An overview of Rapid System Prototyping today

F. Kordor¥ & J. Henkef

1. Therole of Rapid System Prototyping

The International Technology Roadmap for Semiconduc®jrpriedicts chip
complexities by the end of this decade silicon of around liobiltransistors
integrated on a single piece of silicon. It will open new fiers in terms
of applications in areas/devices ranging from securitytesyis (e.g. video
surveillance), control systems (e.g. automotive contiofjividual health sys-
tems (e.g. hearing aids) to main stream consumer produstscim areas as
personal communication (e.g. cell phones), personal ctingp(e.g. PDA),
entertainment (e.g. MP3 players), video/photo (e.g. digitill/video cam-
eras) and many more.

It can be observed that especially the latter group of maéast consumer
products is subject to severe competition between majoufaaturers and
thus leading to two effects from a consumer’s point of view:

1. The life cycles of embedded products become increassmiler: cell
phones represent one of many examples for this trend siegesttperi-
ence the emergence of an average of two new major produst divery
year compared to only one years ago.

2. The functionality of these products and hence the contglex the un-
derlying embedded systems is rapidly increasing: stayitlyeell phones
as an example, the observation is that they feature far nioibnality
beyond their core functionality of providing a wireless a®ichannel
and thus establishing a phone connection. In fact, commaaotifins
of cell phones include web browsing capabilities, SMS (EMessage
Service), PDA functionalities and even gaming etc. Alimasaanonthly
basis there are new features manufacturers of cell phoresemice
providers announce and eventually integrate into new géines.

Similar scenarios could be discussed in conjunction witlelotonsumer,
control etc. devices as well. The observation would ofterabéncreasing
portfolio of functionality combined with decreasing pradlife cycles.

* LIP6-SRC, Universite P. & M. Curie, 4 place Jussieu, 752%82iPcedex 05, France,
Fabrice.Kordon@lip6.fr
8 NEC Laboratories America, Princeton, NJ, USA, henkel @abs-com

p;‘w (© 2003Kluwer Academic Publishers. Printed in the Netherlands.

DAf ES-introduction.tex; 12/11/2003; 23:14; p.1

The consumer’s demand for increasing functionality trates directly
into increased complexity of embedded systems on a chigelhdthis de-
mand matches well with predictions from the Internatioretfinology Roadmap
for Semiconductors as pointed out above.

However, already today it can be observed that the maximussilple
amount of transistors (silicon-technology-wise) per dkipardly exploited.
This fact is even more obvious when the number of transigterssOCwith-
out excluding the embedded memory (ie. easy to design regulaitstes) is
not counted.

As a conclusion, real-world SOCs’ complexities currendly behind the
capabilities of current silicon technologies even thouggré is certainly a
demand for higher complexities (i.e. increased functiby)afrom an appli-
cation point of view as discussed before.

G. Smith [12] gives a possible answer: the reason is the kedc&gap
of complexity”. It is measured as the number of availableeggter chip
for a given silicon technology for SOCs on the one side anchtimaber of
actually used gates per chip of a given silicon technologyhenother side.
The gap is predicted for the case that there wilhb&SL (Electronic System
Level Design) methodologies deployed for designing futtomplex SOCs.
In other words: the gap might be avoided if more ESL methaglewould
be deployed in all areas of system level design like spetifitemodeling,
synthesis, simulation/verification and estimation, etc.

We believe that Rapid System prototyping can play a key nolalie-
viating these problems as it represents a means to rapigiprexdesign
alternatives and to unveil design errors as early as pesaibt is critical in
designing high quality products within short time-to-metrkwindows. Rapid
system prototyping becomes critical when new areas in soéwr hardware
development are explored because of new technologicakdsdt should
also be mentioned that on-chip systems cannot be designgghelsronous
anymore because the involved high frequencies (up to 10GHthé end
of the decade) make signal propagation from one point tohanaotirtually
impossible because of the clock skew problem.

Similar observations are made for 100% software systeme§plecially
in new areas such as distributed or embedded systems wivestarelards or
products arise frequently: the community is facing new faois and issues
that remain difficult to handle, especially for system orsita critical ap-
plications [1]. It is therefore mandatory to rapidly ex@atesign alternatives
at various levels of abstraction. Methodologies and aschitres proposed
in the Rapid System Prototyping community will be a significaource of
intellectual property to help solving these upcoming @rathes.

DAf ES-introduction.tex; 12/11/2003; 23:14; p.2

2. Diversity of Prototypes

A prototype is any form of specification or implementationhairdware or
software (or both) that is built/designed for evaluatiomgmses. When build-
ing a prototype, a designer has typically in mind to designtipla copies
once the design is sufficiently evaluated. All prototypegeha common that
they areexecutable. Prototypes are also useful for formulating and validat-
ing requirements, resolving technical design issues, apdating computer
aided design of both software and hardware componentswkfaiesigns.

