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Abstract. In this paper, we review an extension of the learning rules in a Principal Component Analysis network
which has been derived to be optimal for a specific probability density function. We note that this probability
density function is one of a family of pdfs and investigate the learning rules formed in order to be optimal for
several members of this family. We show that, whereas we have previously (Lai et al., 2000; Fyfe and MacDonald,
2002) viewed the single member of the family as an extension of PCA, it is more appropriate to view the whole
family of learning rules as methods of performing Exploratory Projection Pursuit. We illustrate this on both
artificial and real data sets.
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Introduction

In this paper, we investigate ways of extracting information from high dimensional data sets
by projecting the data sets onto low dimensional (typically 2 dimensional) subspaces. We
relate the artificial neural network methods we derive to statistical techniques developed
for this purpose.

Principal Component Analysis (PCA) is a standard statistical technique for compressing
data; it can be shown to give the best linear compression of the data in terms of least mean
square error. There are several artificial neural networks which have been shown to perform
PCAe.g. 0ja(1989) and Ojaet al. (1992). We shall be most interested in a negative feedback
implementation (Fyfe, 1993).

The basic PCA network (Fyfe,1993) is described by Egs. (1)—(3). Let us have an N-
dimensional input vector at time ¢, X(¢), and an M-dimensional output vector, y, with W;;
being the weight linking input j to outputi. n is a learning rate. Then the activation passing
and learning is described by

Feedforward:

N
yi=Y Wiyx;. Vi ()
j=1
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Feedback:
M
ej=x;— > Wiy )
i=1
Change weights:
AW,'j =ne;yi. (3)

We can readily show that this algorithm is equivalent to Oja’s Subspace Algorithm (Oja,
1989):

AWij =nejy: = 'I<xj - ijyk)yi (4)
k

and so this network not only causes convergence of the weights but causes the weights to
converge to span the subspace of the Principal Components of the input data. We might
ask then why we should be interested in the negative feedback formulation rather than the
formulation (4) in which the weight change directly uses negative feedback. The answer,
as we shall see in the next section, is that the explicit formation of residuals (2) allows us to
consider probability density functions of the residuals in a way which would not be brought
to mind if we use (4).

Exploratory Projection Pursuit (EPP) is a more recent statistical method aimed at solving
the difficult problem of identifying structure in high dimensional data. It does this by
projecting the data onto a low dimensional subspace in which we search for its structure by
eye. However not all projections will reveal the data’s structure equally well. We therefore
define an index that measures how “interesting” a given projection is, and then represent
the data in terms of projections that maximise that index.

The first step in our exploratory projection pursuit is to define which indices repre-
sent interesting directions. Now “interesting” structure is usually defined with respect to
the fact that most projections of high-dimensional data onto arbitrary lines through most
multi-dimensional data give almost Gaussian distributions (Diaconis and Freedman, 1984).
Therefore if we wish to identify “interesting” features in data, we should look for those
directions onto which the data-projections are as far from the Gaussian as possible.

Two simple measures of deviation from a Gaussian distribution are based on the higher
order moments of the distribution. Skewness is based on the normalised third moment of the
distribution and measures the deviation of the distribution from bilateral symmetry. Kurtosis
is based on the normalised fourth moment of the distribution and measures the heaviness
of the tails of a distribution. A bimodal distribution will often have a negative kurtosis
and therefore negative kurtosis can signal that a particular distribution shows evidence of
clustering.

Because a Gaussian distribution with mean a and variance x is no more or less interesting
than a Gaussian distribution with mean b and variance y—indeed this second order structure
can obscure higher order and more interesting structure—we remove such information from
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the data. This is known as “sphering”. That is, the raw data is translated till its mean is zero,
projected onto the principal component directions and multiplied by the inverse of the
square root of its eigenvalue to give data which has mean zero and is of unit variance in all
directions.

