mean cluster size increases steadily from 1 seed to about 15 
seeds and in a second phase, the mean cluster size remains, on average, constant around 
15 seeds. Similarly, during the first phase, Figure 9, right, shows that the average number 
of clusters decreases asymptotically from 20 to about 1 and then remains close to 1 
during the second phase of the aggregation process. This is clearly a side effect of the 
lack of a mechanism to allow workers to stop performing the aggregation task once a 
single cluster arises, which is confirmed by the fact that 10 hours into the aggregation 
process, the average cluster size built by the team of 5 robots (see Figure 8, left) is larger 
than that obtained with the team of 10 robots. 

The results in Figure 8 and Figure 9 can be explained by the fact that, once a single 
cluster arises only two manipulation sites remain in the environment (i.e., the two tips of 
that cluster); the seed pick-up and drop-off probabilities (i.e., dec

cn
p  and inc

cn
p ) are 

empirically very close, therefore at any given time during the last phase of the 
aggregation process, on average, half of the active workers will be carrying a seed and 
the other half will not. This explains why the average cluster size at steady-state (i.e., L*) 
as expressed in Equation (32), is a decreasing function of the team size. For instance, L* 
≈ 15.2 seeds for the team of 10 robots and Figure 9 shows that after 10 hours of 
aggregation the average cluster size built by that team is close to this value for both the 
macroscopic model and the embodied simulator. 
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6 Aggregation Experiment with Worker Allocation 
In this section, we introduce a simple, distributed worker allocation algorithm that allows 
a team of robots to increase its efficiency as a whole by withdrawing an appropriate 
number of workers as a function of the demand, which is intrinsically defined by the 
aggregation process. We will show that our macroscopic model can be extended to 
capture also this new type of controller. In this scenario, even the last parameter, which 
has been constant so far (i.e., pr, see Equations (10)-(17)) will become time-varying and 
will introduce an additional nonlinear coupling factor among the equations.  
 Generally speaking, we would like to implement fully distributed algorithms which 
are based exclusively on local perception and local communication and enable the team 
to allocate the right number of workers to one or several specific tasks. The demand 
related to each task may evolve over time either because of a driving factor intrinsic to 

  

Figure 8:  results of aggregation experiment with groups of 1and 5 robots and 20 seeds in an 
80 x 80 cm2 arena. Team sizes are constant. Left: average cluster size over time. Right: 
average number of clusters over time. 

  

Figure 9:  results of aggregation experiment with a group of 10 robots and 20 seeds in an 80 
x 80 cm2 arena. The team size is constant. Left: average cluster size over time. Right: 
average number of clusters over time. 
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the environment or, as in the aggregation experiment, because of the actions of the robots 
on the environment.   

In our case, intuitively, we can imagine that at the beginning of the aggregation there 
are many possible manipulation sites (i.e., several scattered seeds) that allow for a 
parallel work of several robots. As the aggregation process goes on, the number of these 
sites is reduced and having more robots competing for the same manipulation sites 
decreases their efficiency. Therefore, reducing the number of active robots during the last 
phase of aggregation should consequently increase the team efficiency (number of 
workers allocated per amount of work) as well as the size of the single cluster. The main 
challenge here is to find a simple mechanism that allows each robot to autonomously 
evaluate the progress in task completion so as to be able to decide whether to continue 
performing the task or not. SI can offer a variety of biologically inspired, distributed 
solutions to this type of problems. We propose here a SI-based solution in the form of a 
threshold-based, distributed worker allocation algorithm. 

6.1 A threshold-based, distributed worker allocation algorithm 
In threshold-based systems, the ‘propensity’ of any agent to act is governed by a 

response threshold. If the demand is above the agent’s threshold then that agent continues 
to perform the task; conversely, if the demand is below its threshold then the agent stops 
performing that particular task. In the algorithm presented in this paper, the time an agent 
spends before finding some work to accomplish (i.e., to pick up and drop a seed) 
represents the agent’s estimation of the demand stimulus associated with the aggregation 
task. 

Our current worker allocation algorithm is as follows. When a robot has not been 
able to work (i.e., to pick up and drop a seed) for a reasonable amount of time, its 
propensity to accomplish that particular task is decreased. If the stimulus falls below a 
certain threshold (i.e., if the amount of time spent in the search of work is above a given 
search time-out Τs), a deterministic switching mechanism prompts the robot to leave the 
working zone and rest in the surrounding parking zone for the remaining duration of the 
experiment. In other words, our worker allocation algorithm has been particularly 
designed for an irreversible process such as aggregation: robots become inactive from an 
active mode and not vice versa as seeds are irreversibly gathered in clusters of increasing 
size. Furthermore, a loaded robot that decides to become inactive cannot do so until it 
finds an appropriate spot (i.e., one tip of a cluster) to drop the seed. 

