
1

Experimental Evaluation of Verification and
Validation Tools on Martian Rover Software

Guillaume Brat , Dimitra Giannakopoulou, Allen Goldberg, Klaus Havelund,
Mike Lowry, Corina Pasareanu, Arnaud Venet, Willem Visser, Rich

137% hingt on

NASA Ames Research Center

Abstract. We report on a study to determine the maturity of differ-
ent verification and validation technologies (VkV) on a representative
example of NASA flight software. The study consisted of a controlled
experiment where three technologies (static analysis, runtime analysis
and model checking) were compared to traditional testing with respect
to their ability to find seeded errors in a prototype Mars Rover. What
makes this study unique is that it is the first (to the best of our knowl-
edge) to do a controlled experimenr; to compare formal methods based
tools to testing on a realistic industrial-size example where the emphasis
was on collecting as much data on the performance of the tools and the
participants as possible. The paper includes a description of the Rover
code that was analyzed, the tools used as well as a detailed description of
the experimental setup and the results. Due to the complexity of setting
up the experiment, our results can not be generalized, but we believe it
can still serve as a valuable point of reference for future studies of this
kind. It did confirm the belief we had that advanced tools can outper-
form testing when trying to locate concurrency errors. Furthermore the
results of the experiment inspired a novel framework for testing the next
generation of the Rover.

1 . Introduction . -

To achieve its science objectives in deep space exploration, NASA has a need for
science platform vehicles to autonomously make control decisions in a time frame
that excludes intervention from Earth-based controllers. Round-trip light-time
is one significant factor motivating autonomy capabilities, another factor is the
need to reduce ground support operations cost. An unsolved problem potentially
impeding the adoption of autonomy capabilities is the verification and validation
of such software systems, which exhibit far more behaviors (and hence distinct
execution paths in the software) than is typical in current deep-space platforms.
Hence the need for a study to benchmark advanced Verification and Validation
(V&V) tools on representative autonomy software.

The objective of the study was to assess the maturity of different technologies,
to provide data indicative of potential synergies between them, and to identify
gaps in the technologies with respect to the challenge of autonomy V&V.

.

The study consists of two parts: first, a set of relatively independent case
studies of different tools on the same autonomy code, second a carefully con-
trolled experiment with human participants on a subset of these technologies.
This paper describes the second part of the stud;i. Overall, nearly four hundred
hours of data on human use of three different advanced V&V tools were ac-
cumulated, with a control group that used conventional testing methods. The
experiment simulated four independent V&V teams debugging three successive
versions of an executive controller for a Martian Rover. Defects were seeded into
the three versions based on a profile of defects from CVS logs that occurred in
the act.ual development of the executive controller.

The experiment evaluates tools representing three technologies: static anal-
ysis, model checking, and runtime analysis; and compared them to conven-
tional testing methods. The static analysis tool is the commercial PolySpace
C-verifier [13]. This tool analyzes a C program without executing it; it focuses
on finding errors that lead to run-time faults such as underflow/overflow, non-
initialized variables, null pointer de-referencing, and array bound checking. The
model checking tool is Java PathFinder (JPF) [15], which is an explicit-state
model checker that works directly on Java code. JPF specializes in finding dead-
locks, verifying assertions, and checking temporal logic specifications. JPF ex-
plores all possible interleavings in multi-threaded Java programs. The runtime
analysis tools are Java Path Explorer (JPaX) [12] and DBRover [9]. JPaX can
infer potential concurrency errors in a multi-threaded program by examination
of a single execution trace. Amongst the errors detectable are deadlocks and data
races. DBRover supports conformance checking of an execution trace against a
specification written in metric temporal logic.

The rest of the document is structured as follows. We discuss related work in
section 2. In section 3 we discuss the Rover E,xecutive that we analyzed in the ex-
periment as well as the correctness requirements this software should satisfy. The
methodology used for setting up the experiment is given in section 4, followed by
a description of the V&V tools used in section 5 . The results obtained from the
study are divided between qualitative (section 6) and quantitative (section 7)
results. Concluding remarks are-given in section 8. -

2 Related Work

There is relatively little work on comparative studies of different formal methods
tools, and their relationship to traditional methods. The reason for this is likely
the fact, that this kind of comparative work is hard, and for many researchers
perhaps not as interesting as developing theory and tools. Early work seemed
to be focused on analyzing and comparing formal specification languages and
refinement environments (which refine code from specifications). With the arriyal
of model checkers, work has been done on comparing these with the purpose of
evaluating how well bugs are located. Only recently has work appeared, which
relates different bug-locating tools. We will outline a few references in each of
these categories.

Amongst early work on comparing a formal method based on a formal specifi-
cation language to standard practice is the much celebrated CICS experiment [7],
where the 2 specification language was used to specify IBM’s CICS transaction
system (Customer Information Control System). The project was so successful
that Oxford University Computing Laboratory and IBM received the Queens’s
Award for Technological Achievement. The use of Z reduced development costs
significantly and improved reliability and quality. It was estimated that IBM
was able to reduce their costs for the development by almost five and a half
million dollars. In addition, the quality was claimed higher based on feedback
from users. As an example of a study comparing specification languages, an in-
ternational Dagstuhl seminar was organized in 1995 as a competition between
different researchers, each representing a formal method/specification language.
The participants were all asked to specify a steam-boiler problem based on an
informal requirement description. The result is presented in [l].

In [18] a more recent experiment is described comparing the state-of-the-
art formal specification and code generation method Specware (combined with
the functional programming language Haskel) with a state-of-the-practice wa-
terfall method rated at Capability Maturity Model (CMM) level 4. Two teams
were established, which cor?currently applied their method, in which they were
specialist, to the given problem. The goal was to develop a real-time Personal
Access Control System (PACS) (badge reader) system. Both parties were given
the same requirement specification, in which two errors had been seeded. An
independent third party evaluated the results at the end, using extensive test-
ing. The formal methods project seemed to perform better. They found the two
errors, in contrast to the CMM team, and produced code with a reliability of
0.77 (23 failures w i t h 100 test cases), whereas the CMM team produced code
with reliability 0.56. Had the formal methods team corrected the two errors they
found. which they did not, they would have had a reliability of 0.98. None of the
teams satisfied the original requirements completely.

W-ith the increased focus on formal methods tools, some work has been done
on comparing such tools. A comparison of four different finite-state verification
tools is for example described in [4]. The tools were the model checkers SPIN
and SMV, INCA, that performs necessary conditions analysis, and FLAVERS,
that performs data flow analysis of Ada programs. The verification tools were
applied to the Chiron user interface system, a real Ada program of substantial
size. A tool automatically translated the Ada program into the input languages
of the respective verification tools. After the translation, different researchers
applied the different tools, and comparisons were made with respect to time
and memory. It was concluded that the results were very dependent on the
translation schemes from Ada to the input notations. Other authors have also
compared model checking tools [lo, 6,8].

The work in [a] describes an analysis of five different formal methods tools:
the model checker Rivet, the temporal logic runtime monitoring tool Mac , the
concurrency runtime analysis tool VisualThreads, the static analysis and theo-
rem proving tool ESC/Java and finally the static analyzer Jlint. The goal was to

identi6 the most practical tool for finding defects in software developed by the
company in which the author was an intern. Each tool was examined on fifteen
test-cases, which were created for this particulas experiment, and which repre-
sented small well-known errors that can occur in multi-threaded programs. The
15 test-cases were created based on a statistical analysis of a large body of code.
Not surprisingly. the different tools had different weaknesses and strengths. The
conclusion for static checkers was that the simple checkers worked as well as the
complex checkers. The VisualThreads tool worked very nicely but did not work
for Java programs. The MaC tool did not deal with multi-threading.

3

3.1 Rover Executive

The NASA Ames K9 rover is an experimental platform for autonomous wheeled
vehicles called rovers, targeted for the exploration of a planetary surface such
as Mars. K9 is specifically used to test out new autonomy software, such as the
Rover Executive 1171. Previous to the development of autonomy software, plan-
etary rovers were controlled through sequences of detailed, low-level commands
uploaded from Earth. The Rover Executive provides a more flexible means of
commanding a rover through the use of high-level plans. Plans are programs
written in a language that specify actions and constraints on the movement,
experimental apparatus. and other resources of the Rover. The operational se-
mantics of this language take into account the possibility of failure of atomic-level
command actions. The Rover Executive is a software prototype written in C++
by researchers at NASA Ames.