Rapid prototyping refers to the capability to implement atptype with
significantly less effort than it takes to produce an impletaton for opera-
tional use. Itis a way to: collect data and feedback for chrpgequirements,
unveil deviations from users’ constraints early, trace ¢helution of the
requirements, improve the communication and integratibth® users and
the development personnel, provide early feedback of niidma between
proposed software architectures and the conceptual steuof requirements
etc.

Prototypes can either be developed as temporarily deshgtsate not
being used after some evaluations have provided the desigtievaluable
insights, or they can directly evolve into a product versidrihe respective
design. Each of these approaches has its advantages addaditzaes. It
will depend on the designer’s constraints which type is thst for a certain
project.

THROW-AWAY PROTOTYPES

A throw-away prototype is discarded when sufficient information has been
obtained during the operational phase of the prototypiregsphThrow-away
prototypes are mainly used during the requirement phasegfie on what
have to be implemented). It is quite rarely used, thoughinduthe imple-
mentation phase as a way to explore capabilities of a caredtdahnology
before using it on a real scale.

The main advantage is to enable the use of special-purpogadges and
tools even if they introduce limitations that would not beegatable in an
operational environment or even if they are not capable dfessing the
entire problem. The throw-away approach is most apprapiiathe project
acquisition phase where the prototype is used to demoadtratfeasibility
of a new concept, and to convince a potential sponsor to fuptbposed
development project. In such a context, available resguace limited and
the ability to communicate the advantages of a new approgch very low
cost demonstration can be critical for establishing a nesjept.

However, the implementation effort does not contributeedtly to the
final product. There is also the temptation to skip or ablatevidocumen-

DAf ES-introduction.tex; 12/11/2003; 23:14; p.3

4

tation for throw-away code, which is harmful since lessa@ed from the
prototyping effort may be lost if not recorded. It also letsalved the gap
between specification (built using lessons learned fromptia¢otype) and
implementation that brings misunderstanding, intrusiéringplementation
choices, etc.

INCREMENTAL PROTOTYPES

Incremental prototypes can be seen as a "clever developapenbach”. The
prototype tends to be closer and closer to the final produetvdevelopment
progresses.

implemented simulated
components components

prototype architecture

Figure 1. Structure of an incremental prototype.

Figure 1 shows the structure of such a prototype. It is uglbed on a
"prototype architecture” that is defined as soon as poshititee development
process (usually before 20% of the total estimated eff@pént). This proto-
type architecture can be seen as an integration to hostssivee&omponents
to be implemented. At a time, there are implemented comperard simu-
lated components. When no simulated component remaingrttetype is
the first version of a new product.

The main advantage of incremental prototyping is that itsduat require
more than methodological rules to be operated. Its main lolakvis that it
entirely relies on the robustness of the prototype architec

EVOLUTIONARY PROTOTYPES

When in Incremental prototypes, the model is also the systewiutionary
prototypes do make a difference between model and systeyuré-2).

validation or

modellevel‘ m1 H m2 H m3 H m4 H m5 .
verification
pogram
generation
Lo [2 | a3 || & || & |

prototype level ‘ ‘ tuning

prototype runtime

Figure 2. Structure of an evolutionary prototype.

The model is a detailed (executable or formal) specificatianwhich
validation (by simulation for example) or verification (ogi formal tech-

DAf ES-introduction.tex; 12/11/2003; 23:14; p.4

5

niques) can be applied. Then components are derived froaifispdon mod-

ules and linked together using a "prototype runtime” thas @&s glue code.
This approach is of interest when many loops between the ek its

implementation can be performed and thus, automatic codergton is
required.

The main advantage of this approach is to fill the gap betwetaildd
specification and the implemented system. It is also morébfesince the
prototype’s architecture may change radically from onesieer to the next
one (code is automatically generated). However, evolatprprototyping
heavily depends on sophisticated tools and techniquegethaology needed
to support evolutionary prototyping is beginning to emerge

TOWARDS BODEL-BASED DEVELOPMENT

As previous sections show, the prototyping technigues rhecmore and
more complex and must be supported by methodologies toqemtperior
results. At this stage, prototyping is much more than sinaplay to develop
a new system. In fact, it becomes a methodological appraarctybtem de-
velopment [4]. Rapid System Prototyping should not be cesduwith RAD
(Rapid Application Development) or "Extreme ProgramminBtototyping
has nothing to do with these techniques that mainly focushomnt¢erm is-
sues: the obtained code is rarely maintainable. Evolutjoptotyping does
exist in hardware, software and mixed hardware/softwaséesys.

