
Formal Methods in System Design, 25, 241–270, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Lessons Learned from Model Checking a NASA
Robot Controller

NATASHA SHARYGINA nys@sei.cmu.edu
School of Computer Science and Software Engineering Institute, Carnegie Mellon University, 5000 Forbes Ave.,
Pittsburgh, PA 15213, USA

JAMES BROWNE browne@cs.cmu.edu
FEI XIE feixie@cs.cmu.edu
School of Computer Science, The University of Texas at Austin, Austin TX 78712, USA

ROBERT KURSHAN rkurshan@cadence.com
Cadence Design Systems, Inc., 571 Central Avenue, New Providence, NJ 07974, USA

VLADIMIR LEVIN vladlev@microsoft.com
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA

Received August 25, 2003; Revised February 10, 2004; Accepted March 24, 2004

Abstract. This paper reports as a case study an attempt to model check the control subsystem of an operational
NASA robotics system. Thirty seven properties including both safety and liveness specifications were formulated
for the system. Twenty two of the thirty seven properties were successfully model checked. Several significant
flaws in the original software system were identified and corrected during the model checking process. The case
study presents the entire process in a semi-historical mode. The goal is to provide reusable knowledge of what
worked, what did not work and why.

Keywords: software verification, component-oriented software development, abstraction, compositional
reasoning, executable design specifications

1. Introduction

Motivation. Control systems ranging from smart cards to automated flight control are
increasingly being implemented through software systems. Errors in these software systems
can cause severe consequences. Verification by model checking has great potential for
enhancing the correctness and thus the reliability and robustness of software systems. But
application of model checking to software systems is still in an early stage of development.
There have been few in-depth reports of case studies or systematic analyses on model
checking of non-trivial software systems. There is little conventional wisdom for application
of model checking to software systems although successful application of model checking
to hardware systems gives guidance for system design.

This paper gives an end-to-end case study of the application of model checking to a
significant software system, the control subsystem of a NASA robotics system. The goal is

242 SHARYGINA ET AL.

to provide reusable knowledge of what worked and what did not work during model checking
of a control software system and why. Model checking of a software system for a property can
be accomplished only if the state space for checking the property on the software system is of
tractable size. Therefore much of this case study was devoted to obtaining representations of
software systems which both faithfully implement the functionality of the software system
with respect to a property and at the same time have tractable state spaces.

Project overview. The goal of the project was model checking the control subsystem of the
OSCAR (Operational Software Components for Advanced Robotics) [17]. OSCAR forms
the basis of an operational robot control system designed for basic manipulator control
extended with robot performance optimization. OSCAR incorporates kinematics, control,
performance optimization and an operator interface. The subsystem of OSCAR which was
model checked amounted to about 45,000 lines of C++ in the original code. The model
checking system used in this case study was the OBJECTCHECK [45] system. Software
systems to be model checked are specified in XUML [43], translated to the SR language
(input language of the COSPAN model checker [13]) and model checked by COSPAN. The
case study took over two years to complete and was effort intensive.

The project was a set of learning stages which evolved into an orderly process. The
verification process which emerged from the project may be applicable to other large-scale
control software systems. The presentation is “semi-historical”. The presentation imposes
some order on the learning process and reports on efforts that failed and from which we
learned.

Three core concepts emerged from the project. The first is that software systems which
are to be verified by model checking should be designed to enable model checking. This
concept was enabled by defining a design template [39] for constructing model-checkable
systems in XUML. A second core result was development of a structure and behavior specific
state space reduction algorithm [38] targeting loop-intensive control system software. The
third basic result is that use of executable design level specifications which can be tested at
design level but compiled to conventional procedural programs bypass some of the sources of
difficulties and errors in directly model checking programs in procedural code. The “many
model” problem is avoided since all operations (i.e., property specification, finite state
model extraction, abstraction, decomposition, etc.) can be made on the same (design-level)
representation or result from an automated transformation of the representation. Property
specification is more simple for XUML programs than for procedural programs.

Additionally, this case study provides extensive analysis of the effectiveness of various
existing state space reduction techniques to software systems and provides recommenda-
tions for the systematic and effective application of integrated state space reduction during
verification of software.