We have previously implemented EPP using an artificial neural network (Fyfe and
Baddeley, 1995); the method is essentially a non-linear modification of the negative feed-
back network. The network can be described by the following set of equations

N
N ZWle] (5)
j=1
M
EjZXj—ZijSk (6)
k=1
ri = f(si) (N
AW;; = nrie; 3

where x; is the sphered activation of the jth input neuron, s; is the activation of the ith
output neuron, W;; is the weight between these two and r; is the value of the function f()
on the ith output neuron.

It was shown in Karhunen and Joutsensalo (1994) that the use of a (non-linear) function
S0 in Eq. (7) creates an algorithm to find those values of W which maximise that function
whose derivative is f() under the constraint that W is an orthonormal matrix. This was
applied in Fyfe and Baddeley (1995) to the above network in the context of the network
performing an Exploratory Projection Pursuit. Thus if we wish to find a direction which
maximises the kurtosis of the distribution which is measured by s*, we will use a function
f(s) ~ s3 in the algorithm. If we wish to find that direction with maximum skewness, we
use a function f(s) ~ s2 in the algorithm.

e-Insensitive Hebbian learning

It has been shown (Xu, 1993) that the nonlinear PCA rule
AW = ﬂ(xjf(yi) — ) Z ijf()’k)) ©)
k

can be derived as an approximation to the best non-linear compression of the data.
Thus we may start with a cost function

JW) =1TE{(x — Wf(WTx))*} (10)

which we minimise to get the rule (9). Fyfe and MacDonald (2002) used the residual in the
linear version of (10) to define a cost function of the residual

J = file) = fi (x = Wy) (1)
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where f; = ||-||? is the (squared) Euclidean norm in the standard linear or nonlinear PCA
rule. With this choice of f(), the cost function is minimized with respect to any set of
samples from the data set on the assumption that the residuals are chosen independently
and identically distributed from a standard Gaussian distribution (Bishop, 1995).

We may show that the minimization of J is equivalent to minimizing the negative log
probability of the residual, e, if e is Gaussian.

Let

1
p(e) = — exp(—e?). (12)
Then we can denote a general cost function associated with this network as
J = E(~log p(e)) = E((e)’ + K) (13)

where K is a constant. Therefore performing gradient descent on an instantaneous version
of J (i.e. ignoring the expectation) we have

aJ dJ ode
AW ¢ ——— = —— — ~ y(2e)” 14
X aW T Taeaw Y2 (14)

where we have discarded a less important term (see Karhunen and Joutsensalo (1994) for
details).

In general (Smola and Scholkopf, 1998), the minimisation of such a cost function may
be thought to make the probability of the residuals greater dependent on the pdf of the
residuals. Thus if the probability density function of the residuals is known, this knowledge
could be used to determine the optimal cost function.

Fyfe and MacDonald (2002) investigated this with the (one dimensional) function:

ple) = exp(—|elc) (15)

1
2+4¢
where
0 Viel < ¢

= 16
lele le] — & otherwise (16)

with ¢ being a small scalar >0.

Fyfe and MacDonald (2002) described this in terms of noise in the data set. However we
feel that it is more appropriate to state that, with this model of the pdf of the residual, the
optimal f;() function is the e-insensitive cost function:

fi(e) = le|.. (17)



MAXIMUM AND MINIMUM LIKELIHOOD HEBBIAN LEARNING 207

In the case of the negative feedback network, the learning rule is

AW oD _ @ e
ow de JdW

(18)

which gives:

aw, = 1° ifle;| <& )
Y7 | ny(sign(e)) otherwise

The difference with the common Hebb learning rule is that the sign of the residual is used
instead the value of the residual. Because this learning rule is insensitive to the magnitude
of the input vectors X, the rule is less sensitive to outliers than the usual rule based on mean
squared error.

This change from viewing the difference after feedback as simply a residual rather than
an error permits us to consider a family of cost functions each member of which is optimal
for a particular probability density function associated with the residual.