The Rover executive is approximately 35K lines (Kloc) of C++, of which
9.6 Kloc are related to core functionality and the rest is for data structure
manipulation, modules for specific rovers and science instruments, and research-
related extensions. Here the main focus is on the core functionality. Because
the V&V tools benchmxked in this experiment andyze programs written in
Java and C, the C++ code was manually translated into these languages. Due
to resource constraints, the translation was selective; some components of the
executive were stubbed. The translated Java version is approximately 7.3 Kloc.
The C version consists of approximately 4.5 Kloc.

The Rover Executive is essentially an interpreter for the plan language. The
executive also monitors execution of primitives, and performs appropriate re-
sponses and cleanup when the execution of a primitive fails. A plan consists of
nodes representing high-level control structures or primitive pIan elements called
tasks. The high-level control structures of the plan are sequential composition
(block) and conditional execution (branch). Primitive tasks command the vehi-
cle to perform an action chat IS monicored by the Rover Executive. Associated
with nodes are conditions. -4 node succeeds or fails based on evaluation of these
conditions. Four types of conditions may be specified: waat-for, start. mazntazn.
and end conditions. A wazt-for condition is monitored prior to the execution of a
node; the node cannot begin execution until its wait-for condition is satisfied. A

Target Software and Verification Requirements

L

(block
:id plan
:node-list (

(task
:id drivel
: end-conditions (time +O +20)
:action action1
: continue-on-failure

1
(task

:id drive2
:action action2
:start-conditions (time +O +lo)
:end-conditions (time +I +301

1
1

1

Fig. 1. Example Plan

start condition is a pre-condition on the execution of node. If the start condition
evaluates to false then execution of the node fails. The mazntazn condition is
monitored during execution of the node; should the maintazn condition at any
time evaluate to false. the node fails. The end condition is evaluated at the end
of execution of the node; if the end condition evaluates to false, the node fails.

Conditions are conjuncts of atomic conditions. There are two types of atomic
conditions. One type of atomic condition is a predicate over values in a main-
memory database. The database is an environment mapping names to values.
Typically the database is updated with values provided by the controlled system,
e.g. the vehicle’s current state. In addition, the Executive uses the database to
record and manage its own state. The second type of condition is a temporal
condition that specifies a time interval, using relative time (with respect to a
plan element) or absolute time (relative to the start of execution of the plan).
For example, the start of a task can be constrained to a relative or absolute time
interval.

Execution of a node either succeeds or fails and the outcome affects further
execution of the plan. Associated with each node is a Boolean attribute continue-
on-fazlure. If the contznue-on-fazlure attribute is false then failure of a node
will propagate up and cause the containing node (or the plan itself) to fail.
When a node fails its execution terminates. Thus if a node n is a sequential
composition of nodes, nl; . . . ; n k and node n, fails thes n immediately fails and
nodes n,+1;. . . ; T& are not executed. similarly if the execution of an alternative
of a conditional node fails, the conditional node itself fails. If the flag is true,
then failure of a sub-node does not cause the node to fail. Hence in the case of
sequential composition, failure of node n, with contznue-on-failure set to true,

.

,
,

the executive will initiate execution of node nl+l. Figure 1 is an example of a
plan.

Rover

Telemetry Database DbMonitor
(state of system)

Fig. 2. Rover Executive Architecture.

The architecture of the Rover executive is illustrated in Figure 2. Generally
each component in Figure 2 executes as a separate thread. The Executive is
the central component interpreting the plan and controlling execution of plans
(received from a Planner via the Plan Watcher). The ExecTimer and ExecTimer-
Waiter provide a timer capability used to support temporal conditions. These
conditions are processed by the Executive, which then posts timer .requests to
the ExecTimer thread. The ExecTimer Waiter signals the Executive when posted
time points are reached. The Database is an environment holding name-value
pairs. The ActionExecution thread sends commands to the rover and monitors
the status of action execution on the rover: updating the Database to reflect
changes to that status. The Telemetry thread monitors the state variables of the
external system and updates the Database. The ExecCondChecker (composed of
two separate threads) monitors changes in the database (DbMonitor) and prior-
itizes the changes and signals the Executive (Internal). Changes in the database
or the passing of posted time points, events that may lead to the change of valua-
tion of a condition, are signaled to Executive. Should these changes cause a node
to succeed or fail, the Executive advances execution thorough the plan accord-
ing to the semantics described above. Execution of a primitive task causes the
Executive, via the ActionExecution thread, to command the vehicle to perform
the task's action.

The Java version (7.3 Kloc) used for this experiment contains all the compo-
nents of Figure 2 , except the Telemetry thread. The Database and PlanWatcher
were simplified versions of the original C++ code: Database only contained a
small subset of variables in order to preserve the communication behavior and
similarly Plan pvatcher only contained the mechanism to communicate the fact
that a new plan was available. The C version (4.5 Kloc) used for static anal-
ysis was very similar to the Java version in terms of its general structure (i.e.
used the same components) , but used further simplified code, e.$. the exception
mechanisms were not treated. The difference in size between the two versions is
moktly accounted for in C being somewhat more succinct than Java.

3.2 Autonomy Requirements

Due to speed-of-light, bandwidth and energy considerations, low-level command-
ing of a Rover on the surface of Mars severely limits the amount of tasks a Rover
can perform in a day and decreases r;he science return of the mission. Thus it is
NASA’s goal to increase the autonomy of spacecraft. For example an objective
of one mission profile for the Mars Smart Lander mission, scheduled for launch
in 2009, is to command the Rover to travel distances as long as one kilometer.
This requires complex energy planning, terrain mapping, obstacle avoidance,
localization, etc.

This in turn may require use of heuristic algorithms and other Artificial In-
telligence programming techniques. At the same time flight software has extreme
reliability requirements. Thus verification and validation of autonomy flight soft-
ware is of prime importance. The methodology used previously involved exten-
sive testing with simulations that represent nominal and slightly-off-nominal
flight scenarios. However for highly antonornoi~s Software, the number of sce-
narios is much larger, limiting the effectiveness of traditional testing. In this
context, mathematical methods, which have the potential of proving at once
system properties for large classes of input scenarios, become attractive.

Concurrency is a necessary attribute of highly autonomous software, for two
reasons. The first is that robust autonomy software responds to many enti-
ronmental variables that change asynchronously, including status of mechanical
systems, features of the terrain, obstacles, unplanned science opportunities, etc.
Thus V&V of autonomy software entails analyzing the parallel composition of a
software system and an environment running concurrently and changing asyn-
chronously. Second, because of the logical complexity of autonomy software, such
as the need to initiate and monitor concurrent streams of control, autonomy soft-
ware is typically written as a set of interacting threads or processes. The number
of threads in deep-space flight software has grown very- substantially- over the last
decade, and is expected to continue to grow in the future. The next mission to
Mars, the Mars Exploration Rover, has over a hundred threads. The Rover exec-
utive studied in this paper demonstrates many of the characteristics of autonomy
software, especially the substantial use of concurrency.

Properties for Verification of Rover Software A simple deiinition of cor-
rectness of the rover implementation is that plans are executed correctly. That
is, given a plan, the rover shall execute that plan according to its intended
semantics, which is given informally in variom documents describing the plan
language. As an example, consider the plan provided in Figure 1. It consists of
a top-node (a block) named "plan", which is decomposed into two sub-nodes
(tasks), "drivel" and "drive2". The corresponding actions to be executed are
called "actionl" and "action2". The task named drivel is supposed to termi-
nate between 0 and 20 seconds after it has started. The task named drive2 is
supposed to start between 0 and 10 seconds after drivel terminates and drive2
is expected to terminate itself between 1 and 30 seconds after it starts. Since
the continue-on-failure flag is set, in case drivel fails, drive2 should be executed
anyway. The just presented informal description is part of the semantics, of this
plan, and any execution of the plan should satisfy this.

The (partial) semantics can be formalized by expressing it in temporal logic.
The following formulae express some of the informal semantics stated above:

PI : [I (end("drive1") -> <O,lO>start ("drive2"))

FIL : [I (start("drive2") -> (<i,3O>success:"Jr~ve2") o r <>fail("drive2"))!

The formula P1 states that it is always the case ([I) that when drivel ends
(successfully or by failure) then (->) eventually (<>) between 0 and 10 seconds
drive2 should start. Formula P2 states that after drive2 starts, it should either
eventually terminate successfully within 1 t o 30 seconds, or eventually fail. These
two formulae only constitutes a subset of the formulae that can be written for
this particular plan.

The rover can violate the plan semantics in numerous ways, which we of
course cannot exhaustively cover here. However, some of the tools examine a
program for particular kinds of bugs, or rather coding errors, that can cause
a program to fail its goal. Deadlocks can for example cause the rover to halt
execution in the middle of a plan. Data races can cause unexpected concurrent
accesses to variables that may alter the outcome. Null pointer references, un-
initialized variables and indexing out of array bounds may cause the program to
terminate abruptly during execution.