Paper structure. The paper is organized as follows. Section 2 presents the verification
framework. Section 3 describes the robot controller system and discusses initial attempts to
model check software. Section 4 defines properties of the robot controller system. Section 5
presents the verification results for the integrated state space reduction approach. Section 6
presents a loop abstraction technique and demonstrates its advantages during verification
of the robot control algorithms. Section 7 gives a summary of the verification results and

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 243

reports errors found by model checking. Section 8 summarizes the lessons we learned and
gives a set of recommendations on how to use model checking in the context of large-scale
systems. Section 9 draws conclusions and outlines related work.

2. The verification framework

This project was executed using the capabilities provided by the OBJECTCHECK [45] sys-
tem. OBJECTCHECK integrates a commercial environment [36] for development of software
systems as executable design level specifications in XUML [40, 43] with the COSPAN [13]
model checking system. OBJECTCHECK integrates model checking into a total software
development process for systems specified in XUML. This project overlapped the develop-
ment of the OBJECTCHECK system and motivated development of some of OBJECTCHECK’S
capabilities and features.

2.1. The software representation

XUML [40, 43] is a dialect of UML [5] with an executable semantics. XUML representations,
while they are considered design level representations, have an executable semantics and
can be tested by execution and automatically translated to procedural languages to obtain
a conventional implementation of the software system. A software system designed in
XUML is a composition of objects where the behavior of each object is controlled by a
state machine communicating asynchronously with other object state machines through
non-blocking FIFO buffers. State transitions and actions are triggered by inputs from the
buffers and perform variable assignments, and signal outputs. XUML programs have an
asynchronous interleaving semantics. XUML is fairly widely used for implementation of
embedded software systems. Commercially supported development environments including
testing and validation and code generation are available [4, 18, 35, 36]. The commercial tool-
set OBJECTBENCH [36] developed by HyPerformix Inc. is used in the OBJECTCHECK system.
It includes a graphical editor, testing and animated debugging of the model and a compiler
for translation from the model to C++ code. OBJECTBENCH was used for capturing and
validating XUML designs of the robot controller software, for visualizing communication
sequences among the objects composing a system contained in the error traces generated
by a model checking tool and for replaying these sequences on the XUML specification to
ease error identification.

2.2. Translation tools

The core of OBJECTCHECK is a translator from XUML to the SR language of COSPAN.
OBJECTCHECK also provides capabilities for translation of properties specified in the names-
pace of the XUML program, for mapping and replaying COSPAN generated error tracks
in the OBJECTBENCH animated debugger and for applying source to source transformations
to implement abstractions and state space reduction algorithms. The OBJECTCHECK trans-
lator, XUML2SR, converts the original graphical representation of an XUML system into

244 SHARYGINA ET AL.

a textual form and then translates it, together with the property to be model checked, into
operationally equivalent SR code. The translator may apply transformations to implement
an abstraction appropriate for the property to reduce the state space of the state-transition
graph specified by the XUML system including variable range bounding and static partial
order reduction, SPOR [20].

2.3. Verification tools

COSPAN [13] uses the automata-theoretic approach to model checking [21]. Verification
is by the automata language containment test. Language containment can be checked in
COSPAN by either a symbolic (BDD-based) algorithm or an explicit state space enumera-
tion algorithm. COSPAN implements multiple automated state space reduction algorithms
including localization reduction, automated predicate abstraction, partial order reduction
and also supports an assume-guarantee style of compositional reasoning. When COSPAN
applies the state space reduction techniques it transforms a given SR program into a seman-
tically equivalent one (with respect to a property or a set of properties) with a reduced state
space.

2.4. Verification methodology

The methodology is described here as it finally evolved, not as we began the research. An
essential element of the research is that abstractions and state space reduction algorithms
are applied to both the software design model and model checkable representations.

The methodology for verification of software was devised as follows. An XUML repre-
sentation of the software system which conforms to the design methods given in Sections 3,
6 is prepared. This XUML program is tested and validated just as though code were to
be generated for the program without model checking. Model checking is then applied as
follows:

1. The property is defined in an XUML representation of the property specification language
of the COSPAN model checker [45].