Maximum likelihood Hebbian learning

Now the e-insensitive learning rule is clearly only one of a possible family of learning
rules which are suggested by the family of exponential distributions.! Let the residual after
feedback have probability density function

1
p(e) = — exp(—le|"). (20)
Then we can denote a general cost function associated with this network as
J = E(-logp(e)) = E(le|” + K) (2D

where K is a constant independent of W and the expectation is taken over the input data
set. Therefore performing gradient descent on J we have

AW o~ 07 de Ely(plel 'sign@)’ |, ] (2
X ——— _— ~ e sign(e
OW Loy € AW |y P & W(i—1)

where T denotes the transpose of a vector and the operation of taking powers of the norm
of e is on an elementwise basis as it is derived from a derivative of a scalar with respect to
a vector.

Computing the mean of a function of a data set (or even the sample averages) can be te-
dious, and we also wish to cater for the situation in which samples keep arriving as we investi-
gate the data set and so we derive an online learning algorithm. If the conditions of stochastic
approximation (see Kashyap et al., 1994) are satisfied, we may approximate this with a dif-
ference equation. The function to be approximated is clearly sufficiently smooth and the
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learning rate can be designed to approximately satisfy ny > 0, >, nx =00, >, 17]% < 00
and so we have the rule:

AW;j =n-y; - sign(e;)le;|”.

We would expect that for leptokurtotic residuals (more kurtotic than a Gaussian distribu-
tion), values of p < 2 would be appropriate, while for platykurtotic residuals (less kurtotic
than a Gaussian), values of p > 2 would be appropriate. Researchers from the community
investigating Independent Component Analysis (Hyvarinen, 2001; Hyvérinen et al., 2002,
p. 206) have shown that it is less important to get exactly the correct distribution when
searching for a specific source than it is to get an approximately correct distribution i.e.
all supergaussian signals can be retrieved using a generic leptokurtotic distribution and all
subgaussian signals can be retrieved using a generic platykutotic distribution. Our exper-
iments will tend to support this to some extent but we often find accuracy and speed of
convergence are improved when we are accurate in our choice of p.

Therefore the network operation is:

Feedforward:
N
vi =3 Wixj, ¥ >
=1
Feedback:
M
i=1
Weight change:
AW =n-y; -sign(ej)le;|” =

Fyfe and MacDonald (2002) described their rule as performing a type of PCA, but this
is not strictly true since only the original (Oja) ordinary Hebbian rule actually performs
PCA. It might be more appropriate to link this family of learning rules to Principal Factor
Analysis since PFA makes an assumption about the noise in a data set and then removes
the assumed noise from the covariance structure of the data before performing a PCA. We
are doing something similar here in that we are basing our PCA-type rule on the assumed
distribution of the residual. By maximising the likelihood of the residual with respect to the
actual distribution, we are matching the learning rule to the pdf of the residual.

More importantly, we may also link the method to the standard statistical method of
Exploratory Projection Pursuit: now the nature and quantification of the interestingness is
in terms of how likely the residuals are under a particular model of the pdf of the residuals.
In the results reported later, we also sphere the data before applying the learning method to
the sphered data and show that with this method we may also find interesting structure in
the data.
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Connection to nonlinear PCA

Since the above rule has been derived as an extension to a basic PCA network, we might
reasonably ask what connection it has to other rules derived from a similar perspec-
tive. Unarguably the most influential investigator of such rules has been Oja who (see
Hyvirinen et al. (2002) for a recent review) derived the Nonlinear PCA rule from the
criterion J(W) = 17 E{(x — Wf(WTx))?} where we have used our notation to make com-
parison easier. Hyvirinen et al. (2002) also derive their Independent Component Analysis
rules from a Maximum Likelihood perspective but notice that the mean squared error is
being used and also, in our neural network formulation, the nonlinearity is performed at the
outputs before feedback. Oja then derives the rules AW = nf(W7x) - e’ (our notation).
Note the differences between this rule and that investigated in this paper: the e in Oja’s
rule is formed from the feedback containing the nonlinear term whereas in the Maximum
Likelihood rule investigated here, the e contains only feedback from a linear output. Our
nonlinearity comes from a function then acting on the e as a whole. For completeness, we
may also compare our previous Exploratory Projection Pursuit rule which may be written
AW = nf(WTx) - (x — WWTx)Tin which we see that the e term contains only linear
feedback while the nonlinearity is only used in the first term of the learning rule. Thus the
new rules are of a different type from those investigated previously.