4 Methodology

This section describes the design of the methodology for conducting the con-
trolled experiment. The main reference for the experimental design with human
subjects is [l].

The experiment had the following goals:

1. Evaluate relative strengths and weaknesses of traditional and advanced ver-
ification and validation approaches and tools on autonomy software; po-
tentially- leading to a methodology for their combined use in the softwae
life-cycle;

2 . Determine w-hether the current state-of-the-art gives evidence that advanced
verification techniques have a potential for significant improvement over tra-
ditional ones.

In this experiment, the four different methods for V&V of representative
autonomous software, were:

1. traditional testing (TT)
2. static analysis (SA);
3. model checking (MC)
4. runtime analysis (RA).

4.1 Code Preparation - Defects and Defect Seeding

In order to be able to guarantee the existence of at least a few bugs of different
categories in the code for the experiment, e seeded bugs in the current version
of the code. This facilitated the control and understanding of the results of
the experiment. We considered two options: first, to seed bugs randomly in the
code, and second, to re-seed old bugs retrieved from the developer’s CVS logs.
We opted for the second choice because, as pointed out by Barry Boehm and
Daniel Port in [5], it has the advantage of being unbiased since the bugs seeded
have been real defects. The shortfall is that such bugs are likely to be the most
detectable defects using traditional techniques. However, we expected that the
code would still contain live and harder to detect bugs, on which the tools could
also demonstrate their relative strengths.

We modified the code so that the specific actions of the Executive to be ob-
servable during execution. For example a task starting, failing, etc. were made
observable by adding print statements to the code. This allowed the observers
and participants in the experiment to have a common framework for understand-
ing the program execution and the errors being reported.

Bug classification We classified the bugs into three categories: deadlocks, data
races, and plan execution r lp fwts Deadlocks and data races are bugs that can
appear or be detected iirespective of the specific input plan. Moreover, no specific
properties or assertions need to be provided for these kinds of defects; they are
generic errors that runtime analysis and model chechng tools can often detect.
Plan bugs are bugs that manifest themselves only when specific plans are used
as an input, and when the semantics of the plan language is violated with the
program execution.

Number of bugs seeded A total of 12 bugs were extracted from the CVS
logs, of which 5 were deadlocks, 2 were data races, and 5 were plan-related. One
of the deadlock bugs was given as an example during training on the tools, and,
one of the data races was unreachable in the code that was eventually analyzed
- thus leaving only 10 seeded errors.

Versions In our experiment, we simulated a normal development cycle where
testing teams receive updated versions of the code and performed regression
testing. Moreover, we also wanted to evaluate to which extent the set-up effort
that advanced verification techniques sometimes require gets leveled-off during
regression testing. For these reasons, we produced 3 versions of the code, where
versions contained a number of common and a number of different errors. The
code was also reorganized and changed at places between versions. Version 1
contained a total of 7 known bugs, out of which 2 were deadlocks, 1 data race,
and 4 were plan-related, Version 2 contained a total of 7 known bugs, out of
which 2 were deadlocks, 1 data race, and 4 were plan-related. Finally, version 3
contained a total of 7 known bugs, out of which 2 were deadlocks, 1 data race,
and 4 were plan-related.

New bugs During the experiment, 18 new previously unknown bugs were de-
tected, 3 of which were deadlocks, and 15 of which were plan-related. Although
we did our best to understand these bugs and their causes, it is possible that
some of them are different manifestations of the same actual bug.

4.2 Experiment Design

We used the traditional approach to experimentation where we assigned one
group per treatment (V&V method) and the observers analyzed the results ob-
tained by each group.

The questions that our study targets are difference questions that are based
on comparing the performance of the various groups. To populate groups we need
to determine the frame of our experiment, which, for our purposes, is system de-
velopers/engineers with a good understanding and training in computer science.
However, due to lack of human resources, we could not construct a sample of
subjects that would be Iarge or diverse enough to allow for proper generalization
of the results of our study.

Participants The participants to the study consist of 4 graduate students in
Computer Science on summer internships at NASA Ames, and 4 NASA Ames
computer scientists. The summer interns are working towards PhDs in the do-
main of formal methods. Some are very proficient with the tools used in the
study, while others have only a superficial knowledge of these tools. However,
even the latter are very knowledgeable in formal methods and have worked with
similar tools. The permanent Ames employees hold Masters or PhDs in relevant
fields of computer science, and have extensive background in software develop-
ment.

Validity For reasons stated earlier in this section, our study does not claim
external validity (possibility t o generalize), but focuses on establishing internal
validity. To achieve the latter, we tried to ensure the following characteristics:

1. Groups must be equivalent

Each of the four groups for our study was formed by two participants. We
assigned to each approach/treatment the participants that were most pro-
ficient in the particular approach, based on their work experience and the
focus of their PhDs. More specifically:
Testing (TT): two NASA Ames software engineers with extensive devel-

opment and testing background.
S ta t ic Analysis (SA): one NASA Ames sofcware engineer with extensive

background on static analysis techniques and compilers, and one summer
intern whose PhD is related to static analysis techniques for module
verification.

Run t ime Analysis (RA): one NASA Ames software engineer with a PhD
in monitoring in distributed systems; and one intern with extensive ex-
perience in building tools for model checking for Java programs and
knowledge of runtime analysis algorithms.

Model Checking (MC): two summer interns working on model checking,
one of them involved in the development of some features of the model
checking tool to be used.

To bring all participants to a similar level of competence within the time
frame of the experiment, we gave them 3 days of training on the tools they
were to use and the code they were to analyze, as described in the training
section (see below).

2. Groups must be independent.

3. All factors, except for the treatment, must be constant among the groups.
'This is to ensure that the differences could only be influenced by the treat-
ments.

Except for the SA group, all participants have been provided with exactly
the qame code, as we!l as a set, of requiremoats that this code must satisfy.
Specifically, in our context, these requirements consisted of the semantics
of the pian ianguage that the Executive interprets. The experiment time
was exactly the same for all groups. As already mentioned, since the SA
team worked on different code and concentrated on different types of bugs,
their experiment results were not directly used for comparison with other
tools. However, the SA experiment has still been valuable for obtaining some
information about the benefits that the PolySpace tool can offer vs. the effort
that its use requires in practice.
Each participant had a powerful PC on their desk, with the exact same con-
fi,wstion. Final!y, we made sure thzit during the experiment, greups wodd
not receive hints or input hom the observers/designers of the experiment
accidentally. For this reason. personal communication had to be avoided. A
mailing list was created through which all communication between the par-
ticipants and the observers was performed. The mailing-list included ali the

observers. This gave time to the observers to read the queries carefully. think
before sending replies, and check the replies sent by others. Four experts in
each technology were responsible for replying to queries of their respective
groups.

Training The training was performed in four stages:

1. An introduction to the Executive functionality and architecture. That was
performed during an interactive session by the developer of the software to
all the participants in the experiment.

2. Code walk-through. One group consisted of the TT, RA and MC partici-
pants, since they would all work on the Java code, and the other one con-
sisted of the SA participants that would work on C code. The walk-through
was performed by the software engineers that translated the code.

3. Use of the tools and methodologies associated with the approaches/treatments.
The participants got hands-on experience on running the tools on examples
that were different from the experiment code. The four groups received sep-
arate training during this session.

4. Rmning the Rex-er and writing p l z s . The use of the too! pi,x also demon-
strated on one of the seeded bugs of the Rover code.

4.3 Experimental Set-Up

Working hours Each version of the code to be verified was sent to all partic-
ipants at the same time through email, at the beginning of the session for the
particular version. The participants had 16 hours to work on the version. The
start and the end times of each sub-experiment were fixed. However, since each
sub-experiment was two working days, and to accommodate the constraints on
the daily schedule of the participants, they had the flexibility to schedule their 16
hours as fit. Experiments started at lpm and ended lpm, to allow for overnight
runs of the PolySpace Verifier. .

Reports Participants had to send a report to the mailing list after every hour
of work. This report accounted for the way they used their time during this hour.
The aim was for us to collect data about the relative set-up times of tools. tool
running times. time required to understand/analyze the results obtained. etc.

Moreover. participants were asked to send two types of bug reports. The first,
named preliminary bug report, was a report that had to be sent immediately
after a potential bug was encountered, together with the information (output)
provided by the tool, or the reason why this was considered a potential bug.
The second, named final bug report, had to be sent after the participants had
performed sufficient analysis of the bug, to be able to say with some confidence
whether they considered the bug in the preliminary report spurious, or real. All
teams had to provide at least the following information associated with each bug
considered real: the input thar, resulted in the manifestation of the bug (a plan.

or a property, or both), whether the bug was reproducible, and the reason why
the behavior of the system on the specific input was considered erroneous.