2. The abstractions and state space reduction algorithms to be applied at the XUML model
level are selected.

3. The model and the property are translated to SR with application of the selected abstrac-
tions and state space reduction algorithms.

4. The translated system is model checked by the COSPAN model checker with different
choices of state space traversal methods and state space reduction algorithms.

5. If the property does not hold the error track provided by COSPAN is translated to an
XUML representation and replayed in the development environment to diagnose the
error.

6. If model checking cannot be completed (a common occurrence!), then the property and
the abstraction are revisited and alternative or new state space reduction methods are
applied.

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 245

Figure 1. Integrated state space reduction approach.

The integrated design- and model checking-level state space reduction methodology is
illustrated in figure 1. Steps 1–3 are applied at the design level of software thus enabling
design level property specification and program abstraction. The design level property
specification abstraction is done by the software designers. Design-level abstractions can
be defined and applied based on the domain knowledge without constructing the state graph
of the program. Several design techniques for specification of XUML models were defined.
The design level techniques include: (a) domain-specific bounding of program variables; (b)
a design method which enables application of compositional model checking and (c) a loop
abstraction technique that reduces the state space of the verifiable system by compressing
loop transitions. These techniques were designed to create a model checkable/reduced com-
plexity version of software. Step 4 is the model checking step, where we attempted to define

246 SHARYGINA ET AL.

a systematic approach to application of various state space reduction techniques. Reduc-
tion techniques supported by OBJECTCHECK and COSPAN systems that were used in this
work include localization reduction [21], symbolic verification[24], automated predicate
abstraction [30], static partial order reduction [20], and assume-guarantee style of compo-
sitional reasoning [21]. OBJECTCHECK and COSPAN state space reduction techniques are
discussed next. The design-level techniques are presented in Sections 3 and 6. The strength
of the methodology is in the symbiosis of the design and model checking-level state space
reduction techniques.

2.5. State space reduction techniques

Compositional reasoning. The compositional reasoning approach aims to establish
whether for given programs M1, M2 and specification T , the composed system satisfies
T (written M1 ‖ M2 |= T). A naive compositional approach proceeds by executing the
following steps: (1) M1 |= T and (2) M2 |= T , and conclude by proofs that M1 ‖ M2 |= T .
Though, this rule is sound in theory, it is often not useful in practice—both M1 and M2

usually satisfy T only in a suitable environment. To solve this problem, the compositional
principle can be strengthened to an assume-guarantee principle: in order to check M |= T ,
it suffices to check local properties T1 and T2 of local components M1 and M2 respectively:
M1 ‖ T2 |= T1, M2 ‖ T1 |= T2. This obligation uses the local specification T1 as the con-
straining environment with regard to the behavior of M2 taken in isolation from M1, and
it uses T2 to constrain M1 from M2. In general, for a system composed of multiple pro-
cesses, assume-guarantee reasoning succeeds as long as it can be shown that each system
component, Mi , satisfies a corresponding specification component, Ti , under a suitable
constraining environment.

In this work we applied assume/guarantee reasoning based on the property decomposition
type of compositional verification [21]. Verification proceeded through the following two
steps:

1. Decomposition of global properties of a system into a set of local properties of the
system components;

2. Verification of each property on the corresponding component. The procedure entailed
using a particular environment representing an abstraction of the remaining compo-
nents. Scalability of the compositional verification was addressed by specification of
abstraction constraints of varied complexity.

Localization reduction. Given a model and a property, COSPAN automatically applies
localization reduction [21] (also known as cone of influence reduction [8]). Localilization
reduction is an iterative abstraction/refinement algorithm. Variables of the model not de-
pendent on the variables in a property are assigned non-deterministic abstract values and
the abstract model is checked for the property. If the property is satisfied on the abstracted
system then the property is also satisfied for the original system.1 If a counterexample is
generated on the abstracted model and it is spurious for the concrete program, it is used
to refine the set of variables to which non-deterministic values have been assigned. This

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 247

process is continued until either the property is satisfied, a counterexample is generated on
the original system or the process exhausts its resources. In practice, since the set of abstract
values is defined over a small domain, this process always terminates.