A fixed point algorithm?

Given that Hyvirinen et al. (2002) have derived a Fixed Point Algorithm (known as FastICA)
from Maximum Likelihood principles, we might reasonably ask whether a similar algorithm
might be introduced here. The fixed point algorithm is derived by noting that, at a stable
point of the gradient algorithm, the gradient must point in the direction of the weights since
otherwise convergence would continue and we would not then be at a fixed point. In the
current context, this would give us a rule

W < E{y(plel”"signe)’ |, 1}

Unfortunately, there is a difficulty with this method: the weights do converge very quickly
(1 or 2 iterations typically gives over 99% accuracy) but the algorithm is not stable at this
point. We are searching to maximise the likelihood that the residuals match some distribu-
tion; if the current values of the weights are removing most of the match of the data to this
distribution, the algorithm simply finds the best projection it can from the current residuals
given by the current weights. Thus learning continues though the magnitude of the new
weights can be seen to be very much smaller than those used previously. Subsequently the
previous optimal filter is found again and the program simply oscillates between finding the
optimum and then a subspace orthogonal to that optimum. We have found that a reasonable
compromise is one iteration of the fixed point algorithm, followed by gradient descent to
fine tune the first estimate. However, the simulations we report on in this paper use solely
gradient descent.
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Experimental results

To illustrate our method, we follow Fyfe and Baddeley (1995) in creating artificial data
sets, each of 10 dimensions. All results reported are based on a set of 10 simulations each
with different initial conditions. It is our general finding that sphering is necessary to get
the most accurate results presented below.

Artificial data set 1. 1In this data set, we have 9 independent leptokurtotic dimensions and
one Gaussian dimension; this is almost the opposite of the standard EPP data sets described
in Fyfe (1995) and is rather far from being a typical data set in that most projections onto its
natural basis are interesting. However, since we wish to investigate our new models, it is a
good test set since we can easily see the results of our method. We wish to identify the single
Gaussian dimension and ignore the leptokurtotic dimensions. The leptokurtotic dimensions
may be characterised as having long tails; if a residual can be created by removing the
Gaussian direction from the data set, the residual will automatically be leptokurtotic. Thus
we consider maximising the likelihood of the residual using the model

1
pe) = 7 exp(—lel”) with p <2; (26)
Then the cost function associated with this network is
J =—logp(e) = le|” + K 27)

where K is a constant, and performing gradient descent on J we have

aJ aJ e el T
AW o = = === ~ ¥(plel”™ sign(e) (28)
We have experimented with a number of values of p and report on simulations with p = 1.5.
A typical result is shown in figure 1; the Gaussian direction is clearly identified.
An alternative perspective of the mechanics of the process may be given if we consider
figure 2, which shows a Gaussian (p = 2) and a Laplacian (p = 1) distribution.
In the context of the above rules, we have

AW o y(ple|P~'sign(e))” (29)

Since the square root of the absolute value of the residuals is taken in this experiment
(p = 1.5) we are giving greater emphasis to small residuals in the first part of the expression.
This is where the Gaussian has more of its mass. The second term (sign(e)) acts equally
on both and so the magnitude of the residuals does not affect this term i.e. the large tails
found in the Laplacian distribution do not have the effect that they would have on a standard
Hebbian rule or a rule with p > 2. Thus the Gaussian input in the above experiment is
easily identified by this learning rule.

We have similar results with a data set containing 9 platykurtotic dimensions and one
Gaussian dimension. We use the same learning rules as before but with a value of p = 3.
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Figure 1. The Gaussian direction was the third among 9 leptokurtotic dimensions. It has clearly been identified
in this Hinton map of the weights.
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Figure 2. A Gaussian (p = 2) and a Laplacian (p = 1) distribution.