Thus, with this simple algorithm characterized by a single threshold, each robot is 
able to estimate the aggregation demand locally and decide whether to work or rest with 
no need for a central controller. This task allocation mechanism is similar to that 
observed in some ant colonies [7, 38] for which it has been shown that an individual 
performs a task as long as the demand stimulus for the task, e.g., a pheromone 
concentration, exceeds the individual’s threshold for that particular task. 
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The threshold distribution among agents could be performed in several ways. In this 
paper, we use the simplest possible distribution: we assign the same response threshold to 
all the agents, obtaining in this way a homogeneous and fully scalable team from a 
control point of view. However, the resulting agents’ behavior (rhythm of activity) is not 
identical since it is based on the local, private assessment of the aggregation demand, 
which is represented by the seed distribution in the environment. In other words, diversity 
in activity is created by exploiting the intrinsic noise of the system due to local perception 
and additional noise sources on simulated (miniature) sensors and actuators. 

6.2 Macroscopic model 
The PFSM of the complete aggregation experiment with distributed worker 

allocation depicted in Figure 10 differs from that in Figure 7 by two new states, the quit 
and the idle states represented by Wq and Wi, respectively. The quit state corresponds to 
the state of the robots that have autonomously decided to stop working and started 
traveling from the working zone to the surrounding parking zone (see Figure 1). The idle 
state corresponds to the state of the robots that have reached the parking zone after 
stopping performing the aggregation task. For the sake of brevity, we introduce here only 
the equations that describe the dynamics of the new variables and those of the old 
variables, i.e., those from Section 5, whose dynamics have changed due to the task 
allocation mechanism. 

 

Figure 10:  PFSM representation of the complete aggregation experiment with distributed 
worker allocation. The numerical values used in this PFSM have been derived from Table 1 
and Table 2. 
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As previously stated, here )](1[)(~

0 kWWpkp irr −−=  is a time-varying parameter as the team 
size changes over time due to the distributed worker allocation. In the equations above, 
pw translates a successful attempt by the robots to leave the working zone for resting in 
the parking zone, and 1- pw a failure to do so. Robots that are trying to leave the working 
zone remain in the quit state until they are successful in doing so. 

Γf(k;Ts) and Γl(k;Ts) correspond to the fractions of “disappointed” free and loaded 
workers. They represent those free (respectively, loaded) robots that have been 
unsuccessful in finding a single seed to pick up (respectively, a site at which to drop a 
seed) over the past time period [k-Ts, k] (respectively, [k-Td-Ts, k-Td]). Note that Γl(k;Ts) is 
defined over the time period [k-Td-Ts, k-Td] because robots are not allowed to leave the 
arena with a seed. Therefore, a loaded robot that decides to stop working has to find an 
appropriate spot to drop the seed it is carrying before leaving. Hence, Γl only applies to 
the loaded robots that have finished a seed-dropping maneuver begun Td time steps ago. 
The last two terms in the right-hand side of Equation (33) represent a change compared 
with Equation (10). The first of these two terms translates the dynamics of the free robots 
that decide to stop working and the other term translates the dynamics of the robots that 
enter the search state after releasing a seed without the intention to stop working. 
Equation (34) expresses the dynamics of Wq, the number of robots that have decided to 
stop working but have not yet succeeded in leaving the working zone. Finally, Equation 
(35) expresses the dynamics of the robots in idle state as the number of robots in that 
state depends on the robots that successfully cross the border on their way to the parking 
zone independently of whether their decision to stop working was made while they were 
free or loaded. 

To calculate Γf(k;Ts) (and similarly, Γl(k;Ts)), we use a method similar to that used in 
[28,29,30] for calculating the fraction of robots abandoning a stick-pulling action. The 
probability per iteration for a free robot of not finding a seed to pick up during the time 
interval [k-1, k] is )1(1 −− kpdec

c . The overall probability of a free robot not finding a 
seed to pick up during the time interval [k- Ts, k] can be calculated as follows.  
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Similarly, Γl(k;Ts) is calculated as follows 
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Tds = Td + Ts and inc
cp (respectively, dec

cp ) is calculated with Equation (24) 
(respectively, Equation (26)). 