The intention for the bug reports was to collect data about types and percent-
ages of bugs that were found by different tools, rates of finding defects, spurious
errors reported, etc. If code fixes for a bug were available, they were provided as
soon as the bug was confirmed real.

4.4 Debriefing

After the end of the experimentl all participants were asked about their expe-
riences from the use of the tools. They also prepared written reports including
such issues a s the approach/methodology they followed, difficulties that they
faced, and potential improvements for the tools.

5 Overview of Technologies Benchmarked

5.1 Static Analysis

The PolySpace Verifier is the first commerciai tooi that uses abstract interpreta-
tion to find runtime errors. Abstract interpretation is a static analysis technique
that explores the source code of the program without executing it, and therefore
no test cases are required. The tool focuses on identifying the following errors:

- Attempt to read a non-initialized variable
- Access conflicts for unprotected shared data in multi threaded applications
- Referencing through null, or out-of-bound pointers
- Out-of-bounds array access
- Illegal type conversion (long to short, float to integer)
- Invalid arithmetic operations (e.g. division by zero)
- Overflow / underflow of arithmetic operations
- Unreachable code

In the context of the VSiV benchmarking study the static analyzer, PolySpace
Verifier, has been solely used as an abstract debugger for finding runtime errors.
The output of the tool consists of a color-coded version of the program source
code. Each potentially dangerous operation can be flagged by four colors de-
pending on how the associated safety conditions have been handled by the tool:

- Red: the operation causes a runtime error for all execution paths that lead

- Green: the operation is safe, a runtime error can never occur at that point.
- Orange: this color covers two cases:

An execution path to this operation causes a runtime error, whereas

the tool has not been able to draw any conclusion on this operation.

to that operation.

another execution path does not.

- .Grey: the operation is unreachable (dead code).

The verification process using the static analyzer starts with a piece of soft-
ware and no a priori insight on the structure of the code. This is the most
common situation: it amounts to using the static analyzer during the validation
process of a fully developed software. There are three main stages in putting the
static analyzer to work:

- Isolate the part of the code that will be analyzed and make it accepted by

- Run the analyzer and correct all certain runtime errors that are detected by

- Run the analyzer and modify the code in order to improve the precision and

the front-end. This is the compilation stage.

the tool. This is the debugging stage.

remove false alarms. This is the refinement stage.

Each of these three stages is highly iterative: the user runs the analyzer
and modifies the command-line parameters and/or the code until no more error
messages are issued. If this process had to be compared to software development,
the first stage would correspond to compiling the program and eliminating all
sy-ntauu and type errors, the second stage to debugging the program and the third
stage to optimizing the algorithms for achieving better efficiency.

The training of the participants consisted of verifying the cipher algorithm
RC4 from the ssh source distribution with PolySpace Verifier. Several runtime
errors have been artificially inserted into this algorithm.

Static Analysis Experiment Setup At the time of the experiment, PolySpace
Verifier worked only on Ada and C programs. Therefore, the participants were
given a C version of the rover executive code. The translation from C++ to C
was done automatically by a commercial compiler frontend (from Edison Design
Group). However, this led to a code explosion (due to the exhaustive nature
of such a translation) and we therefore modified the resulting code to stub out
some low level calls before giving it to the participants. We also gave the stubs
(all grouped in one file for easy access) to the participants so that they could
see how to write stubs within the PolySpace analysis context. They were free to
refine those stubs and write additional ones.

The participants used the PolySpace Verifier on two machines with the same
configuration (DELL 530 PC running Lincy). Unfortunately, in the L i n u con-
figuration we had we could not use the full power of PolySpace Verifier (Le., the
tool ran out of memory in its highest precision level). Therefore, the participants
were restricted to using the quick analysis mode and the low precision level of the
tool. We made sure that the seeded bugs could be found with these restrictions.

Finally, each version was delivered to the participants with a short description
of what changes were made to the code. The intent is to give the same type
of information a CVS repository would give in a typical NASA development
environment.

5.2 Model Checking

The Java PathFinder (JPF) model checker [15,16] is an explicit-state model
checker that analyzes Java bytecode classfiles directly for deadlocks, assertions
violations and general linear-time temporal logic (LTL) properties. JPF is built
around a special-purpose Java Virtual Machine (JVM) that allows all Java pro-
grams to be analyzed. Furthermore there are no limitations on the number of
threads, objects or classes in the program to be analyzed - in theory it can there-
fore find errors in infinite-state programs, but it cannot determine whether such
programs are correct. The level of atomicity can be set to either one bytecode
instruction or one line of code, with the latter being the default setting.

JPF supports depth-first, breadth-first as well as heuristic search strategies
such as best-first and A*. The heuristic search strategies can be guided by built-
in heuristics for finding concurrency errors, achieving structural coverage of the
code, minimize nondeterministic choice or the user can define their own heuristics
[ll]. A novel feature of the heuristic search is that it also allows the user to specify
the size of the queue of states to be analyzed next - this allows a lossy search
that focuses in on errors (somewhat like a beam-search) to deal with cases where
the state-explosion is too severe.

In order for the user to interact with the model checker a special class called
Verify has been introduced: the user can call special methods of this class
that gets intercepted during model checking. The following methods are most
commonly used:

random(n) - Returns a nondeterministic value between 0 and n - used when
modeling a nondeterministic environment.

randomBool() - Returns true or false nondeterministically - often used for
data abstraction.

assertTrue(condition) - Allows local assertions to be checked - if the condi-
tion fails an exception is thrown. Note, since the introduction of assertion
checking within Java (since Java 1.4), JPF also traps these methods.

beginAtomic(), endATomic() - Respectively indicates the start and end of
a, block of codc tha,t thc rr,odc! chcc!:er S h d d trest a =ne ?*tO,m,iC st2teITIeIlt.

ignoreIf(conditi0n) - Allows the user to truncate the analysis of a specific
behavior if a condition becomes true.

boring(condition), interesting(conditi0n) - These directives are used only
during heuristic search and respectively decreases and increases the heuristic
values for a specific state if the condition holds.

JPF cannot deal with native code - that is code that is not written in Java,
but is called from within the Java progr2rn. In these c s e s the user need to specify
the behavior of the native code and JPF will treat it as an atomic statement,
which means errors in this code might be missed. In this study no native code
was used, since we were not analyzing the actual commu@cations between the
executive and the rover hardware.

JPF Experiment Setup Abstraction is typically a very important technique
required for the success of model checking, since it combats the state-explosion
problem inherent to the analysis of complex software systems. %%-e therefore
provided z framework in which the participants could add abstractions in a
non-intrusive fashion to the code. Besides the infrastructure for adding abstrac-
tions we also gave the participants the so-called “point“ abstraction for all time-
related data - i.e. all operations on time become nondeterministic choices. We
anticipated that they would refine this abstraction to suit their needs. VC-e also
provided the Rover code with beginAtomic() and endTomic0 calls to show
where interleavings are unnecessary.

LastIy, we also provided the participants with a number of simple Rover
plans a s examples, as well as a so-called “universal” planner that can generate all
possible plan structures up to a specific size limit in a nondeterministic fashion.
The idea behind the universal planner is common in model checlung. where a
system is often analyzed within the most general environment it can operate in.

Since the participants were both familiar with model checking and more
specifically had used JPF before, the instructions on how to use the tool were
minimal. Essentially, we requested that the participants “only” run the model
checker and not run the code directly to determine where possible errors mighr;
exist - we wanted them to use the model checker to discover errors rather than
just localize errors first observed during testing/simulation. We also requested
them to determine whether errors reported were spurious or real - this meant
that they needed to understand the code quite well.

5.3 Runtime Monitoring and Analysis

Two tools were used: DBRover, which checks execution traces against temporal
logic requirements, and JPaX, which checks execution traces for deadlock and
data race potentials.

. DBRaver Run-time monitoring is a method whereby the correctness of a single
execution is validated against a set of formally stated requirements. DBRover
[9] uses Metric Temporal Logic (MTL), which essentially is Linear Temporal
Logic (LTL) extended with real-time constraints. LTL extends propositional logic
with four future time operators: Until, Eventually, Always, and Next, and four
dual past-time operators. LTL has the property of being capable of describing
many interesting properties of reactive systems. MTL exzends LTL in that every
temporal operator can be augmented with a real-time constraint. Hence, for
example, ‘z > 0 Until,5 y > 0’ meam ‘z > 0’ must be true until a future time,
at most 5 real-time units in the future, where ‘y > 0’ must hold.