Partial order reduction. Under partial order reduction (POR) [31], the state graphs are
reduced because properties are verified without exploring all interleavings of executions of
independent transitions. In the framework of this report, POR was used in combination with
a set of other reduction techniques (as specified in figure 1). The integrated application of
POR was made possible by using static POR, SPOR. The SPOR transforms XUML models
using the procedure specified in [20] prior to translation to SR by restricting the XUML
transition structures with respect to a verifiable property.

Symbolic model checking. Represents the state transition structure of an xUML model with
binary decision diagrams, which enables manipulation of entire sets of states and transitions
instead of individual states and transitions. Symbolic verification has been reported to be
highly effective in verification of industrial size hardware systems and it is a primary model
checking approach in hardware verification.

Predicate abstraction. Introduced by Graf and Saidi [12], is a popular form of over-
approximation. The basic idea of predicate abstraction is to replace a concrete variable
by a Boolean variable that evaluates to a given Boolean formula (a predicate) over the
original variable. This concept is easily extended to handle multiple predicates and, more
interestingly, predicates over multiple variables. Replacing concrete transitions with abstract
transitions can be performed automatically with the aid of decision procedures. It can take
place dynamically during the state graph generation or statically before the state graph
generation.

We used a prototype predicate abstraction tool supporting the predicate abstraction al-
gorithm reported in [30]. The abstraction tool performs syntactic program transformation
prior to construction of the system state graph. As a result it permits application of other
state space reduction methods during model checking.

Domain-specific bounding. Model checking can be accomplished only for finite state
systems. In adopting model checking for verification of infinite systems, the usual practice
is to perform discretization and bounding of the program variables. That is usually done
during modeling of the program specifications. For example, a continuous infinite data type,
like the real type, is discretized and represented by an integer interval type. Integer variables
are given bounded ranges sufficient to capture all possible values which can occur in any
execution of a program. This work uses domain-specific bounding of program variables to
reduce the variable domains to minimum sizes. The bounding is performed in the XUML
models using the XUML annotation language [36].

3. Design and analysis of the robot controller system (RCS)

The test-bed software system implements the NASA robot control algorithms developed by
the Robotics Research Group of the University of Texas at Austin and the NASA Johnson

248 SHARYGINA ET AL.

space center robotics group. The algorithms were combined into the Operational Software
Architecture for Advanced Robotics (OSCAR). OSCAR implements kinematic and dy-
namic control, robot performance evaluation and optimization, communications between
peripheral devices, evaluation of sensor data, and interface with an operator. OSCAR was
designed for control of redundant robots with multiple joints and multiple degrees of free-
dom. A redundant robot can reach a specific end-effector position through a large number
(possibly infinite) set of robot joint displacements. Failure tolerance and recovery is one
of the applications of redundancy: if one actuator fails, the controller locks the faulty joint
but the robot continues to operate so long as sufficient joints are functioning correctly. The
general task of the test-case software is to move a robot arm along a specified path to a given
end effector position given physical constraints (e.g. obstacles, joint angles, etc.). Efficient
operation of a redundant robot requires selection of the “optimal” arm configuration to
place the end-effector in the specified position. This decision-making problem is solved by
applying performance criteria and various optimization algorithms [16, 17, 29, 33]. A detail
of a redundant robot executing a simple exploration strategy for reconfiguration of the robot
arm is shown in figure 2, with θ—being a joint angle, and δ—being a trial displacement. The
complexity of robot operation and the robot controller software increases with the number
of joints and the number of degrees of freedom. The complexity of model checking also
increases as the complexity of the software increases. Realistic fault-tolerance may require
at least six joints. For a complete description of the robot functionality implemented in
OSCAR refer to [17].

The size of the OSCAR implementation examined in this research was roughly 180
KLOC. It consisted of 120 C++ classes implementing more than 600 methods. The origi-
nal implementation of the robot controller was a carefully designed and engineered C++
program. The original program, while conventionally object-oriented, had become, over
time, difficult to test, maintain and modify. A dependency analysis of the original program
revealed multiple hierarchical dependencies among classes. The difficulties in analysis were

Figure 2. A part of a redundant robot, demonstrating a large number of manipulator configurations for a single
end-effector position.