6.3 Steady-state analysis 
Being the system nonlinear, also in this case a thorough analysis of the steady-state is 

better conducted by equating Wx(k+1)-Wx(k) to zero in the DEs. In particular, at steady-
state Equation (35) becomes: 
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Each term on the right-hand side of Equation (38) is non-negative, so it follows that 
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In fact, if the arena is not overcrowded and the total number of agents is smaller than 
the number of seeds (this latter condition prevents the scenario in which all the seeds are 
picked up leaving no drop-off sites remaining), there will always be at least one cluster of 
one or more seeds present in the arena. Thus, there exist at least two probability values, 
e.g., pmin and pmax,f such that 0 < pmin≤ pc

dec(k) ≤ pmax< 1 for all time steps k. Hence 

(43) ( ) ( ) ( ) ss T
sf

T pTkp minmax 1;1 −≤Γ≤−  

                                                 
f Two possible values of pmin and pmax are dec

c WM
p

00−
 and dec

cpM
10 ⋅ , respectively. 



28 

Equation (43) implies two consequences: first, that ( ) 0;lim =Γ
∞>−

sfT
Tk

s

 and second, that 

( ) ( )sfksf TkT ;lim* Γ=Γ
∞>−

 is never null for a fixed Τs. The second consequence and Equations 

(39)-(42), in turn, imply that there exists a unique steady-state which is the following: 
0******* ======= lrlwfrfwqlf WWWWWWW  and 0

* WWi = . This means that in a system where 
the proposed distributed task allocation mechanism is implemented, all the agents will 
eventually stop working. In other words, if the probability for a robot to become 
“disappointed” is different than zero and the deactivation mechanism is deterministic and 
irreversible, sooner or later a site to manipulate may not be found and the last active robot 
will switch off. Note that in reality it may take a long observation time before obtaining 
this stable steady-state, depending on the value of the fixed activity threshold. 

Nevertheless, when the aggregation experiment with worker allocation is observed 
over a relatively short period of time (which, in fact, depends on the number of seeds to 
cluster and the total number of robots performing the task), it has different outcomes 
depending on both the initial setup and, more strongly, on the fixed time-out Τs. On the 
one hand, if Τs is too small, the propensity of the robots to work will be reduced 
substantially and this will result in the whole team stopping working too early preventing 
the seeds from being gathered in a single cluster. On the other hand, if Τs is too large, the 
outcome of the experiment will be much like that of the scenario without worker 
allocation if observed over a relatively short period of time. We will discuss this further 
in Subsection 7.3. 

6.4 Results 
Figure 11 and Figure 12 present the outcome of the aggregation experiment using the 
proposed distributed worker allocation algorithm with teams of 1, 5, and 10 robots in an 
80 x 80 cm2 arena. Each aggregation run lasted 10 hours. All error bars represent the 
standard deviations among 30 runs. For all the results presented in this subsection, we 
hand-coded Τs = 25 minutes. This value of Τs is very close to the optimal threshold value 
obtained using a systematic search as showed in Subsection 7.3.  

 Figure 11 and Figure 12 show that, in contrast to the case without worker allocation, 
the average cluster size remains an increasing function of time for all three group sizes 
within the 10-hour experimental time window. When using a single worker, the average 
cluster size over time is the same as that obtained in the scenario of Section 5 and the 
robot usually does not leave the working zone; with a group of 5 workers, although the 
average cluster size over time is similar to that obtained in the scenario without worker 
allocation, here the average number of workers necessary to obtain the same results is 
substantially lower, as on average, only about half of the agents remain in the arena after 
10 hours. The most important improvement comes with a large team of 10 robots. In fact, 
with 10 workers, during the second phase of the aggregation, the average cluster size 
remains an increasing function of time, eventually reaching 19 seeds, nearly the largest 
value possible, while the number of active workers in the environment decreases such 
that after 10 hours only about 2 workers remain active. 
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7 Discussion 
In this paper we have presented macroscopic models of incremental complexity from 

simple examples in Section 4 representing scenarios characterized by no modification of 
the environment to the scenario presented in Section 6, a model that captures not only 
environmental modification but also changes in the robotic team size. In each of these 
sections, we have successfully validated the macroscopic models with embodied 

  

Figure 11: results of aggregation experiment with worker allocation and groups of 1and 5 
robots with 20 seeds in an 80 x 80 cm2 arena. Left: average cluster size over time. Right: 
average number of active workers over time. 

  

Figure 12:  Results of aggregation experiment with worker allocation and a group of 10 
robots with 20 seeds in an 80 x 80 cm2 arena. Left: average cluster size over time. Right: 
average number of active workers over time. 
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simulation results comparing the two levels of implementation based on either state 
variables in steady-state regimes (Section 4) or more high-level metrics related to the 
aggregation or worker allocation processes (Sections 5 and 6).  