The OBRover consists of a GUI for editing temporal formulae, a simulator fer
testing the semantics of the formulae, and a remote executionlvalidation engine.
The DBRover builds and executes temporal rules for a target program or app!i-
cation. In run-time. the DBRover listens for messages from the target application
and evaluates corresponding temporal formulae. Hence, in the example above.

the DBRover will listen for Boolean messages pertaining to the run-time value
of the 'x > 0' and 'y > 0' propositions, and then evaluates the corresponding
MTL formula. Monitoring is performed on-line, namely, the DBRover operates
in tandem with the target program, and re-evaluates formulae every cycle. The
DBRover uses an underlying algorithm that does not store a history trace of the
data it receives; it can therefore monitor very long and potentially never ending
target applications with no performance degradation over time.

In order to drive the DBRover temporal logic monitoring engine, the program
to be verified must be instrumented t o emit events to it. When a set of formulae
have been created in DBRover, a code snippet can automatically be generated,
which the tester then shall insert in the program to be monitored at places where
the formula should be evaluated.

JPaX The Java PathExplorer (JPaX) (121 can detect deadlock and data race
potentials in Java programs by analyzing a single execution trace. A character-
istic of the tool is that it can detect such flaws even though these do not occur
in the actual execution trace examined. The program to be analyzed is auto-
matically instrunented to emit events representing aqaisitions and releases of
locks as well as read and write accesses to variables. The lock acquisition/release
events are used by the deadlock analysis as well as by the data race analysis. The
variable re;zd/write events are used by the data race analysis. For each kind of
analysis, the tool builds an internal data structure representing an abstraction
of the execution trace. The abstraction will violate a certain well-formedness
predicate if there is an allowed permutation of the original execution trace that
causes an error (a deadlock or a data race).

The deadlock algorithm detects cycle deadlocks (where several threads ac-
quire locks in a cyclic manner, such a s for example when a thread TI acquires a
lock L1 and then a lock L2, and another thread T2 acquires these locks in the
opposite order. The data race detection uses the Eraser algorithm [14], adapted
to Java. A data race occurs if several threads access a variable at the same time,
and at least one of the threads writes to the variable. Normally variabtes must
be protected with locks to avoid this. JPaX checks that for each variable that
IS shared between several threads, there is a common lock that all the threads
acquire before they access the variable. If not, a violation is reported.

Runtime Experiment Setup Instructions for the participants were separated
into general instructions on how to use DBRover and JPaX on any application,
and specific instructions on how to use the tools on the Executive. The general
instructions for using JPaX were minimal since the tool requires no specifications
to De written and since instrumentation is perforned automatically by the tool.
Since DBRover requires specification writing, and manual code-snippet gener-
ation and insertion, the general instructions for this tool were more elaborate.
However, the learning curve did not seem to cause any problems and could be
done in a few hours.

'The participanrs furthermore were instructed on how to write temporal for-
mulae in DBRover for plans, representing the plan semantics. In general terms,
for each action node in the plan the testers were recommended to write a set of
formulae that would test that it was executed correctly. Note that although the
other groups were also given instructions on the plan semantics and its temporal
properties, the R-4 group received specific instructions.

The RA group was asked to use the DBRover as much as possible, and not
to only rely on the printed information from the program executions.

6 Qualitative Results

We will first describe the information we got from debriefing the participants
after the experiment - augmented with our own comments in italics - followed
by some final thoughts on how each technology was used.

6.1 Testing

Debriefing The initial focus wxi on finding concurrency related errors, since
the assumption was made that this will form a good basis of comparison with
model checking and runtime analysis. Note that even with this focus, testing
found less seeded concurrency errors than the other teams. Due to the time-
limitations of the experiment and the tight-coupling of the components in the
code, both unit testing and integration testing phases were skipped in favor of
system level testing. Furthermore, due to the input-output nature of the system
(plans as input and rover executive actions being observable) the focus was on
black-box testing. The system design indicated the likelihood of race conditions
and inconsistent system states due to the use of exceptions for control Bow.
Although this was a very accurate observation, the seeded errors only contained
one race error. O n the other-hand the use of exceptions contributed, in one way
o r the other, t o one seeded error and most of the unseeded errors in the code.

Since, the system consists of multiple threads: two different operating systems
(L i n u and Windows) and two different Java Virtual Machines (1.4 and 1.3.1)
were used during the testing to see if the native scheduling will show different
behaviors that will point to concurrency errors. In addition, the only other tool
support was the Java debugger environment to allow a dump of the thread's
call stacks when a deadlock was perceived - this was used to eliminate possibly
spurious deadlocks. Note, the testing team did f ind spurious deadlocks, but this
was due t o the original rover accepting multiple plans whereas the one in the
experiment only receiving one p lan - hence it could be waiting for the next plan,
which was not considered io be a deadlock, although, f rom a black-box point of
view, it looked like one. The code was instrumented te allcw rover actions to be
better observable: but care was taken to do this without modifying the system
timing. The plan parser was extended to allow the expected output to be printed
when the plan was parsed - this expected output could then be compared to the
actual output to find discrepancies.

The test strategy was to use the grammar of the plans to create test-cases that
may cause problems, e.g. having an end-time that is before a start-time in a plan,
missing parts of a plan, etc. Note, that although this was the strategy the testing
team didn’t find the only two seeded plan errors that were due to malformed plans.
The explanation f o r this i s that the testing was no t systematic and therefore
no t all the combinations of “bad” plans ere tried. During the last phase of the
testing, active scheduler variants (as apposed to passive variations from the
dfferent execution environments) were used to try and find concurrency errors,
these included, changing thread priorities, adding yield and sleep statements,
etc. These changes allowed two unknown deadlocks t o be uncovered during the
testing of the last version of the code.

The plans that produced errors in the code were kept in a regression suite
for use in later versions.

Observations The testing group took a black box approach to finding bugs.
However they did modify the code to provide more elaborate diagnostic infor-
mation via print statements. The participants recognized from the tutorial that
concurrency was extensively used and may be a major source of bugs. Thus
they focused their eBorts 011 formldating test plans that might demonstrate con-
currency bugs. They ran their tests on multiple platforms to identify whether
behavior depended upon the scheduling algorithm. For some tests they modi-
fied task priorities. They also wrote plans in which the time point in temporal
constraints were temporally close, to analyze boundary cases.

The testing group maintained a regression suite that they ran on each new
version, and so quickly identified bugs that were seeded in multiple versions.
Very limited tool support was used.

6.2 Runtime Analysis

Debriefing The JPAX tool was particularly attractive since it didn’t require
aEy user inpiit and therefcxe it was alwzys tried Erst t o find deadlocks and data
races. More complex plans were then created to flush out other errors and JPAX
was ran periodically on these new plans. Although it is possible in general, JP-4X
didn’t produce any spurious errors during the experiment. This was a particularly
interesting result, and points t o the usefulness of the approach to finding data
races and deadlocks. JPAX did miss one of the seeded deadlocks, but this was
because it c m n o t f ind so-called “wait-notify ” deadlocks, only deadlocks due to
cycles an the lock graph. No time was spent coming up with ways to make the
errors JPAX reported appear during execution; code inspection was deemed
sufficient to determine if the errors were real. Near the end of the experiment
they also constructed plans to maximize the execution of locking isstructions
to find more concurrency errors. This attempt seemed to have been unsuccessful
since n o new concurrency errors were found doing this.

DBRover had the overhead of fmt requiring one to determine a temporal
logic formula that the input plan mill satisfy and then to input this formula to

the tool. For simple plans it turned out that it was easier to just look at the
output of the run to determine if a formula was satisfied. This approach will no t
work for complex plans. The runtime team concluded that if they had a tool that
could produce the formulas for each plan automatically they would have used
DBRover more often. W e considered creating such a tool before the experiment,
but didn't do it - we have since created it and it i s now an use f o r analyzing the
current version of the Rover.

Once an anomalous behavior was detected they analyzed it in more detail, by
trying to understand what the program is doing, to determine if it was a real error
or maybe a misinterpretation of the specification. Also, they considered whether
the current error might be due to a previous error that was not corrected (yet).
The runtime team spent much more t ime analyzing the code than the testing
team did and thus p,roduced emor reports that could more easily be classified
by the experiment observers. Althou'gh we tried, it was often impossible f o r the
observers to produce a f ix f o r a n unknown error - we had fixes f o r all the known
errors. Time was also spent trying to fk errors that were found, for which no
fix was provided. Although this was a possible waste of t ime, new errors-were
discovered this way that was masked by the original.