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 249

largely due to these complex multiple dependencies among OSCAR classes. While concep-
tually the existence of the derived classes simplifies the code’s structure, in practice it leads
to highly complex implementations. These dependencies among classes were introduced by
multiple developers modifying and extending the system to meet additional requirements.

Robot control was designed to be distributed over multiple computers both for simulation
and control. Distributed control complicates analysis of the system behavior. Distributed
control requires careful attention to synchronization of updates for control variables. Syn-
chronization faults may lead to inconsistent values for control parameters. This may lead to
incorrect or faulty behavior of the robot. Synchronization errors are often difficult to detect
by testing since the non-deterministic actions introduced by synchronization errors may
be non-reproducible. The complexity of analyzing distributed algorithms, together with
the stringent reliability requirements for robot functionality suggest model checking-based
verification, with its complete exploration of all possible behaviors.

3.1. xUML representation of the Robot controller system

This section gives an essentially historical presentation of two redesigns and re-
implementations of the control functionality of OSCAR. The goal of the project was to
determine the extent to which model checking could be applied to enhance the reliability
and robustness of the OSCAR system. The first step was to extract the “control functionality”
of OSCAR. Control functionality is the decision procedures for managing the movements
of the arm. It accepts the results of the kinematics computations as input, determines the
movements to be executed and interfaces to the robot itself. From the original 180,000+
lines of C++ code, 45,000+ lines were identified as implementing control functionality.
Two re-engineerings and re-implementations of the control system were required: the first
was a complete redesign and re-implementation following the design principles for con-
structing XUML models. This redesign and re-implementation yielded a model which could
be readily understood and thoroughly tested and validated. However, model checking based
on this model could be completed only for systems with unacceptably small numbers of
joints and degrees of freedom. A second redesign, re-implementation based upon design
principles which enable application of compositional reasoning was necessary to enable
successful model checking of realistic robot control algorithms. The next section reports
the redesign results and the design-for-verification principles.

3.1.1. Design-for-testability. The robotic software architecture was defined as a set of
communicating XUML objects. The application domain architecture was divided into con-
trol and performance evaluation subsystems (see figure 3). The input for the performance
evaluation subsystem is one or more trial arm configurations from which the performance
evaluation system will either select the best one or provide the control system with sugges-
tions on what an optimal arm configuration should be. The dynamic structure of the RCS is
defined by communication channels describing object interaction dynamics. Each object’s
behavior is defined by an XUML state machine.

The control subsystem includes kinematics algorithms and interfaces to the computational
libraries of the OSCAR system. The control algorithm of the control subsystem starts with

250 SHARYGINA ET AL.

Figure 3. Architectural view of the RCS system.

defining an initial end-effector (End-Effector (EE)) position given the initial joint (Joint)
angles. This is done by solving a forward kinematics problem [17]. The next step is to
get a new end-effector position from a predefined path. The system calculates the joint
angles for this position, providing the solution of the inverse kinematics problem [17] and
configures the arm. At each of the steps described above, a number of physical constraints
has to be satisfied. The constraints include limits on the angles of joints. If a joint angle
limit is not satisfied, a fault recovery is performed. The faulty joint is locked within the limit
value. Then, the value of the angle of another joint is recalculated for the same end-effector
position. If the end-effector position exceeds the limit, the algorithm registers the undesired
position, which serves as a flag to stop the execution. A Checker class controls the joints that
pass or fail the constraints check. If all the joints meet the constraints, the Checker issues
the command to move the end-effector to a new position. Otherwise it either starts a fault
recovery algorithm or stops execution of the program (if fault recovery is not possible).

The performance evaluation subsystem implements the decision-making strategy by ap-
plying decision-making techniques identifying a solution to the multi-criteria problem. It
builds a SearchSpace, which generates sets of TrialConfigurations around a base point
supplied by the computational subsystem. A DecisionAlgorithm selects the best trial con-
figuration given a set of PerformanceCriteria and a number of physical constraints that are

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 251

Figure 4. State transition diagram of the Checker (left) and Arm (right) objects.

globally defined by the user. The found solution serves as the next base point for another
pattern of local exploration. The search stops when no new solutions are found. The sys-
tem returns control to the computational subsystem which changes the position of the EE
following the specified trajectory.