Artificial data set 2. This data set contains 9 independent Gaussian dimensions and one
leptokurtotic dimension. This data set is more typical of data sets in which one might search
for interestingness: most directions through this 10 dimensional data will be approximately
Gaussian while there will be a single direction which is most positively kurtotic. Using
the tactic which was successful on the first data set, we might suggest that maximising the
likelihood of the residuals under a Gaussian model would be optimal. Our empirical finding,
however, is that this criterion is not strong enough to identify the leptokurtotic dimension;
we must use a model which is sub-Gaussian i.e. which maximises the likelihood of the
residuals under a platykurtotic model. Now this is a wrong model but is more wrong for
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Figure 3. The fifth dimension from the right is the leptokurtotic dimension. It is always approximately identified
but not as clearly as with the previous results.

the leptokurtotic dimension than for the Gaussian dimensions. It is necessary because of
the fact that most projections of this data set are virtually Gaussian; it is very difficult to
find the single leptokurtotic dimension in the high dimensional space. Over-penalising the
positively kurtotic dimension is then somewhat effective. We may consider that, when using
the model with p = 3, we are going to more readily penalise the leptokurtotic dimension
since it has more samples in the tails of the distribution which are going to cause faster
convergence to this dimension.

Typical results are shown in figure 3. The leptokurtotic dimension is fifth from the right
and has been identified though far from clearly. We consider that this too is the effect of
using the wrong model: some platykurtosis may be removed from the Gaussian dimensions;
the Gaussian dimensions too may be thought of as less likely under this platykurtotic model.

The accuracy will be improved upon later using a form of anti-Hebbian learning.

Artificialdataset 3. Inthis data set, we have 8 leptokurtotic dimensions and two Gaussians.
Again we use a leptokurtotic model and attempt to identify the two Gaussian dimensions.
Typical results are shown in figure 4 for which we used p = 0.5: the Gaussian dimensions
are the fourth from the left and the third from the right. Typically the weights converge so
that each is identifying the two dimensional subspace spanned by these two dimensions
(as in the first and third parts of figure 4) though sometimes the two Gaussian dimensions
are individually identified (as in the middle part of figure 4). We achieve 80% success in
identifying the two Gaussian directions exclusively. A typical failure is shown in figure 5 , in
which the first weight vector has converged to the subspace of the two Gaussian dimensions
but in which the second weight vector is totally wrong.

| OCTCNESSRSEC S
B LR e beet Lok Wndm beb """"“‘"’"“’”“"’ﬁ Do [ e Joen Lok rdow i it
D@Ed® rAA/ PRD DEEA8 kA2 BB DEEG AAA, HOO

Figure 4. Identification of the two Gaussian directions.
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Figure 5. The first weight vector has identified the two leptokurtotic dimensions but the second is totally wrong
p=0.5.

The 80% success rate is not worthless for what is an exploratory data investigation
method. Such methods are typically run over a data set several times starting from different
initial conditions.

Minimum likelihood Hebbian learning

It is well known that the standard PCA rule: AW;; = nyi(x; — Y, Wi;yi) finds the first
principal component (that with greatest eigenvalue) of a data set while AW;; = —ny;(x; —
> Wij i) finds the first minor component (that with least eigenvalue) of a data set.

Therefore just as the Hebbian learning rule has an opposite known as the anti-Hebbian
rule, we may change our rules so that

aJ aJ oe
AW X — = —

== ~ —y(ple|’"'sign(e)). 30
W = e 3 W y(ple|”” sign(e)) (30)

Now we may argue that, in doing so, we are aiming to minimise the likelihood of the
residual given the current model. In detail, if the residual has probability density function

1
ple)=~ exp(—el”). €2y

and we denote the general cost function associated with this network as

J = E(—log p(e)) = E(le|” + K) (32)
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Figure 6. The platykurtotic dimension has been identified among the Gaussian dimensions.