The collaboration within the team consisted of one person coming up with
plans and the other mostly trying to locate an error after observing an anomalous
behavior. The person looking at the code was particularly good at finding errors
through inspection and acquired an understanding of the code that rivaled that of
the developer. The team members also spent a large amount of time discussing
the different errors they have found.

Observations The JPaX tool appeared to be used in the way it was intended.
When receiving a new version of the Executive. they usually started out applying
JPaX to a few simple test cases, and thereby easily discovered deadlocks and
data races this way. No advance preparation was required in addition to writing
the test cases. From time to time, in between applications of DBRover, they
further applied JPaX on some of the more complex plans, to see if it could
detect in them other possible deadlock and race conditions. Close to the end of
the time available they also tried to construct plans to maximize the coverage
of the locking instructions reported by the deadlock analysis. or determined by
examining the code that such a locking instructions was not reachable. The use
of JPaX required to check that a deadlock or race condition potential reported
was actually able to lead to a real error. For these kinds of errors the code was
analyzed to understand if the error could effectively occur or not. They did not
try to make the errors happen in the real code. The testers stated that the tool
allowed them to "easily detect deadlock and race Conditions". Stating that "We
could run it and it would come back with suspected deadlock and race condition
probIems which would have been very hard and time-consuming to find with the
traditional testing".

The DBRover was not fully used as requested. For each plan they had to write
temporal formulae, generate instrumentation and insert the instrumentation in

the Rover code. It took some time to get familiar with the notation and the tool.
Furthermore, they perceived the writing of temporal formulae as "consistent
overhead", while for most of the simple plans just looking at the output was
effective to determine if the plan behaved correctly or not. Hence, their general
working mode was to write test cases, and in some cases just run the program
while examining the output, and in some cases also writing temporal formulae
using DBRover. In some cases DBRover detected errors that were not caught by
analyzing printed results.

One of the testers was specifically responsible for applying JPaX, while both
RA participants applied DBRover. The tester that applied JPaX also wrote most
of the test cases. The other tester would mostly try to locate and often fix the
bugs in the code, and hence was the one that eventually became very familiar
with the code and found bugs by simple code inspection.

JPaX found all the cyclic deadlocks and a data race condition that were
seeded in the program quite easily. Since these are the only kinds of bugs the tool
is designed to catch, one may say that its application was a success. Furthermore,
it gave no false positives. The participants were quite happy with the tool. Of
course, the ease of use has been achieved by restricting the kind of errors that can
be found to deadlocks and data races. DBRover, on the other hand, allows much
more general properties to be analyzed, and hence also is more complicated to
use. In general, however, DBRover seemed to be less useful for the testers (their
own formulation), and the main reason for this was that it took time to write
the temporal formulae. Although this can be said to be a negative result, three
observations can be made for a positive evaluation of DBRover for testing real
systems in a realistic development environment:

- the plans used were quite small and one could manually check the outputs,
but in general plans will be very large and an automated tool to check the
properties will be required

- if an automated translation from plans to temporal formulae were available
the tool would have been used much more

- the tool is specifically useful in regression testing where large numbers of
tests iue run, which were nct the case here

6.3 Model Checking

Debriefing The team started running the model checker on the supplied code
straight-away looking for deadlocks, i.e using the supplied sample plans. They
modified the search parameters rather than modify the input plans at first. Thzs
as an contrast to the more tradztaonal testang approach, for example used by the
testang and runtame teams. When errors no longer appeared using this approach
they started using the unzversal planner - that generated all plans up to a specific
size. The universal p h n e r was used only spazingly. W e assume thzs as due to
the fac t that they wanted control over the exact plans that was used an a model
checkang run.

They found an error immediately. but then spent hours to determine that
the error was spurious due t o the abstraction of time. I t turned out that thzs

erro'r was in fact a real error, but the specific version found was spurious. One
of the team members then decided to create a more realistic version of a time
abstraction that would not allow over-approximations of time behavior. The
team didn't want to spent all their time figuring out if an error was spurious;
since the code was to complicated to understand completely in the time allowed.
This new abstraction of t ime was an under-approximation of timing behavior
and could lead to missing some errors, although it did allow all the seeded plan
errors that could be found b y model checking to be found.

Both team members cited the difficulty in understanding what the program
was doing as their major difficulty in model checking the code. This mostly
factored into the abstraction, and specifically determining whether errors after
abstraction were spurious or not. A large amount of time was also spent tuning
the model checker's search options to cover parts of the state-space that wan ' t
covered before - e.g. to cover "deep" paths without cutting too many behaviors
during the early parts of the search. The fac t that the team members knew the
model checker's search characteristics very well might have hampered them more
than it helped, since it made them spend more t ime o n tuning the model checker
than what was needed. Lastly, they didn't use any temporal properties to check
program behavior, rather encoding plan related properties as assertions. Writing
these assertions was cited as the third most time consuming activity.

Two problems in the provided code hampered the model checking team:
firstly, there were some mistakes in the atomic regions provided that would
mask some errors, and secondly, a mistake in the universal planner meant it was
not complete and certain plans were not generated. The latter problem made the
model checking team miss a plan related error until the last version when the
problem was discovered and fixed. The atomic problem was discovered early on,
but the participants spent a fair amount of the f irst version's t ime t o f ix it.

Observations After finding the first spurious error the participants abandoned
the point abstraction of time in favor of a more realistic (under-approximation)
of time. The ~ a i n reaSoE for t&s was the complexity involved in understanding
the Rover code to determine if a bug is spurious or not. This new abstraction of
time, had time starting at 0 and on each lookup of time, time either remained
the same or incremented a random amount up to a certain maximum time at
which point time stood still.

The participants only used the universal planner sparingly: first they would
try and uncover bugs with the concrete plans provided (and small modifications
thereof) and only after e.xhausting most of their ideas would they turn to the
universal planner to discover errors.

During the running of the JPF tool most time was spent in trying differ-
ent search strategies to reach different parts of the state-space. These mostly
included setting different parameters for the heuristic facilities provided by the
tool.

The participants used the point abstraction of time and the universal plan
less than we anticipated. We beiieve this to be due to the fact that we knew

the code much better than they did and could find all the known bugs with the
abstracted code, whereas they found spurious behaviors early on and decided
rather to abandon the abstracted code for something more realistic (although at
the risk of missing some errors). This was a good decision on their behalf since
they clearly spent less time on determining whether bugs were spurious than
what we anticipated, but still found almost all the known errors.

6.4 Static Analysis

Debriefing The participants had problems optimizing the analysis given that
they had two computers at their disposal. Long analysis runs generally took
eight hours, and up to, in at least one case, 23 hours. This prevented them
from running concurrent analyzes on the same artifact because the concurrent
analyzes destroy each other’s result as they go along. Actually, there is a simple
solution to this problem: duplicate the artifact o n two diflerent physical locations
so that the analyzes can be run in parallel.

Their main strategy was as follows:

1. Run PolySpace
2. Ana!yae red check (definite errors)
3. Analyze gray checks (dead code, possibly due to errors)
4. Analyze orange checks (possible errors)

This already reveals a problem; dead code is indicative of errors only i f it follows
a definite error. Therefore, manually analyzing dead code will not help in finding
more errors. I t will jus t delay the analysis of the possible errors. This aspect
somehow eluded the participants.

Not surprisingly, the participants encountered dacul t ies analyzing pQssible
errors. There was very little feedback from the tool, and no way to let the
tool know which errors were spurious. Many possible errors were caused by the
imprecision of the analysis and the imprecision of stubs. They therefore use the
following strategy:

I - 1. Read the code to look for errors:
2 . Iterate through the possible errors item by item.
3. Simplify the code and stubs so that PolySpace could do a better analysis.

This points actually illustrates one of the biggest di f icul ty when usang static
analysis tools. In dealing with possible errors, it helps a great deal i f one knows the
algorithms used by the analysis. It allows the user to make intelligent decisions
about improving precision (other than raising the precision level, which was not
an option an this case). For example, knowing the source of approx%mations in the
analysis algorithms m a y help you avoid wasting t ime o n trying to lij? uncertainty
on some possible errors.

The participants felt that reading the code violated the spirit of the experi-
ment. They however did some of it and actually found errors that could not have
been found b y the tool, e.g., correctness issues Overall, they found that reading
code was difficult because of the mature of the code that they analyzed.

Iterating over the errors was also difficult, because it was not supported by
PolySpace. They would have liked support for:

1. Recording which warnings were spurious, therefore oranges were reanalyzed.
2. Annotations that record variables that are defined/properly aligned.
3. The types of the variables and sub-expressions involved in the problem. In

more than one case, the bug involved knowing that a variable or subexpres-
sion was signed versus unsigned. This led to false dismissals of real problems.