Figures 4 and 5 schematically represent the state machines of the Arm, End-Effector and
Checker XUML models (some actions are omitted due to the space limitations of the paper).
The overall description of the XUML RCS system can be found in [37].

3.1.2. Validation and verification. The XUML robot controller models were validated
by execution of the functional scenarios of the original program. Validation of the XUML
models resulted in identification of several errors and redundant computations in the original
robot control algorithms.2 These errors were corrected and the XUML code was revalidated.
The re-engineered XUML code was considerably simpler in structure than the original C++
code due to the much higher level of abstraction of XUML compared to C++ and removal
of the redundant computations.

An attempt was made to model check the re-engineered and validated XUML model.
None of the properties (sample properties can be found in Section 4) could be verified for
a system with more than 2 degrees of freedom (DOF)3 due to state space explosion during
model checking. The state space reduction techniques supported by OBJECTCHECK and
COSPAN, including partial order reduction, predicate abstraction, localization reduction,
and symbolic verification were applied. None of these state space techniques either taken

252 SHARYGINA ET AL.

Figure 5. State transition diagram of the EndEffector object.

in isolation or combined with other techniques enabled completion of model checking of
any property for more than two DOF.

Assume-guarantee compositional reasoning, known to be highly successful in the com-
plexity reduction of large hardware systems, could not be applied to the XUML robot
controller system because of strong coupling among the XUML objects defining the robot
control system. To enable application of compositional reasoning, a software design method
that enables the applicability of compositional model reasoning in model checking was
developed and applied to the robot control system. The design for compositional model
checking approach is presented in Section 3.1.3. Analysis of the state spaces of XUML
models lead to development and application of a domain specific data abstraction for loop
intensive systems. The loop abstraction is described in Section 6. Both methods are design
level techniques defined for the XUML-formulated software and can be applied in combi-
nation with other state space reduction algorithms without change to the verification tools
or the verification algorithms.

3.1.3. Design-for-verifiability. The design for the RCS presented in the last section con-
forms to accepted best practice for object-oriented design in XUML. This design, however,

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 253

contains many connections among classes including references to member variables among
classes as well as event based communication. This high degree of connectivity engendered
strong dependences among individual classes which coupled the state spaces of many classes
and led to intractably large state spaces. It was clear that scalable model checking would
require software designed with a stronger definition of modularity.

A design method based on software spatial modularity for generating systems with strong
modularity was developed. The term “spatial modularity” was chosen because of a similarity
to modular design principles for hardware [41]. The spatial modularity concept leads to
two design principles, functional localization and global data encapsulation. We specified
design-for-verifiability rules which implement these principles to partition a system design
into a set of functionally independent “spatially disjoint” components. These rules are
sketched following.

System. A system is designed as a set of interacting components.

Component. A component is a set of classes which implement some logical functionality
and encapsulated by a gate class.

Gate class. The interface through which a component interacts with other components is
defined by a gate class. The gate class for a component receives and routes all input events
and sends all output events from the component. The behavior of a gate class is defined
by a state machine that interprets events both from the component external and internal
environments. Examples of the RCS components gate classes can be found in [37].

Remote data access. All attribute value updates among components are done through the
event mechanism.

Global data representation. Create a separate component containing all global variables
as attributes of its classes.

Inheritance. Subtype classes are required to have a semantic relationship with their super-
type classes. In other words, inheritance is restricted to a purely syntactic role: code reuse
and sharing, and module importation.

In a system designed following these rules, communication and interaction among com-
ponents is reduced to communication among the gate classes of the components. As a result,
components can be isolated from each other by disconnecting the communication events
controlled by the gates. Local properties can be then defined for each component by refer-
ring to its variables. Each component’s environment can be defined by making assumptions
about that component’s inputs. The assumptions can be derived either by simulating an
event sequence at the components external interface (gate class) or by making assumptions
about values of the component’s gate external variables (so called “observable” variables).