In this section, we discuss the usefulness of macroscopic models for understanding 
aggregation experiments, generalization to tasks other than aggregation, control 
optimization, the difficulties encountered in generating quantitatively accurate models, 
and finally, the intrinsic limitations of such models.  

7.1 Capturing randomness with macroscopic deterministic DE 
All versions of the aggregation experiment are permeated by randomness. Without 

randomness we would have neither aggregation to a single cluster nor the ability to 
implement such simple, distributed worker allocation algorithm regulating the team 
activity. Furthermore, qualitatively speaking, randomness decreases the efficiency of the 
robotic system but increases its robustness to deadlock situations and unfavorable initial 
conditions. System randomness has its origin in the local perception and in the 
concurrent, autonomous action of each robot as well as in the intrinsic noise of miniature 
sensors and actuators faithfully mimicked in the Webots simulator. Thus, a hand-coded, 
deterministic robot behavior is unavoidably transformed through the interactions between 
the robot and the environment and between the robot and its teammates into a stochastic 
behavior. Our macroscopic models, which at first glance may appear deterministic, 
capture the randomness of the system by using probabilities and probabilistic rates of 
occurrence of different events. In the rest of this subsection, we will present a few 
concrete examples of randomness-based mechanisms exploited in, and essential to, the 
aggregation experiments described in Sections 5 and 6. 

The first example we would like to mention is the randomness in the robots’ 
trajectories. If the trajectory of each robot were predetermined and noise-free, we would 
need a central supervisor with a view of the entire arena to coordinate the movements of 
the robots in such a way that from each possible initial scattering of the seeds, the robots 
could reach all of them and start the aggregation process without getting entangled. Just 
having deterministic trajectories without a central planner with a global view of the arena 
or a powerful on-board navigation system (e.g., GPS) may generate solutions that, 
depending on the initial conditions of the system, enable the robots to exclusively cover a 
partition of the arena without reaching all the seeds.  

A second example is concerned with the creation of a single cluster at the end of the 
aggregation process. Due to the mechanical constraints of the robots, the approaching 
angles for incrementing and decrementing the size of a cluster are almost the same. 
Therefore, without randomness, we could have deadlock situations (e.g., 2 large clusters 
consisting of half of the seeds initially scattered in the arena) in which one seed is picked 
up from one cluster and dropped into the other, picked up again from this latter cluster 
and dropped, once again, into the original cluster, and so on. We could see this as a form 
of dynamic equilibrium different from the single-cluster situation. Such a scenario has 
never appeared in any of our aggregation experiments. This is explained by the fact that 
the independent (or uncoordinated) actions of all the robots in the arena generates 
relevant variations on the cluster sizes so that, each time any cluster is reduced to a single 
seed, that single-seed cluster is irreversibly (and deterministically) removed from the 
arena. Of course, this achievement was facilitated by the fact that the number of seeds 
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was never much larger than the number of robots (the worst case studied is a 20 to 1 
ratio).  With a much higher seed-to-robot ratio we would probably have significantly 
greater difficulty systematically achieving the single-cluster result.  

The third example is concerned with the core principle of the worker allocation 
algorithm presented in Section 6. Although all the teammates are endowed with the same 
activity threshold (i.e., a homogeneous team), the noise inherent in individual estimation 
of the aggregation demand due to local perception of the environment guarantees that 
robots deactivate at different times during the aggregation process. Thus, local perception 
and other noise sources create diversity in the decision to quit; as a consequence, the 
occurrence of deactivation increases gracefully over time as opposed to the sudden, 
collective withdrawal that would be seen if all agents were characterized by the same 
threshold and had a global perception of the environment. Finally, as shown in 
Subsection 6.3 and similar to the previous example, here randomness in combination with 
an irreversible, deterministic deactivation algorithm leads to the targeted situation in 
which all the robots are eventually inactive. 

7.2 Understanding more sophisticated worker allocation algorithms 
In this subsection we briefly describe three threshold-based, slightly more 

sophisticated worker allocation algorithms derived from the basic algorithm introduced in 
Section 6. Two of them have been already published in [2]; the third one is a combination 
of the previous two. The focus here is not on the algorithms themselves but rather on the 
insights that can be gained by using macroscopic models to explain the observed 
performance differences among the algorithms. 

The algorithms differentiate themselves on two orthogonal axes: the threshold may 
be fixed or variable, and there may be shared (public) or not shared (private) demand 
estimation among teammates via local explicit communication. 