It appeared first in the context of hardware systems sincdirme-to-
market pressure does not support "maintenance” the wawaadtsystems
do: a flawed chip is never sold and the initial cost of develgpghe mask
is lost. CAD tools do support models (based on the VHDL laggutor
example) and code generation. Since software simulatiéwoislow, "soft-
hardware techniques” such as FPGA allow the quick elalmradf a pro-
totype that can be used for a higher performance evaluafidhneosystem.
This is typically an evolutionary approach that eventusdigds to the final
implementation.

Software systems suffer from the "maintenance” market aotbtyping
techniques so far are mainly in niche markets, where safety key issue
(e.g. life or mission critical systems) or when maintenaisceery difficult
(e.g. satellite systems). In those areas, it is of interedbdk at the new
MDA (Model Driven Approach) proposed by OMG [9]. MDA statdmat PIM
(Platform Independant Model) has to be elaborated firstdeioto establish
the functional view on the system. Then, PSM (Platform SpebModel) is
derived. Code generation is derived from the last one. Ogednathis is
evolutionary prototyping. UML [10], the current standaigi{oo comprehen-
sive (on the contrary, VHDL is domain-centered). If resats impressive
for information systems, more work and experience is hergds use it in

DAf ES-introduction.tex; 12/11/2003; 23:14; p.5

6

other areas such as distributed systems [7]. This is alsoftureal-time
or embedded applications. For these types of applicatidMi, remains a
(good) modeling language dedicated to early design onlegn éf/the last
UML release [8] brings new interesting features (but doesyed address
behavioral aspects).

The lesson we can extract from this evolution is that, soondater, "tra-
ditional” programming languages will not be used anymotsTs already
the case in hardware (the gate level is not directly handtganhare). Since
the objective is to fit the gap between specification and implatation, the
next generation of languages will be at model-level, ancégment will be
model-based [11].

These new notations will most probably integrate "impletagan direc-
tives” (such as the ones found in Architecture Definition duaages). Speci-
fication will then become "modeling”: an operation whereaspects (static
and behavioral) of a system are considered and code will tmretically
generated automatically. As for years, the semantic lef/girogramming
languages will grow.

3. Thedemand for Rapid System Prototyping

Some large companies have already adopted prototyping as/ donwsolve
these problems. In some areas such as avionics, there ig axperience in
prototyping-based development techniques using veryoedddd tools and
notations. So far, the motivation of industry in these neghtéques can be
separated in types of interest:

— level 1: prototyping reduces cost and time-to-market of a system.

For companies producing complex systems (such as embeatideihuted,
real-time, etc.), there is an additional reason: the cosiigiily skilled
engineers increases rapidly since there is more demandotapie to
fill positions. Automated development approaches couldaedhe need
for highly skilled engineers since one of them could manage sl
"standard” engineers to operate prototyping tools.

— level 2: prototyping increases security and reliability of a syste

For companies building safety critical systems, a protetgpsed ap-
proach is even more interesting since it is more likely ableperate
formal verification techniques when required. It is now cléeat such
methods are the only way to provide extremely high levelsbébility
in system design and implementation. This is why it is recemded by
various certification standards such as DO-178B (for azisgstems).

DAf ES-introduction.tex; 12/11/2003; 23:14; p.6

7

So far, advanced prototyping is used by industries corisiglehe level 2
(in both hardware and software, even if formal techniquesnat yet ready
for a wide use [6]). The main reason is that high investmeat® o be done
before these techniques are usable at low costs. As an exathelcost of
the so expensive code generator certification (DO-178B)enSCADE tool
is leading to discussions on how certification could evobvednsider the use
of these new techniques at a lower cost (and similar religp[P].

However, as soon as these techniques will be operationadjdates con-
sidering the level 1 will considerably increase the market grototyping
methods and tools. The fact that industrial consortiumsagdnisations are
already looking at these technologies is a sign that manggegsawill occur
in that area.

4. About the Special Issue

The thirteenth IEEE International Workshop on Rapid Sysknwmtotyping
(RSP) presented and explored recent trends in rapid ppotgfyf Computer
Based Systems. It was hosted by the Technical Universityasfri3tadt, in
Darmstadt, on July 1-3, 2002.

A major intend of the RSP workshop series is to bring togathssarchers
from both hardware and software communities to share tlpirgence with
rapid prototyping and related areas. It is of particulaeiest to see that,
despite very different techniques and constraints, howeclibjectives and
methodologies can be.