The RCS system was re-engineered again, this time to conform to these design rules. Ap-
plication of the design-for-verification rules yielded an RCS system design as a collection
of spatial components. Each component was designed to implement a set of functionally
independent robotic operations that may interact with other components. Figure 6 gives an

254 SHARYGINA ET AL.

Figure 6. Architectural view of the spatially modular RCS system. Note, communication among components
(including environment) is enabled via gates.

architectural layout of the RCS system redesigned following the design rules given preced-
ing. An instance of a robot control algorithms is obtained by composing OSCARInterfaces,
Kinematics and Trajectory components. The OSCARInterfaces component specifies inter-
faces to the OSCAR computational libraries. The Trajectory component defines interfaces to
the robot operator or the database of predefined robot control trajectories. The components
can access data stored in the GlobalData component to implement different robot control

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 255

Figure 7. Implementation of the localization rule during re-design of the RCS system.

functions. Controllers that are able to perform PerformanceMonitoring can be qualified
as robotic intelligent controllers though optimization problems are not considered in this
design. The Decision Making component provides algorithms for optimizing robot control.

Figure 7 illustrates the implementation of the functional localization principle for the re-
design of the XUML RCS components. The original design (left side of figure 7) followed
a conventional design approach. Decision-Making and PerformanceMonitoring operations
cannot be used independently. The right side of figure 7 illustrates the localization con-
cept. Decision-making actions for fusion of the performance criteria were merged with the
performance evaluation operations. As a result, independent components, DecisionMaking
and PerformanceMonitoring were created. The components can be analyzed in isolation
using the abstract representation of the neglected component for each robot control cycle.

This RCS redesign enabled the application of assume-guarantee compositional verifica-
tion. This redesign did require some modifications in the algorithms for robot control. This
redesigned RCS was then completely revalidated by execution of the design model. The
next section discusses how the spatially modular RCS components were verified.

4. RCS properties

A set of temporal logic properties for verification of the robot controller were derived from
the requirements for the robot functionality. The requirements were collected from the robot
controller documentation [16, 17] and from discussions with the developers of OSCAR. A
summary of the requirements is presented in Table 1.

256 SHARYGINA ET AL.

Table 1. Requirements for the robot control functionality.

N Requirements

1 Conduct robot control within allowed workspace

2 Perform fault recovery (lock faulty joint and reconfigure other joints) if a joint does not satisfy the
robot control restrictions

3 Implement obstacle avoidance

4(a) Assure the robot functioning termination

4(b) Assure the robot functioning termination in a presence of unsafe joint and end-effector configurations

5 Assure dynamic robot reconfiguration

6 Support multi-criteria optimization of the robot control

7 Implement fault detection

The specifications of the properties are defined in terms of the variables of state machines
of the classes of the RCS system. The properties were encoded in an XUML level query
language provided by OBJECTCHECK [45]. An example of the formulation of a safety
property is given to demonstrate how a property is specified. We refer in this description to
the states appearing in the state transition diagrams of the XUML RCS models in figures 4
and 5.

Robot functionality requires that control functions are performed only for safe robot arm
configurations. The safety of the robot arm configuration is defined by the algorithm that
checks the validity of the robot arm constraints. The safety property specifies coordination
between the two algorithms: the end effector can be moved to a new position (Follow-
ingDesiredTrajectory state of the End Effector XUML model) only from the confirmed
valid configuration of the robot arm (Valid state of the Arm XUML model).

The property encoded in the XUML level query language of OBJECTCHECK is defined as
follows:

declare r � End Effector � ee reference

declare u � Arm � arm status

Always (r = 1 → u = 1)

The first statement of the property defines a propositional predicate, r, that declares the
variable ee reference of the End Effector class. The second statement defines a proposi-
tional predicate, u, that declares the variable arm status of the Arm XUML class. The third
statement declares a temporal predicate over the system: at any moment during the system
execution, r = 1 and u = 1 are true at the same time. For example, the state FollowingDe-
siredTrajectory and the variables ee reference appear in figure 5 and the variable arm status
appear in figure 4.

A selected set of the properties formulated and verified in this project is given in Table 2.
Properties are given as informal English specifications. Specifications in terms of state
predicates of the RCS XUML system can be found in [37]. Each property is associated
with a functional requirement (Req.) defined in Table 1. A taxonomy of the properties is

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 257

Table 2. Verification properties.

