
An overview of Rapid System Prototyping today

F. Kordon‡ & J. Henkel§

1. The role of Rapid System Prototyping

The International Technology Roadmap for Semiconductors [3] predicts chip
complexities by the end of this decade silicon of around 1 billion transistors
integrated on a single piece of silicon. It will open new frontiers in terms
of applications in areas/devices ranging from security systems (e.g. video
surveillance), control systems (e.g. automotive control), individual health sys-
tems (e.g. hearing aids) to main stream consumer products insuch areas as
personal communication (e.g. cell phones), personal computing (e.g. PDA),
entertainment (e.g. MP3 players), video/photo (e.g. digital still/video cam-
eras) and many more.

It can be observed that especially the latter group of main stream consumer
products is subject to severe competition between major manufacturers and
thus leading to two effects from a consumer’s point of view:

1. The life cycles of embedded products become increasinglysmaller: cell
phones represent one of many examples for this trend since they experi-
ence the emergence of an average of two new major product lines every
year compared to only one years ago.

2. The functionality of these products and hence the complexity of the un-
derlying embedded systems is rapidly increasing: staying with cell phones
as an example, the observation is that they feature far more functionality
beyond their core functionality of providing a wireless voice channel
and thus establishing a phone connection. In fact, common functions
of cell phones include web browsing capabilities, SMS (Short Message
Service), PDA functionalities and even gaming etc. Almost on a monthly
basis there are new features manufacturers of cell phones and service
providers announce and eventually integrate into new generations.

Similar scenarios could be discussed in conjunction with other consumer,
control etc. devices as well. The observation would often bean increasing
portfolio of functionality combined with decreasing product life cycles.

‡ LIP6-SRC, Université P. & M. Curie, 4 place Jussieu, 75252 Paris cedex 05, France,
Fabrice.Kordon@lip6.fr

§ NEC Laboratories America, Princeton, NJ, USA, henkel@nec-labs.com

c© 2003Kluwer Academic Publishers. Printed in the Netherlands.

DAfES-introduction.tex; 12/11/2003; 23:14; p.1



2

The consumer’s demand for increasing functionality translates directly
into increased complexity of embedded systems on a chip. Indeed, this de-
mand matches well with predictions from the International Technology Roadmap
for Semiconductors as pointed out above.

However, already today it can be observed that the maximum possible
amount of transistors (silicon-technology-wise) per chipis hardly exploited.
This fact is even more obvious when the number of transistorsper SOCwith-
out excluding the embedded memory (ie. easy to design regular structures) is
not counted.

As a conclusion, real-world SOCs’ complexities currently lag behind the
capabilities of current silicon technologies even though there is certainly a
demand for higher complexities (i.e. increased functionality) from an appli-
cation point of view as discussed before.

G. Smith [12] gives a possible answer: the reason is the so-called ”gap
of complexity”. It is measured as the number of available gates per chip
for a given silicon technology for SOCs on the one side and thenumber of
actually used gates per chip of a given silicon technology onthe other side.
The gap is predicted for the case that there will beno ESL (Electronic System
Level Design) methodologies deployed for designing futurecomplex SOCs.
In other words: the gap might be avoided if more ESL methodologies would
be deployed in all areas of system level design like specification/modeling,
synthesis, simulation/verification and estimation, etc.

We believe that Rapid System prototyping can play a key role in alle-
viating these problems as it represents a means to rapidly explore design
alternatives and to unveil design errors as early as possible what is critical in
designing high quality products within short time-to-market windows. Rapid
system prototyping becomes critical when new areas in software or hardware
development are explored because of new technological issues. It should
also be mentioned that on-chip systems cannot be designed assynchronous
anymore because the involved high frequencies (up to 10GHz by the end
of the decade) make signal propagation from one point to another virtually
impossible because of the clock skew problem.

Similar observations are made for 100% software systems [5], especially
in new areas such as distributed or embedded systems where new standards or
products arise frequently: the community is facing new problems and issues
that remain difficult to handle, especially for system or mission critical ap-
plications [1]. It is therefore mandatory to rapidly explore design alternatives
at various levels of abstraction. Methodologies and architectures proposed
in the Rapid System Prototyping community will be a significant source of
intellectual property to help solving these upcoming challemges.

DAfES-introduction.tex; 12/11/2003; 23:14; p.2



3

2. Diversity of Prototypes

A prototype is any form of specification or implementation ofhardware or
software (or both) that is built/designed for evaluation purposes. When build-
ing a prototype, a designer has typically in mind to design multiple copies
once the design is sufficiently evaluated. All prototypes have in common that
they areexecutable. Prototypes are also useful for formulating and validat-
ing requirements, resolving technical design issues, and supporting computer
aided design of both software and hardware components of future designs.