For RSP’2002, 22 contributions were accepted out of 47 sitibdpapers.
The top twelve were nominated by the program committee assepting es-
pecially innovative contributions and the authors werd@@ua/to extend them
for publication in Kluwer’s Design and Automation for Emloledi Systems
Journal. We received eventually nine papers that repredesignificantly
enhanced versions of the initially published work at RSP20Mhrough an
extensive review process we selected finally four paperhi®special issue.

We would like to take this opportunity to thank all reviewdos their
thoughtful reviews that helped us to make this special igsasible. Our
thanks also go to the staff at Kluwer Academic Publishers wiee very
helpful in both organizational and editorial aspects of tksue.

4.1. CONTENT OF THISSPECIAL ISSUE

The papers in this special issue have been selected to skewmwide va-
riety of rapid prototyping architectures/methodologie$oth, the hardware
and software domain.

DAf ES-introduction.tex; 12/11/2003; 23:14; p.7

Starting with the software domain, Chachkov et al. intradtioeir ap-
proach to modeling a software system by using a formal spatifin lan-
guage. The authors use a library-based approach as it seftectvay soft-
ware systems are typically designed — by extensively regusbftware com-
ponents from a software library. Their specification larggi&O-OPN is
initially used for specification and then a prototype codewsomatically
generated from that. The specific emphasis of their papen isterfacing
between non-deterministic synchronous prototypes anermatistic asyn-
chronous libraries.

A hardware-architectural approach is proposed by Jain etredse archi-
tecture is based on a multi-FPGA board. Multi-FPGA boardsreecessary
to enable the prototyping of complex systems that could eoprototyped
on a single FPGA. Interconnect typically represents theompajoblem of
multi-FPGA boards: an interconnect can be programmableed fivith pro-
grammable ones offering a high flexibility at the cost of gelBhe authors
present a solution to minimize programmable interconnegtsnulti-hop
routing (through the FPGAS). They present an optimal andistisolution
to the problem.

An application for rapid system prototyping is presentedPigntek et
al. by means of an equalizer for orthogonal frequency divishultiplexing
(OFMD). The authors use the FPGA prototype to conduct a todidanal-
ysis between complexity on the one side and performanceeobtiier side
and thereby simulating various compensation methods famrell distortion.
Their hardware simulations have been conducted accordiniget wireless
high-speed LAN standard HipeLAN/2.

In an approach based on the OFDM prototype from above, Lugletvi
al. propose a technique to gather signal activity for poemrscious system
using a hardware-assisted approach. The basic idea is ttheiderdware
prototype to observe the signal characteristics on a rgnsystem over a
long period of time. The observed activity is then used tovede the power
consumption stemming from the interconnect and to refineriteeconnect
if necessary. Thereby, the authors take into also into denaiion the signal
activities due to interwire effects.

We hope you enjoy this special issue.

References

1. T. Budden. Decision Point: Using a COTS component helpindét Your DO178-B
certification Effort?CrossTalk, pages 18—-21, November 2003.

2. J. Engblom. ARTIST International Collaboration Day on ligdded Software and
Systems. Technical report, ARTIST, october 2002.

3. ITRS.International Technology Roadmap for Semiconductors. Semiconductor Industry
Association, 2002.

DAf ES-introduction.tex; 12/11/2003; 23:14; p.8

10.

11.

12.

9

F. Kordon and Lugi. An introduction to Rapid System Prgpitg. |EEE Transaction
on Software Engineering, 28(9):817-821, September 2002.

N. Leveson. Software engineering: Stretching the ligfitsomplexity. Communications
of the ACM, 40(2):129-131, 1997.

Lugiand J. Goguen. Formal methods: Promises and probl&fE Software, 14(1):73—
85, January / February 1997.

N. Medvidovic and R. Taylor. A classification and compamnisramework for software
architecture description languagé&®ftware Engineering, 26(1):70-93, 2000.

OMBG. Initial Submission to OMG RFP’s: ad/00-09-01 (UMIO2nfrastructure) ad/00-
09-03 (UML 2.0 OCL). Technical report, OMG, 2001.

OMG. Model Driven Architecture (MDA), Document numbernmsc/2001-07-01.
Technical report, OMG, 2001.

OMG. OMG Unified Modeling Language Specification, vemslo5. Technical report,
OMG, 2001.

D Quartel, M van Sinderen, and L. Ferreira Pires. A madeled approach to service
creation. InSeventh Workshop on Future Trends of Distributed Computing Systems.
IEEE, 1999.

G. Smith. DAC Panel Presentation. 46th. Design Automation Conference (DAC).
IEEE, 2003.

DAf ES-introduction.tex; 12/11/2003; 23:14; p.9