4. Example paths/data values to demonstrate the problem.

Overall, they favor the option of simplifying the code (which i s a really bad
idea since you are no t analyzing the real code anymore), and working on the
stubs (this also led them to get confused and start reporting stub errors instead
of code errors).

Observations The users of the static analyzer spent a lot of time trying to re-
move orange alerts by adding assertions into the code (refinement). Their efforts
were mostly vain because the assertions they inserted could not be taken into
account precisely by the too!. Performing refinem-ent efficiently requires a very
good knowledge of the abstract interpretation used b y PoljiSpace Verifier. This
can be interpreted as a limitation of the tool.

During the reviewing process of orange alerts, some obvious runtime er-
rors were completely overlooked whereas numerous spurious bugs were reported.
There are two interpretations:

- The domain of applicability of each operation flagged as orange should be
carefully checked in every possible execution context. The overwhelming
amount of orange operations makes this process very difficult to apply rig-
orously.

- Most importantly, the notion of runtime error was loosely interpreted: a
runtime error is the violation of a safety condition which is clearly defined
by the programming language (in this case C) specification for each oper-
ation. Several (spurious) bugs that were not related to the violation of a
safety condition have been reported. Similarly, the users of the tool spent
a substantial amount of their time trying to increase the number of execu-
tion paths that could be analyzed by the tool. This resulted into unduly
modifying the original program or trying to make dead code reachable.
On the positive side, while sorting the orange alerts. the participants read
the code with careful attention. It resulted in finding four correctness errors
(e.$., erroneous conditions in conditional statements and loss of precision
problems), which were unseeded. Correctness errors are typically not caught
by a tool like PolySpace Verifier. So. as it has been observed with other
formal methods, using the tool brought a new, sharpest, sense of attention
to reading the code, and it resulted in finding errors. In all cases, these
errors were found around the 9th or 10th hour of running the experiment.
This reflects the fact that it takes a long time to sort through the orange
alerts, which corresponds to the period of increased actention.

Similarly, as expected, we noticed that errors that are easy to understand
such as attempts to access non-initialized variables were caught much faster
than others such as overflow problems. In the case of overflows, it takes a
while to be convinced that it is a real problem. Most of the time, these errors
reflect type clashing that results in theoretical overflow rather than realistic
ones (in the sense that the program might never execute long enough to
reach the overflow).

7 Quantitative Results

In this section we will give some qualitative results from the study. Due to
the complexity of setting up an experiment like this it is impossible to draw
statistically valid conclusions. We’ll nonetheless give our interpretation of the
results in the hope that it’ll serve as a source of reference for similar studies.

The static analysis portion of the results were obtained on a different version
of the code than the other techniques, and furthermore, static analysis looked
for a different set of errors since the errors from the CVS log were not suitable
for static analysis. For these reasons we only concentrzte on the resdts from
model checking, runtime analysis and testing in this section.

Note that a vast amount of data was collected during this study, but here we
only highlight some selected pieces.In the future we hope to make all the data
available for the research community to interpret.

7.1 Finding Seeded Bugs

2 4
P

2

0

total TT MC Ri

deadlock datarace plansemantics

Fig. 3. Seeded Bugs found by each technique. I

Figure 3 shows how the different techniques performed when looking for the
seeded errors. Although we started with 1 2 errors, one was used for illustration
during the training phase and one of the race errors was unreachable in the
version of the Rover the pxticipants worked on. The advanced took - model
checking and runtime analysis - performed better on the concurrency related
errors. This was a result we anticipated beforehand, and is also common folk-
lore in the verification community. The fact that testing performed worse than
model checking in all categories was somewhat of a surprise. Runtime analysis
outperforming testing is not surprising, since runtime analysis can be seen as an
advanced form of testing.

version 1 version2 . version3 . - /

TT

Iu

MC

0 8 16 23 32 40 48

hours

deadlock 8 data race 0 plan semantics kd spurious unknown

Fig. 4. Time-line for seeded and unknown (dotted boxes) bug discovery across Versions.

In Figure 4 we can see the breakdown per day of the bugs found on a 45 hour
(6 day - 3 2-day sessions) time-line. For the known bugs one can also see when
each team found the bug, since the bugs are numbered. The spurious errors as
well as the unknown bugs are also shown. As pointed out before, we focus on
the known bugs, since it was often impossible to tell if a unknown bug is not a
(different) manifestation of another unknown bug (or maybe even a known bug).
Note that Figure 4 doesn’t show the exact times when a bug is found, rather all
the bugs discovered are grouped per the day it was found.

The first observation is that for model checking spurious errors decrease
across the three versions. Thls is due to the participants becoming more familiar
with the code and also developing better abstractions as the experiment contin-

ued. This seems to indicate that the start-up cost t o establish a framework for
efficient model checking can be amortized effectively for verification of long-term
systems/projects. For runtime analysis spurious errors were almost nonexistent
- the one reported was due to a misunderstanding of the Executive behavior -
the two spurious errors for testing also fell into this category.

For runtime analysis that the deadlock and race checking were ran near the
start of each experiment - within the first day of each version there is a race and
a deadlock found (except in the 3rd version where the seeded deadlock was not
of the kind that the runtime analysis could detect).

Deadlock 3 is very simple and was found early on by all three methods.
Deadlock 1 on the other hand is more subtle, but both model checking and
runtime analysis found it early in version 2 (the only version in which that error
was seeded), end testing never found it. Deadlock 2 was the most complex of the
deadlocks seeded and it was only present in the last version. Deadlock 2 was only
found by model checking; note that the runtime analysis tool could not detect
this kind of deadlock. There was only one race violation bug in the code and
it was seeded in all three versions. Runtime analysis is geared to finding these
efficiently and found it in each version. The model checking team on the other-
hand o&- attempted to find race e r r m later cn in the experiment and therefore
only found the bug in the last version. A race violation is almost impossible to
find with black-box testing and hence testing didn’t find this error.

Testing did well on the seeded plan errors, but although the focus was on
trying to create potentially “problematic” plans (see section 6.1 for the debrief-
ing of the testing team) they didn’t find plan bugs 2 and 4 that were caused by
malformed plans. Runtime analysis performed best on plan errors. Interestingly
though, many of the plan errors that they discovered were by using very similar
techniques to the testing team - Le. printing observable Rover executions and
comparing it with expected results. The DBRover tool that could have auto-
mated this process for them was not used as extensively as expected due to the
constant overhead of adding temporal formulae for the tool to check when it
was easier to just look at the printing - see section 6.2 for the debriefing of the
testing team. Model checking didn’t find many plan errors early in the experi-
ment since they focused on finding errors by tuning the model checker’s search
strategy while keeping the plan constant - with the hope of finding concurrency
errors.

Testing and runtime analysis found a large number of previously unknown
errors, but interestingly many of these errors were only found by the respective
tools, i.e. the ones testing found was not found by runtime analysis and vice
versa. We conjecture that this is symptomatic of the fact that the observers
could not adequately determine the cause of each anomaly reported by these two
teams. The reason of course being that for both runtime aoalysis and testing
the diagnosis of each error is hard since, unlike with model checking, there is
no trace that shows the error happening. Interestingly, the only two unknown
errors found by model checking was also found by the other tools (testing found
one and runtime analysis found one).

- 7.2 Tool Usage

Figures 5 , 6 and 7 shows how the participants spent their time during the analysis
of the three different versions of the code: The inforzation for these fi,wes were
constructed from the hourly reports that the participants provided during the
experiment. The different categories were defined roughly as follows:

Delays: This includes waiting for hardware or tool failures to be resolved, as
well as time spent waiting for feedback on questions to the "developers".

Setup/Preparat ion: This category had a different meaning to each group.
For example for model checking this included time to create abstractions,
writing properties and test-cases, whereas for runtime analysis this mostly
included creating properties and test-cases, and for testing, the activity of
creating test cases and instrumenting the code (for example, adding print
statements).

Running t h e rover: Not really relevant for model checking, but essential for
runtime analysis and testing.

Running t h e tool: Testing didn't really use any tools, but model checking and
runtime analysis were tool-based.

Result Analysis: This is the time spent determining what the cause of an error
is. For model checking and to a lesser extent runtime analysis tkis involves
determining whether an error is spurious or not.

VERSION 1 CornDanson of Time Soent Cornpletinq Cateqones With Different Tools

CatSgCiL'

Fig. 5 . Time usage during version 1.

. ^

The most notable observation is that the model checking participants used
the tool a great deal - essentially running the tool a t all times while doing other
activities. There is less time spent running the model checker in the first version,
obviously due to getting to grips with the problem, and then in the other versions
almost 100% tool usage is reported'. This is due to the fact that the model checker
is quite slow on such a large example.