According to this classification, the algorithm presented in Section 6 would be called 
a Private Fixed-Threshold algorithm (PrFT). The Private Variable-Threshold algorithm 
(PrVT) allows each worker to calculate its own activity threshold. This is done in two 
phases. During the first phase the robot works and evaluates the availability of seeds in 
the environment. At the end of that phase, the robot calculates its threshold based on the 
average amount of time it spent before finding work to accomplish over a fixed number 
of successful attempts. During the second phase, the robot works as in the PrFT 
algorithm. 

Using the Public Fixed-Threshold algorithm (PuFT) algorithm, the workers are 
endowed with a peer-to-peer communication capability. Upon encountering another 
robot, robots exchange their individual estimations of the demand. This allows each robot 
to gather information about the work demand from both its individual experience and that 
of other teammates. The Public Variable-Threshold algorithm (PuVT) combines the 
individual threshold calibration mechanism of PrVT and the information exchange 
capability offered by PuFT. 

We introduced a metric to measure the efficiency of the algorithms and assess their 
cost effectiveness. The metric is a cost function corresponding to the sum of the squared 
distances of the current values of the average cluster size, the number of clusters, and the 
number of active workers to the desired result (e.g., 20 seeds in a single cluster with no 
worker remaining active). More details are given in [2]. 
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We tested the robustness of these algorithms when facing static, environmental 
changes and dynamical, external changes: we optimized the performance of each 
algorithm in Arena1 (80 x 80 cm2 and 20 seeds) then measured the same performance in 
Arena2 (178 x 178 cm2 and 20 seeds) and Arena3 (80 x 80 cm2, 20 seeds at start, and 5 
additional introduced 2 hours into the aggregation process). The performance of the 
algorithms is summarized in Table 3. The values in bold correspond to the best 
performance, i.e., lowest cost within the margin of one standard deviation. The last row 
of Table 3 represents the results of the aggregation experiment without the use of any 
worker allocation mechanism.  

Table 3: performance summary: the metric is the mean Integrated Cost ± standard deviation.  

Algorithm Arena1 Arena2 Arena3 
PrFT 138.9 ± 7.0 324.9 ± 10.8 154.5 ± 7.9 
PrVT 155.1 ± 8.0 231.9 ± 10.7 152.2 ± 8.7 
PuFT 138.2 ± 6.9 337.6± 10.7 122.4 ± 6.4 
PuVT 141.3 ± 5.2 227.2 ± 9.4 134.2 ± 9.1 

W/o WA 227.4 ± 4.8 310.8 ± 8.8 197.2 ± 5.9 
 

7.2.1 Qualitative performance analysis of the worker allocation algorithms  
Before using the macroscopic model as a tool for analyzing the performance of the 

algorithms, we would like to first qualitatively explain the performance differences 
shown in Table 3. 

PrFT – Due to its a priori fixed response threshold value, the agents behave sub-
optimally in an environment different from that for which it was optimized. For instance, 
when performing the same aggregation task in a 178 x 178 cm2 arena, the average size of 
the clusters they create is smaller than the average size of those created by the team using 
the PrVT algorithm because the agents withdraw too soon. 

PrVT – The density of manipulation sites is higher in the smaller arena and the 
robots are more likely to encounter them than in the larger arena. In response to this 
difference in density of manipulation sites, variable-threshold workers autonomously set 
their response thresholds higher in Arena2. Therefore, they stay active longer in the 
larger arena than in the smaller one and this in turn allows them to continue performing 
the task, as most seeds are not gathered yet into a single cluster. However, this algorithm 
still relies exclusively on individual local estimation of environmental modifications in 
order to assess the aggregation demand, a property that makes the team reaction time to 
external, environmental perturbations quite slow (see the performance of PrVT in Arena3 
presented in Table 3). Furthermore, the absence of a continuous, adaptive mechanism that 
allows the agents to upgrade their activity thresholds when facing a sudden increase in 
the availability of work further reduces the performance of this algorithm in such 
dynamic conditions. 

PuFT – This algorithm can quickly deal with a dynamic change in the number of 
objects to manipulate by exploiting its peer-to-peer communication scheme (see results of 
PuFT in Arena3 shown in Table 3). However, because the threshold is fixed, the PuFT 
algorithm does not allow the agents to respond efficiently to all modifications of the 
arena surface (see results of PuFT in Arena2 shown in Table 3). 
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PuVT – Combining the active threshold from the calibration mechanism and the 
ability provided by the local communication scheme to the workers to quickly access the 
information about dynamical changes, this algorithm performs best in all three 
environments. 