where K is a constant, we may perform gradient ascent on J to get

oJ
AW x —
ow

_0J oe
wa—1y 0edW

~ E(—y(plel” sign@) [, ). (33)
W(—-1)

We are thus using our learning rules to make the residuals as unlikely as possible under the
current model assumptions (determined by the p parameter). This is therefore particularly
useful for data sets in which our previous results were less accurate. For example, when
we have 9 Gaussian dimensions and 1 platykurtotic dimension (a data set on which we
had rather inaccurate results previously) we get results as in figure 6 (with p = 3 in our
minimum likelihood rule). By identifying and removing the platykurtotic dimension we are
leaving a residual which has 0 kurtosis.

Note that with Minimum Likelihood Hebbian learning we are using the correct model
for the distribution that we are seeking but minimising the probability of the residual being
taken from this distribution. Thus we find and extract this distribution.

Other data sets

To show the power of the family of learning rules that we have derived we applied them to
different data sets.

Bank data. To compare the new method of EPP with our previous neural implementation
of the technique, we apply both methods on a small database of bank customers consisting
of 1000 records each having 12 fields. Information held includes an unique identifier, age,
sex, salary, type of area in which they live, whether married or not, number of children
and then several fields of financial information such as type of bank account, whether they
own a Personal Equity Plan etc. Figure 7 shows the projection of this data set on the filters
found by the previous EPP network, Egs. (5)—(8), when a cosine nonlinearity searching for
clusters was used.

The network has clearly identified 4 clusters in the data set. Notice that neither of the one
dimensional projections would have been sufficient to clearly identify four clusters (though
one would have identified two clusters). Manual investigation of the clusters readily reveals
that the clusters are forming on the place of residence field—each cluster is specific to one
of RURAL, TOWN, INNER_CITY and URBAN sites. We should emphasise at this stage
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Figure 7. A two dimensional projection of the bank customer dataset clearly illustrating four clusters in the data
set.

that this is far from the most interesting projection of the data set revealed by EPP but is
being used for illustrative purposes.

Now we compare with the new EPP method; results are shown in figure 8.

We see far more structure in the projection from the Maximum Likelihood Hebbian
rule than we had previously: not only are six main clusters found but also within each
of these clusters we see distinct subgroups. This is a more interesting projection than that
provide by the previous implementation of EPP which simple projects on AREA and SEX in
the first axis and SALARY on the second. The ML method has separated each main cluster
on AREA, CAR with the main sub-cluster of each diagonal separating on SEX. But we can
see that the ML method has also many more well defined sub-clusters in its projections;
these highlight groups of individuals whose profiles are slightly different from the main
cluster. This shows the power of the ML rule as the number of sub-clusters identify far more
texture in the projection than that identified by the previous implementation of EPP.

Astronomical data. The data consists of 65 colour spectra of 115 asteroids used by Howell
et al. (1994). We have previously compared the performance of a variety of artificial neural
networks on this data set (MacDonald et al., 1999).

The data setis composed of a mixture of the 52-colour survey by Bell et al. (1988) together
with the 8-colour survey conducted by Zellner et al. (1985) providing a set of asteroid spectra
spanning 0.3-2.5 pm. When this extended data set was compared by Howell et al. (1994)
to the results in Tholen (1994) it was found that the additional refinement to the spectra
lead to more classes in the taxonomy produced by Tholen. We have tested the networks
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Figure 8. A two dimensional projection found by maximum likelihood Hebbian learning with p = 0.

on this data set looking at the differences in classification accuracy between clustering and
projection networks. Standard PCA (p = 2) separates out the classes A and (some of) B
but leaves most of the others in a single group (figure 9).

Maximum Likelihood Learning with p < 2 however shows a much greater separation of
this central cluster (figure 10 was from a simulation with p = 0.5). If we compare figures 9
and 10, we see that both find the classes A and (some of) B easy to separate but Maximum
Likelihood learning with p < 2 does spread the data out somewhat better.