Rapid prototyping refers to the capability to implement a prototype with
significantly less effort than it takes to produce an implementation for opera-
tional use. It is a way to: collect data and feedback for changing requirements,
unveil deviations from users’ constraints early, trace theevolution of the
requirements, improve the communication and integration of the users and
the development personnel, provide early feedback of mismatches between
proposed software architectures and the conceptual structure of requirements
etc.

Prototypes can either be developed as temporarily designs that are not
being used after some evaluations have provided the designer with valuable
insights, or they can directly evolve into a product versionof the respective
design. Each of these approaches has its advantages and disadvantages. It
will depend on the designer’s constraints which type is the best for a certain
project.

THROW-AWAY PROTOTYPES

A throw-away prototype is discarded when sufficient information has been
obtained during the operational phase of the prototyping phase. Throw-away
prototypes are mainly used during the requirement phase (toagree on what
have to be implemented). It is quite rarely used, though, during the imple-
mentation phase as a way to explore capabilities of a candidate technology
before using it on a real scale.

The main advantage is to enable the use of special-purpose languages and
tools even if they introduce limitations that would not be acceptable in an
operational environment or even if they are not capable of addressing the
entire problem. The throw-away approach is most appropriate in the project
acquisition phase where the prototype is used to demonstrate the feasibility
of a new concept, and to convince a potential sponsor to fund aproposed
development project. In such a context, available resources are limited and
the ability to communicate the advantages of a new approach via a very low
cost demonstration can be critical for establishing a new project.

However, the implementation effort does not contribute directly to the
final product. There is also the temptation to skip or abbreviate documen-

DAfES-introduction.tex; 12/11/2003; 23:14; p.3



4

tation for throw-away code, which is harmful since lessons learned from the
prototyping effort may be lost if not recorded. It also lets unsolved the gap
between specification (built using lessons learned from theprototype) and
implementation that brings misunderstanding, intrusion of implementation
choices, etc.

INCREMENTAL PROTOTYPES

Incremental prototypes can be seen as a ”clever developmentapproach”. The
prototype tends to be closer and closer to the final product when development
progresses.

prototype architecture

implemented 
components

simulated 
components

Figure 1. Structure of an incremental prototype.

Figure 1 shows the structure of such a prototype. It is usually based on a
”prototype architecture” that is defined as soon as possiblein the development
process (usually before 20% of the total estimated effort isspent). This proto-
type architecture can be seen as an integration to host successive components
to be implemented. At a time, there are implemented components and simu-
lated components. When no simulated component remains, theprototype is
the first version of a new product.

The main advantage of incremental prototyping is that it does not require
more than methodological rules to be operated. Its main drawback is that it
entirely relies on the robustness of the prototype architecture.

EVOLUTIONARY PROTOTYPES

When in Incremental prototypes, the model is also the system, evolutionary
prototypes do make a difference between model and system (Figure 2).

m1 m2 m3 m4 m5

c1 c2 c3 c4 c5
prototype runtime

model level

prototype level

pogram 
generation

tuning

validation or 
verification

Figure 2. Structure of an evolutionary prototype.

The model is a detailed (executable or formal) specificationon which
validation (by simulation for example) or verification (using formal tech-

DAfES-introduction.tex; 12/11/2003; 23:14; p.4



5

niques) can be applied. Then components are derived from specification mod-
ules and linked together using a ”prototype runtime” that acts as glue code.
This approach is of interest when many loops between the model and its
implementation can be performed and thus, automatic code generation is
required.

The main advantage of this approach is to fill the gap between detailed
specification and the implemented system. It is also more flexible since the
prototype’s architecture may change radically from one version to the next
one (code is automatically generated). However, evolutionary prototyping
heavily depends on sophisticated tools and techniques. Thetechnology needed
to support evolutionary prototyping is beginning to emerge.

TOWARDS BODEL-BASED DEVELOPMENT

As previous sections show, the prototyping techniques become more and
more complex and must be supported by methodologies to provide superior
results. At this stage, prototyping is much more than simplya way to develop
a new system. In fact, it becomes a methodological approach for system de-
velopment [4]. Rapid System Prototyping should not be confused with RAD
(Rapid Application Development) or ”Extreme Programming”. Prototyping
has nothing to do with these techniques that mainly focus on short-term is-
sues: the obtained code is rarely maintainable. Evolutionary prototyping does
exist in hardware, software and mixed hardware/software systems.