Without Worker Allocation – This algorithm performs better than the fixed-threshold 
algorithms in Arena2. This is explained by the fact that, while the robots with the fixed-
threshold algorithms withdrew too soon and left the task unfinished, the robots without 
worker allocation continued performing the task and always created a single cluster. 
Although the average size of this cluster is decreased by the unnecessary activity of the 
robots in the second phase of the aggregation, the cost for an “abandoned task” is higher 
(due to our choice of the parameters of the cost function) than that of just not constructing 
a cluster of the largest size possible. 

7.2.2 Performance analysis using the macroscopic model 
In this subsection, we show that the model presented in Section 6 can easily capture 

the features of Arena2 and Arena3 and, in turn, help to formulate quantitative predictions 
about why one type of controller works better than another in a certain environment. A 
parametric optimization of these slightly more sophisticated worker allocation algorithms 
based on models is left for future work. 

 
Arena2 – This arena is five times as large as Arena1 and therefore, for a same cluster 

distribution, it takes, on average, more time to find a seed to manipulate than in Arena1. 
According to the proposed model, whose parameter calculation is based on geometrical 

considerations (see Subsection 3.3), this results in the probabilities (
dec
cn

p  and 
inc
cn

p ) 
with which the robots encounter a cluster of any given size n in Arena2 being one fifth of 
the probabilities with which they encounter that cluster in Arena1.  

When dec
cp  and dec

cp are small compared with unity, Equations (36) and (37) can be 
rewritten as follows 
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Hence, according to Equations (44) and (45), the values of Γf and Γl in both arenas 
(let us name them Γf1, Γl1 in Arena1 and Γf2, Γl2 in Arena2, respectively) are now linked 
by the following relationships: 
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This corresponds, in particular, to a considerable increase in the fractions of free and 
loaded robots characterized by a fixed activity threshold (i.e., with PrFT and PuFT 
algorithms) abandoning the aggregation task in Arena2 as compared with Arena1. This 
outcome is not observed with teams characterized by variable threshold (i.e., PrVT and 
PuVT) because, intuitively, we can foresee that the mean of the resulting threshold 
distribution in those teams will be higher, thus compensating the increased number of 
free and loaded robots willing to abandon the working zone in Arena2.  

 
Arena3 – Introducing 5 additional seeds at an (external) perturbation time τe = 2 

hours suddenly increases the availability of work (i.e., seeds to manipulate) at time step 
Te (the number of iterations corresponding to τe). However, the information about this 
increase is more rapidly disseminated into the network of agents using the public demand 
estimation mechanism (i.e., PuFT and PuVT) than in the networks of agents using the 
private demand estimation one (i.e., PrFT and PrVT). This can be explained by the fact 
that information dissemination is faster in the robot network with an explicit 
communication scheme than with the stigmergic, implicit communication scheme. 
Mathematically, at time step Te, the probabilities of seed manipulation are suddenly 
increased. This results in a sudden decrease of the fractions of free and loaded robots 

abandoning the aggregation task. For instance, )( e
dec
c Tkp =  in Arena3 is equal to that 

in Arena1 plus five times
dec
cp

1 , where
dec
cp

1  is the probability with which an isolated seed 
(i.e., a cluster of size 1) is found and picked up when present in the arena as previously 
defined. Equation (48) expresses that the fraction of free agents abandoning the task is 
reduced by a factor 

dec
cs pTe 15− . This effect will remain until the newly introduced seeds are 

all gathered with the original seeds into a single cluster. 
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7.3 Modeling as an optimization tool 
The modeling methodology we presented in this paper can be useful also for optimization 
purposes. First, the model presented here delivers results in time lapses that are at least 
four orders of magnitude shorter than a corresponding embodied simulation. Second, 
abstraction in general allows researchers to understand the role of key system parameters, 
to generalize, and to analyze underlying principles. In particular, we think that the 
macroscopic model may be improved further so as to predict the optimal threshold 
distribution among the teammates based solely on the experimental setup. Nevertheless, 
as shown in [30] with the steady-state analysis of the stick pulling experiment, even if 
macroscopic models can provide quantitatively correct predictions, nonlinearities and the 
complexity of these systems can prevent us from going further in analysis (and, 
indirectly, in optimization) with the mathematical tools currently available. 

Although to date we have not investigated whether or not an optimal Ts can be 
derived analytically (perhaps with the help of a simplified model as we did in [29,30] for 
the stick-pulling experiment), we used the full macroscopic model described in Section 6 
to systematically search for the optimal activity threshold. As also shown in [29], the 
advantage of using the full model is that, although the complexity of the system may 



35 

render the model analytically intractable, the optimization results obtained using the 
model are still quantitatively correct. The results are presented in Figure 13. 