Algae data. Our next data set is from a scientific study of various forms of algae some
of which have been manually identified. Each sample is recorded as a 18 dimensional
vector representing the magnitudes of various pigments. Some algae have been identified as
belonging to specific classes which are numbered 1 to 9. Others are as yet unclassified and
these are labelled 0. Figure 11 shows a projection of this data set onto the first two Principal
Components. We can see that some separation of the classes has been achieved. However
figure 12 shows a projection of the same data set onto the filters found using Minimum
Likelihood Hebbian learning with p = 1; a rather better separation of the individual classes
has been found.

Non-exponential distributions

In this paper, we have restricted our learning rules to those drawn from the exponential
family of distributions. All of the artificial data sets above also came from this family of
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Figure 9. Projection of the asteroid data set onto the first two principal components.
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Figure 10. Projection of the asteroid data onto the filters found by maximum likelihood Hebbian learning with
p=0.5.

distributions and we might legitimately ask whether these rules will work on data sets
which are not drawn from this family. To test whether the rules work on other data sets
is totally an empirical question and is clearly dependent on the statistics of the data
set in question. However to address this question in some small way we have repeated
the above experiments with non exponential distributions. For example, Data set 4 was
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Figure 11.
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Figure 12. Projection of the algae data set onto the first two filters found using minimum likelihood Hebbian
learning with p = 1.

slightly changed to 9 Gaussian dimensions and one drawn from the Beta (2, 2) distribution.
We chose the Beta distribution since it is very malleable and we chose these parameters
since it is then not unlike a Gaussian in shape (see figure 13).

Using p = 3 in our family of rules we consistently found the beta distribution. An
example is shown in figure 14 in whch the beta distribution corresponds to the rightmost
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Figure 13. The Beta (2,2) probability density function.
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Figure 14. The dimension furthest to the right is drawn from the beta distribution. It is clearly identified.

dimension. The weights into this dimension are much greater than those into the other
dimensions.

We might go on to ask whether the beta distribution has to be mixed with Gaussian
distributions and so we create a similar data set with 9 platykurtotic exponential dimensions
and one beta function dimension, 3 (0.5, 0,5). We have used Minimum Likelihood Hebbian
learning and p = 3. Since the § function has a non zero mean, this mean has been subtracted
from the data. We used these values of the 8 parameters since the difference in kurtosis
between the platykurtotic dimensions and the beta dimension is very small, ~0.1 (see
Table 1). A histogram of typical values drawn from this distribution is shown in figure 15.
Note that the sphering of the data (which used PCA for this) caused the Beta distribution
to be moved from third to last position (for the converged weights in figure 14) since it had
smallest eigenvalue.

When sphered, the beta dimension is moved to last position since it has originally less
variance than the exponential distributions.

In figure 16, we see that the dimension whose elements are drawn from the 8 distribution
is clearly identified. Even more accurate results were obtained when using one 8 dimension
with positive kurtosis and 9 leptokurtotic dimensions.
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Table 1. The single B dimension (Dimension 3) has slightly more kurtosis than the others. Sometimes 3 is
subtracted from the kurtosis values to give a Gaussian distribution kurtosis 0; this has not been done here.

Dimension 1 2 3 4 5 6 7 8 9 10

Kurtosis 1.3773  1.3872 1.4947 13792 13804 1.3734 1.3800 1.3904 1.3803 1.3787

x 10°
5

0
0 0.1 02 03 04 05 06 07 08 09 1

Figure 15. Histogram of the beta function for w = 0.5 and v = 0.5. This bimodal distribution is less negatively
kurtotic than the platykurtotic exponential dimensions used in this experiment.
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Figure 16. The first dimension from the right is the beta distribution. It has clearly been identified in this Hinton
map of the weights.