VERSION 2 . Comparison of Time Scent CornDletina Cateaories With Different Tools

Category

Fig. 6. Time usage during version 2.

Another observation for the model checking group is that they spent more
time on setup in the first version than the next two. This also confirms the
suspicion that when using a complex tool such as a model checker, it takes some
time to setup the ideal worlung environment before any meaningful work can be
done. A similar pattern is seen for runtime analysis - again as to be expected.

The testing group didn't spend much time analyzing the errors they found.
This put much more of a burden on the controllers of the experiment to determine
which of the known bugs, if any, they found. The other two groups spent quite
large amounts of time on determining the cause of errors in the first version, but
far less on the later two versions. We assume this is due to having to understand
the code in the beginning, whereas later they could go through error-traces more
quickly.

VERSION 3 Comparison of T m e Speqt Cornpletirg Categones With Different Tocls

6 p I000 -
s -
L m a

Delays Set-IJplPnparaaon Rlnnmg Rover R m q Tool Rewit Amlyru

Category

Fig. 7. Time usage during version 3.

8 Conclusions

We described an experimental study to determine the relative strengths of three
advanced verification and validation technologies, namely, static analysis. model
checking and runtime analysis. compared to traditional testing for finding errors
in a representative example of Mars flight software. A conservative estimate
on the amount of effort in setting up and running the experiment, as well as
interpreting the results. is one man-year. An anecdotal observation is that this
experiment inspired a rewrite of the Rover Executive.

The most important conclusion we drew from this study is that one should
conduct such a complex study in the most controlled fashion possible. Although
for the most part we achieved this goal, one area where we didn’t, was in un-
derstanding the code sacient ly . This meant that in the end there was a large
number of previously unknown defects reported that we could not adequately
classify - although we knew they were not one of the seeded errors we couldn‘t
determine if they were all unique etc. We didn’t expect any unknown errors; and
hence we have missed the opportunity to also conclude information about these
errors. We decided to exclude them completely- from making any judgements
about the relevant merits of the techniques.

A consequence of the static analyzer not working on the same notation as
the other tools was that we could not make any comparisons between it and
the other techniques. Although we believe the information obtained from the
study of the PolySpace Verifier turned out to be very useful and has guided our

,

own research in a significant fashion. The most notable conclusion we drew here
was that for complex static analysis, such as done by PolySpace. the tool users
require knowledge about the underlying algorithms to adequately use the tool.

With respect to the analysis of the Java version of the Rover the following
general observations were made:

- The advanced tools performed very well on concurrency related errors, where
traditional testing often performs worst - as it did here.

- Runtime analysis is a light-weight technique that produces very few spurious
errors, and should always be one of the first techniques to be used on new
code.

- Model checking requires some initial start-up costs, for example in coming
up with suitable abstractions, but once this is done it can be reused (hence
amortizing this cost over the rest of the verification phase).

- Using abstractions during model checking forces a very good understanding
of the code to determine whether errors are spurious or not.

- A major weakness of black-box testing is that it doesn’t typically provide
enough information to diagnose the cause of an error. Runtime monitoring
also suffers from this problem, but to a lesser extend, since the monitoring
of the events allows for a partial trace to the error to be observable. Model
checking gives a precise trace, but it might be spurious if abstractions were
used.

One of the goals of the experiment was to determine synergies between the
different techniques for finding errors in flight software. To this end we have
developed a framework for analyzing the rover executive inspired by our obser-
vations of the experiment. The framework combines model checking and runtime
analysis techniques in a novel way [3].

It was clear that runtime analysis and monitoring were very successful in
uncovering the seeded errors, but since both these techniques require the code to
be executed, they are only as effective 3s the test-inputs they are being executed
with. In other words one requires good coverage of the input space for this type
of analysis to uncover errors - note that in the experiment testing missed two
errors due to malformed plans although that was their focus, simply because
they were not exhaustive in creating such bad plans. Model checking on the
other hand is good at systematically analysis, for example, covering all input
plans up to a specific size for the rover - as was done with the “Universal”
planner in the experiment. Lastly, the runtime team didn’t use the monitoring
facility of DBRover as much a s we thought they would, due to the effort involved
in writing the temporal formulae to be monitored for each plan. Our framework
therefore combined the model checker’s ability to create all plan structures (up
to a specific size) and temporal formulas that each such plan should satisfy with
a temporal monitoring facility to check that each plan is executed correctly.

Acknowledgement We would like to express our gratitude to the partici-
pants of the experiment, without whom this experiment would never have been
possible: Jamie Cobleigh, Alex Groce, Oksana Tkachuk, Owen O’Malley, Flavio
Lerda, Masoud Mansouri-Samani, Peter LVehlitz and Phil Oh.

References

1. J.-R. Abriai, E. Borger, and H. Langmaack. Formal Methods for Industrial Appli-
cations: Specifying and Programming the Steam Boiler Control. In LNCS, volume
1163. Springer-Verlag, October 1996.

2. C. Artho. Finding Faults in hlulti-Threaded Programs. Master Thesis, Institute of
Computer Systems, Federal Institute of Technology, Zurich/Austin, October 2001.

3. C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu,
G. Roau, and W. Visser. Experiments with Test Case Generation and Runtime
Analysis. In E. Borger, A. Gargantini, and E. Riccobene, editors, Abstract State
Muchines (ASM’O3): Lecture Notes in Computer Science, pages 87-107. Springer,
March 2003.

4. G. S. Avrunin, J. C. Corbett, M. B. Dwyer, C. S. Pasareanu, and S. F. Siegel.
Comparing Finite-State Verification Techniques for Concurrent Software. Tech-
nical Report Uhl-CS-1999-069, Department of Computer Science, University of
Massachusetts at Amherst, USA, 1999.

5. B. Boehm and D. Port. Defect and fault seeding in dependability benchmarking.
In Proc. of the DSN Workshop on Dependability Benchmarking, June 2002.

6. A. T. Chamillard, L. A. Clarke, and G. S. Avrunin. -4n Empirical Comparison
of Static Concurrency Analysis Techniques. TR 96-84, Department of Computer
Science, University of Massachusetts, 1997.

7. B. P. Collins and C. J. Nix. The Use of Software Engineering, Including the Z,
Notation, in the Development of CICS. Quality Assurance, 14(2):103-110, Sept.
1988.

8. J. C. Corbett. Evaluating Deadlock Detection Methods for Concurrent Software.
IEEE Trans. Softw. Eng., 22(3):161-179, Mar. 1996.

9. D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model Checking
and Software Verification, volume 1885 of LNCS, pages 323-330. Springer, 2000.

10. S. Duri, U. Buy, R. Devarapalli, and S. M. Shatz. Application and Experimental
Evaluation of State Space Reduction Methods for Deadlock Analysis in Ada. ACM
Trans. Softw. Eng. Meth., 3(4):340-380, Oct. 1994.

11. A. Groce and W. Visser. Model Checking Java Programs using Structural Heuris-
tics. In Proceedings of the 2002 International Symposium on Software Testing and
Analysis (ISST-4). ACM Press: July 20.32.

12. K. Havelund and G. Rogu. Monitoring Java Proirams with Java PathExplorer.
In Proceedings of Runtime I/erification (RV’Ol), volume 55 of Electronic Notes in
Theoretical Computer Science. Elsevier Science, 2001.

13. Polyspace. h t t p : //m-.polyspace. corn.
14. S. Savage, bl. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A

Dynamic Data Race Detector for hlultithreaded Programs. ACM Trunsactions on
Computer .System, 15(4):391-411, Nov. 1997.

15. W. Visser, K. Havelund, G. Brat, and S.-J. Park. Model checking programs. In
Proc. of the 15th IEEEInternational Conference on Automated Software E,ngineer-
ing, Grenoble, France, September 2000.

16. W. Visser, I(. Have!und, G. Brat, S.-J. Park, and F. Lerda. Model checking pro-
grams. Automated Software Engineering Journal, 10(2), Arpil 2003.

17. R. Washington, K. Golden, and J. Bresina. Plan execution, monitoring, and
adaptation for planetary rovers. Electronic Transactions on Artificial Intelligence:
4(.4):3-21, 2000. http://wwtc-.ep.liu.se/ej/etai/2000/004/.

18. J. C. Widmaier, C. Smidts, and X. Huang. Producing More Reliable Software: Ma-
ture Software Engineering Process vs. State-of-the-Art Technology. In Proceedings
of the 22nd International Conference on Software Engineering, Limerick, Ireland.,
pages 87-94. ACM Press, June 2000.