Figure 13 presents the average cluster size obtained after 10 hours of aggregation for 
different values of the activity threshold Τs. This figure illustrates that for a group of 10 
robots, an activity threshold value of about 27 minutes provides the optimal cluster size at 
time kT = 10 hours. On the one hand, when the threshold value is lower than 27 minutes, 
the workers stop performing the task too early, before all the seeds have been gathered in 
a single cluster. On the other hand, when the threshold value is larger than 27 minutes, 
the robots keep working even after a single cluster has been created and, as a 
consequence, after 10 hours some seeds are still being carried around by some active 
agents, decreasing the efficiency of the team.  

Although the objects manipulated (fixed stick vs. transportable seeds), the metric 
used for assessing the swarm performance (average collaboration rate vs. average cluster 
size), and the significance of the threshold (a time-out regulating how long a robot waits 
for help vs. a time-out regulating the whole robot activity), the stick-pulling experiment 
[16,28,29,30] and the aggregation experiment with worker allocation share a few 
important similarities in their dynamics which are outlined, in particular, at the 
macroscopic model level. Some of them have been pointed out in Section 6 but we 
believe that the similarities between the profile of Figure 13 and, for instance, Figure 7, 
left in [30] are striking. Describing the two experiments at a high level, we can say that in 
both of them there is a dynamical process taking place in which a specific robot’s control 
parameter characterizing a threshold-based mechanism plays a crucial role. We can say 
that in both experiments the optimization goal is to find the right threshold (or the right 
distribution of thresholds) so that the robotic dynamics of the system can be optimally 
coupled with the dynamics of the task accomplishment, which in turn is constrained by 
the robot and environmental features. In both cases, the axis defined by all possible 

 

Figure 13: macroscopic model’s prediction of the average cluster size at time kT = 10 hours 
as a function of the activity threshold Τs. Experiments conducted in an 80 x 80 cm2 arena 
with a group of 10 robots and Ts varying from 10 to 50 minutes with a 60-second incremental 
step. 
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threshold values presents an optimum and, therefore, the model-based optimization 
procedure for both experiments is also similar. 

7.4 Calibration of models’ parameters and prediction accuracy 
 As seen in Subsection 3.3, the models’ parameters characterize the microscopic 
robot-robot and robot-environment interactions. They include probabilities of 
encountering specific objects (sometimes even considering a preferred angle of approach) 
and delays required by specific maneuvers whose details are irrelevant for the metric 
considered. This implies, for instance, an effort to mathematically describe groups of 
noisy, perhaps different and unevenly-spaced sensors as well as their relative detection 
and reactive control algorithms with an average detection area or capture an obstacle 
avoidance maneuver with a mean duration.  

In this paper, we used a method similar to that proposed by Lerman and Galstyan in 
a recent paper [23] as described in Subsection 3.3.2. With this method the rate at which a 
given object is encountered by a robot is given by the fraction of the total area swept out 
by the robots’ sensors per time step. This method contrasts with that adopted in previous 
publications [16,25,26,28,29,30], which required an explicit link between time-
partitioning and area-partitioning, based on the smallest object present on the arena. 
While all these heuristic methods are certainly good attempts in the right direction, none 
of them has, thus far, taken into account the fact that model parameters, measured with 
systematic tests at lower levels of implementation, may also be characterized by 
measurement errors and should, therefore, be introduced in the models with a more 
mathematically accurate approach. For instance, each parameter should be represented as 
a distribution with a mean and a standard deviation instead of just a single average value. 
This is an interesting hypothesis, and one we plan to investigate in the near future, 
although the complexity of the models and the propagation of errors in nonlinear, time-
delayed systems will not be trivial. 
 Further difficulties may arise because of the behavioral granularity captured in the 
model. The robot’s controller used in the aggregation case study, developed prior to the 
models presented here, can be approximated as a FSM, though certain routines (obstacle 
avoidance and interference) have been implemented with proximal controllers.  Proximal 
controllers, in our case neural network-based controllers, tightly couple actuators with 
sensors without passing through a distal representation as, for instance, is the case for 
behavior-based implementations. Parameters used to describe the states corresponding to 
such routines (in our case, the duration of obstacle avoidance and interference as well as 
the probability of detecting an obstacle and a teammate) can still be measured in 
systematic tests with one or two robots, as mentioned above, even if this implies some 
inaccuracy.  For predicting “high-level” metrics such as the average cluster size, the 
average number of clusters, or the average number of active workers in the arena, this 
approximation is quite sufficient. However, as shown in Section 4, when we attempted to 
predict the values of state variables in steady-state regime (a “low-level” metric) using 
the models, the inaccuracies became more noticeable. The description of a state as 
proposed in this paper is therefore inadequate for such controllers; temporal attractors in 
the state space rather than static state definitions may achieve better results.  
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7.5 The limitations of the modeling methodology 
The macroscopic modeling method proposed in this paper is nonspatial as it does not 