We might also ask whether we need to use a member of the exponential family in order
to derive learning rules appropriate for this data set. For example, we might ask if we can
start with the probability density function of the Beta distribution and derive rules which

will optimally find this distribution.
If the residual is draw from the Beta distribution, B(v, w), with the following probability

density function:

e l1—e)? ' =x— Wy ' —x+ Wy ! (34)
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then if we wish to maximise the likelihood of the data with respect to the weights, we will
perform gradient ascent using:

T 21—y = D — e 1) )

which is rather a cumbersome rule. However for the case in which v = w = 2:

p o
S =Y —e+e. (36)

So the learning rule is simplified to:
AW = ny(2e — 1) 37

However experiments have shown that this rule is rather difficult to stabilise. We conjecture
that the gradient of the logarithm of the probability density function (which we used for
the exponential family) is somewhat more gradual than that of the pdf itself of the Beta
distribution and that this is why the results with the platykurtotic members of the exponential
family are better. Alsoitis worth stating that if we were to simply fit each distribution exactly
with its analytically derived learning rule, this would give us little confidence in finding
arbitrary empirical distributions in real data samples.

Comparing and mixing the two EPP methods

We now compare the effectiveness of these two algorithms on both artificial and real data
sets. The artificial data is used to compare the speed of convergence of the algorithms in
identifying interest in a data set since we know, in advance, exactly what sort of interesting
structure is in the data set and can measure the progress of the algorithm towards identifying
the structure. We will call the original algorithm the Higher Moments Algorithm.

Rate of convergence

In this section, we create a 10 dimensional data set in which 9 dimensions are drawn
from a Gaussian distribution and one dimension from a uniform distribution. The uniform
distribution is platykurtotic (has less kurtosis than the Gaussians) and so the higher moments
algorithm can use y* or more stably tanh(); the maximum likelihood method will use p < 2.
The rate of convergence of the algorithms is shown in figure 17: the left figure shows the
dot product of the weights with the ideal solution when the higher moments EPP algorithm
with a tanh() nonlinearity is used while the right shows the convergence of the Maximum
Likelihood EPP algorithm with p = 1. We see that the latter has extremely fast convergence
but does not achieve an accuracy of more than 0.9 while the former, though it takes a little
longer to get to the optimum, is much more accurate. This suggests that an algorithm which
uses both rules might gain by having the best attributes of both and this is in fact the case.
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Figure 17. The left figure shows the convergence of the higher moments EPP algorithm while the right one
shows the convergence of the maximum likelihood EPP algorithm in terms of the dot product to the ideal solution.
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Figure 18. Convergence of the algorithm using the combined learning rule.

Figure 18 shows the convergence of an algorithm which uses a combination of these two
rules i.e.

Feedforward:

N
Vi = Z Wijx;j, Vi
=
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Feedback:
M
ej =Xj — Z Wijyi
i=1
Weight change:

AWij =n.f(yi) - sign(e))le; |

where f () is the tanh () function in the experiment the results of which are shown in figure 18.
We seem to be getting the best of both worlds with this combined method though it must
be conceded that the combination is somewhat ad hoc. It is for this reason that we have not
included results from this method elsewhere.

Conclusion

In this paper, we have derived a family of learning rules based on the probability density
function of the residuals. This family of rules may be called Hebbian in that all use a simple
multiplication of the output of the neural network with some function of the residuals after
feedback. The power of the method comes from the choice of an appropriate function and
what is appropriate is determined by the statistics of the data set. In particular, we showed
how to choose a function to maximise the likelihood of the residuals under particular
models of probability density functions. We now see that both the original PCA rule and
the e-insensitive rule (Lai et al., 2000) are merely particular cases of this class of rules. We
have also shown that the rules are more akin to Exploratory Projection Pursuit and prefer to
call them Maximum Likelihood Hebbian learning, believing that ‘c-insensitive PCA’ does
not do justice to the power of the method.

We have also shown how powerful Minimum Likelihood Hebbian learning is and indeed
that this is, in some sense, even more closely related to EPP: the real power of these learning
rules is in the context of exploratory data analysis. These are powerful new tools for the data
mining community and should take their place along with existing exploratory methods.
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Note

1. This family was called an exponential family in Hyvérinen et al. (2002) though statisticians use this term for a
somewhat different family.
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