It appeared first in the context of hardware systems since thetime-to-
market pressure does not support ”maintenance” the way software systems
do: a flawed chip is never sold and the initial cost of developing the mask
is lost. CAD tools do support models (based on the VHDL language for
example) and code generation. Since software simulation istoo slow, ”soft-
hardware techniques” such as FPGA allow the quick elaboration of a pro-
totype that can be used for a higher performance evaluation of the system.
This is typically an evolutionary approach that eventuallyleads to the final
implementation.

Software systems suffer from the ”maintenance” market and prototyping
techniques so far are mainly in niche markets, where safety is a key issue
(e.g. life or mission critical systems) or when maintenanceis very difficult
(e.g. satellite systems). In those areas, it is of interest to look at the new
MDA (Model Driven Approach) proposed by OMG [9]. MDA states that PIM
(Platform Independant Model) has to be elaborated first in order to establish
the functional view on the system. Then, PSM (Platform Specific Model) is
derived. Code generation is derived from the last one. Once again, this is
evolutionary prototyping. UML [10], the current standard,is too comprehen-
sive (on the contrary, VHDL is domain-centered). If resultsare impressive
for information systems, more work and experience is necessary to use it in

DAfES-introduction.tex; 12/11/2003; 23:14; p.5



6

other areas such as distributed systems [7]. This is also true for real-time
or embedded applications. For these types of applications,UML remains a
(good) modeling language dedicated to early design only, even if the last
UML release [8] brings new interesting features (but does not yet address
behavioral aspects).

The lesson we can extract from this evolution is that, sooneror later, ”tra-
ditional” programming languages will not be used anymore. This is already
the case in hardware (the gate level is not directly handled anymore). Since
the objective is to fit the gap between specification and implementation, the
next generation of languages will be at model-level, and development will be
model-based [11].

These new notations will most probably integrate ”implementation direc-
tives” (such as the ones found in Architecture Definition Languages). Speci-
fication will then become ”modeling”: an operation where allaspects (static
and behavioral) of a system are considered and code will be automatically
generated automatically. As for years, the semantic level of programming
languages will grow.

3. The demand for Rapid System Prototyping

Some large companies have already adopted prototyping as a way to solve
these problems. In some areas such as avionics, there is a long experience in
prototyping-based development techniques using very elaborated tools and
notations. So far, the motivation of industry in these new techniques can be
separated in types of interest:

− level 1: prototyping reduces cost and time-to-market of a system.

For companies producing complex systems (such as embedded,distributed,
real-time, etc.), there is an additional reason: the cost ofhighly skilled
engineers increases rapidly since there is more demand thanpeople to
fill positions. Automated development approaches could reduce the need
for highly skilled engineers since one of them could manage several
”standard” engineers to operate prototyping tools.

− level 2: prototyping increases security and reliability of a system.

For companies building safety critical systems, a prototype-based ap-
proach is even more interesting since it is more likely able to operate
formal verification techniques when required. It is now clear that such
methods are the only way to provide extremely high levels of reliability
in system design and implementation. This is why it is recommended by
various certification standards such as DO-178B (for avionic systems).

DAfES-introduction.tex; 12/11/2003; 23:14; p.6



7

So far, advanced prototyping is used by industries considering the level 2
(in both hardware and software, even if formal techniques are not yet ready
for a wide use [6]). The main reason is that high investments have to be done
before these techniques are usable at low costs. As an example, the cost of
the so expensive code generator certification (DO-178B) in the SCADE tool
is leading to discussions on how certification could evolve to consider the use
of these new techniques at a lower cost (and similar reliability) [2].

However, as soon as these techniques will be operational, candidates con-
sidering the level 1 will considerably increase the market for prototyping
methods and tools. The fact that industrial consortiums andorganisations are
already looking at these technologies is a sign that many changes will occur
in that area.

4. About the Special Issue

The thirteenth IEEE International Workshop on Rapid SystemPrototyping
(RSP) presented and explored recent trends in rapid prototyping of Computer
Based Systems. It was hosted by the Technical University of Darmstadt, in
Darmstadt, on July 1-3, 2002.

A major intend of the RSP workshop series is to bring togetherresearchers
from both hardware and software communities to share their experience with
rapid prototyping and related areas. It is of particular interest to see that,
despite very different techniques and constraints, how close objectives and
methodologies can be.