make use of the trajectories of the agents, the correlation between the positions occupied 
over consecutive time steps, or the spatial distribution of the agents resulting from their 
movement pattern and the environmental configuration. Therefore, this model cannot 
accurately describe swarm-based systems that are sensitive to the trajectories of the 
agents or their positions over time. An example of such a system is a team of rovers 
carrying out a coverage task in a planetary exploration mission. In the case of remote 
operations, the lifetime of each robot is crucial and sets a maximal boundary on the time 
within which the mission must be accomplished. In this case, the current model would 
have to be extended to take into account states defined by the position (and orientation) 
of the robot in order to be quantitatively accurate. Depending on the metric chosen, 
spatial distributions rather than detailed trajectory information may suffice to achieve this 
goal.  

The current calculation of the model’s encounter rates and probabilities is based on 
geometrical considerations and relies on the assumption that there are no overlapping 
detection areas between the objects (e.g., walls, seeds, and robots). A soon as this 
assumption no longer holds, such as in an overcrowded scenario, the current modeling 
method reaches its limitations and the predictions are no longer quantitatively correct (see 
also [28,30].  

The proposed model is based on a PFSM description of the system, thus, it assumes 
that the system is Markovian. While this approach works very well when describing a 
system using a behavior-based controller, it can hardly be used to represent less “state-
based” controllers such as proximal controllers, as mentioned in the previous subsection, 
or (continuously) adaptive controllers. By analogy, the states of a PFSM description can 
be thought of as variables that take discrete values over a given interval whereas the 
states in the proximal systems can be thought of as variables that take real, continuous 
values over the same interval. 

Finally, in the mathematical description of systems consisting of discrete numbers of 
agents, numerical effects can emerge on the predictions. For instance, in the calculation 
of the size and the number of clusters, using real numbers can result in obtaining cluster 
sizes or numbers of clusters smaller than unity but still greater than zero. Similar 
problems emerge in population dynamics, for instance, when using mathematical models 
to describe propagation of an infectious disease in animal populations (see [40]): the 
number of agents in a given state often falls below unity without being explicitly zero. 
These numerical effects may reduce the meaningfulness of the model’s predictions, in 
particular with small swarm sizes. 

8 Conclusion and Outlook 
In this paper, we have presented a series of macroscopic models incrementally 

implemented to study aggregation experiments using embodied agents in groups of fixed 
or variable sizes. A heuristic but precise calibration procedure based on systematic 
experiments with one or two embodied agents has helped us avoid the use of free 
parameters in the models. We have defined a clear mapping between the parameters of 
the model and the geometrical characteristics of the environment. We have validated the 
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predictions of the macroscopic model with a realistic, sensor-based, embodied simulator. 
Results show that the proposed approach delivers quantitatively accurate predictions, in 
particular for nonspatial metrics related to the aggregation process, and constitutes a 
computationally efficient tool. 

Moreover, we have extended the model to capture aggregation experiments 
performed with robotic teams of time-varying sizes. To this purpose, we used a scalable, 
distributed, threshold-based worker allocation algorithm that allows a team of 
autonomous robots to dynamically allocate an appropriate number of workers to a given 
task based solely on their individual estimations of the progress in the execution of the 
task. We have shown that teams of workers dynamically controlled by the allocation 
algorithm achieve similar or better performance in aggregation than those characterized 
by a constant team size, while using on average, a considerably reduced number of agents 
over the whole aggregation process. The macroscopic model has also helped us shed light 
on performance differences observed when using a suite of threshold-based algorithms in 
different scenarios.  

The simplicity of the modeling methodology suggests that it is easily applicable to 
other aggregation/segregation or sorting experiments characterized by different agent 
capabilities and individual control algorithms.  

Future work will involve an effort to investigate different calibration procedures, the 
propagation of parametric errors in the models, and the extension of the methodology to 
more complex controllers endowed with learning and/or more sophisticated navigation 
and communication capabilities. Models could also be of a great help in devising more 
powerful worker and task allocation algorithms, either threshold-based, as proposed in 
this paper and by other authors [10,21,33], or market-based [12]. 
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