For RSP’2002, 22 contributions were accepted out of 47 submitted papers.
The top twelve were nominated by the program committee as representing es-
pecially innovative contributions and the authors were invited to extend them
for publication in Kluwer’s Design and Automation for Embedded Systems
Journal. We received eventually nine papers that represented significantly
enhanced versions of the initially published work at RSP 2002. Through an
extensive review process we selected finally four papers forthis special issue.

We would like to take this opportunity to thank all reviewersfor their
thoughtful reviews that helped us to make this special issuepossible. Our
thanks also go to the staff at Kluwer Academic Publishers whowere very
helpful in both organizational and editorial aspects of this issue.

4.1. CONTENT OF THISSPECIAL ISSUE

The papers in this special issue have been selected to showcase the wide va-
riety of rapid prototyping architectures/methodologies in both, the hardware
and software domain.

DAfES-introduction.tex; 12/11/2003; 23:14; p.7



8

Starting with the software domain, Chachkov et al. introduce their ap-
proach to modeling a software system by using a formal specification lan-
guage. The authors use a library-based approach as it reflects the way soft-
ware systems are typically designed — by extensively re-using software com-
ponents from a software library. Their specification language CO-OPN is
initially used for specification and then a prototype code isautomatically
generated from that. The specific emphasis of their paper is on interfacing
between non-deterministic synchronous prototypes and deterministic asyn-
chronous libraries.

A hardware-architectural approach is proposed by Jain et al. whose archi-
tecture is based on a multi-FPGA board. Multi-FPGA boards are necessary
to enable the prototyping of complex systems that could not be prototyped
on a single FPGA. Interconnect typically represents the major problem of
multi-FPGA boards: an interconnect can be programmable or fixed with pro-
grammable ones offering a high flexibility at the cost of delay. The authors
present a solution to minimize programmable interconnectsby multi-hop
routing (through the FPGAs). They present an optimal and heuristic solution
to the problem.

An application for rapid system prototyping is presented byPiontek et
al. by means of an equalizer for orthogonal frequency division multiplexing
(OFMD). The authors use the FPGA prototype to conduct a trade-off anal-
ysis between complexity on the one side and performance of the other side
and thereby simulating various compensation methods for channel distortion.
Their hardware simulations have been conducted according to the wireless
high-speed LAN standard HipeLAN/2.

In an approach based on the OFDM prototype from above, Ludewig et
al. propose a technique to gather signal activity for power-conscious system
using a hardware-assisted approach. The basic idea is to usethe hardware
prototype to observe the signal characteristics on a running system over a
long period of time. The observed activity is then used to estimate the power
consumption stemming from the interconnect and to refine theinterconnect
if necessary. Thereby, the authors take into also into consideration the signal
activities due to interwire effects.

We hope you enjoy this special issue.

References

1. T. Budden. Decision Point: Using a COTS component help or Hinder Your DO178-B
certification Effort?CrossTalk, pages 18–21, November 2003.

2. J. Engblom. ARTIST International Collaboration Day on Embedded Software and
Systems. Technical report, ARTIST, october 2002.

3. ITRS.International Technology Roadmap for Semiconductors. Semiconductor Industry
Association, 2002.

DAfES-introduction.tex; 12/11/2003; 23:14; p.8



9

4. F. Kordon and Luqi. An introduction to Rapid System Prototyping. IEEE Transaction
on Software Engineering, 28(9):817–821, September 2002.

5. N. Leveson. Software engineering: Stretching the limitsof complexity.Communications
of the ACM, 40(2):129–131, 1997.

6. Luqi and J. Goguen. Formal methods: Promises and problems. IEEE Software, 14(1):73–
85, January / February 1997.

7. N. Medvidovic and R. Taylor. A classification and comparison framework for software
architecture description languages.Software Engineering, 26(1):70–93, 2000.

8. OMG. Initial Submission to OMG RFP’s: ad/00-09-01 (UML 2.0 Infrastructure) ad/00-
09-03 (UML 2.0 OCL). Technical report, OMG, 2001.

9. OMG. Model Driven Architecture (MDA), Document number ormsc/2001-07-01.
Technical report, OMG, 2001.

10. OMG. OMG Unified Modeling Language Specification, version 1.5. Technical report,
OMG, 2001.

11. D Quartel, M van Sinderen, and L. Ferreira Pires. A model-based approach to service
creation. InSeventh Workshop on Future Trends of Distributed Computing Systems.
IEEE, 1999.

12. G. Smith. DAC Panel Presentation. In40th. Design Automation Conference (DAC).
IEEE, 2003.

DAfES-introduction.tex; 12/11/2003; 23:14; p.9