N Property robotic description Req. Type Control

1 Eventually the robot control terminates 4(a) Liveness Yes

2 The program terminates when it reaches the state where there is no
solution for the fault recovery

4(b) Safety No

3 If the end-effoctor reaches an undesired position than the program
terminates prior to teh end-effector new move

1, 4(b) Safety Yes

4 Whenever the end-effector is in the “Following Desired Trajectory”
state then the arm is in the “Valid” state

1 Safety No

5 Fault recovery is executed when any of the joint angles does not
satisfy the allowed limits

2 Safety No

6 Fault recovery is always executed for joints that reside in their most
recent base position

2 Safety Yes

7 When fault recovery is called, the end-effector can not move to a new
position until fault is resolved

7 Safety Yes

8 If an obstacle is reached by the end-effector than the obstacle
avoidance procedure is performed

3 Liveness No

9 The robot never operates outside of allowed workspace 1 Safety No

10 The program always performs computations for an actual robot: the
general description of a robot is always reduced to that of an actual
robot

5 Safety No

11 No command to move the end-effector is scheduled before its initial
position is computed

1 Safety Yes

12 Chained fault recovery is not permitted (if the fault recovery did not
complete for an instance of the robot configuration, the fault
recovery for a different robot configuration instance is not allowed)

2 Liveness No

13 End-effector is never located at some undesired locations 3 Safety Yes

14 Only validated solutions of TrailConfigurations are used for the
optimization of the robot control

6 Safety No

presented by classifying the properties types (Type). We identified a subset of properties
that refer only to the control flow of the RCS execution and are independent of the values
of variables which do not determine control flow (i.e. properties that can be specified only
by referring to the states of the XUML state machines). These properties are called control
properties. For example, the safety property presented ealier is a control property since
both ee reference and arm status variables refer to the FollowingDesiredTrajectory and
Valid states of the End-Effector and Arm state machines.

5. Verification results

Presentation of verification results is separated into two subsections: the effects of designing
for verifiability and a systematic comparison of the effectiveness of the state space reduction
algorithms described in Section 2.5 in application to the RCS system.

258 SHARYGINA ET AL.

Table 3. Verification statistics for the robot controller system.

DOF P1 (Failed) P3 (Failed) P10 (Verified)
(Task) (states/min:sec/MB) (states/min:sec/MB) (states/min:sec/MB)

2(O) 9.6e+21/550:2/1,741 1.1e+23/619:4/1,836 1.1e+19/201:3/173

2(V) 2.2e+12/350:4/735 2.3e+11/344:4/713 4.8e+6/32:3/34

3(O) M/T exhaustion M/T exhaustion M/T exhaustion

3(V) 3.1e+18/415:4/1,246 2.6e+17/410:3/1,198 5.1e+9/68:50/68

4(O) M/T exhaustion M/T exhaustion M/T exhaustion

4(V) 6.2e+23/592:4/1,802 6.7e+24/662:3/2,190 7.5e+14/155:1/127

5(O) M/T exhaustion M/T exhaustion M/T exhaustion

5(V) M/T exhaustion M/T exhaustion 1.8e+24/262:4/232

5.1. Comparison of design models

This section compares model checking of the model (MV) designed for verifiability
(Section 3.1.3) with the model (MO), a conventional object-oriented design (Section 3.1.1).
Verification of the model MV used assume-guarantee compositional reasoning.

Verification experiments were conducted on several machines. The fastest machine was
an HP9000 (440 MHz) with 6144MB RAM and HP-UX11 operating system. Verification
revealed that properties 5–8, 9, 10, 12–13 hold, and that properties 1–4, 11 fail.

Verification of the RCS system was conducted by assume-guarantee model checking.
Verification revealed that properties 5–8, 9, 10, 12–13 hold, and that properties 1–4, 11 fail.
Table 3 presents the complexity results for verification of Properties 1, 3, 10 (P1, P3, P10).
Each entry in the table has the form x/y/z where x is the number of the states reached,
y is the run-time in CPU seconds, and z is the memory usage in Mbytes. The results are
given for RCS models of different complexity defined by the number of DOF (number of
joints) of a robot arm. The results for model checking the model MO , are qualified with an
O while the results for MV models are qualified with a V . The differences in the results
are due to the application of assume-guarantee reasoning in model checking of the V rows.
The results for verification for the Kinematics component are given for a total number of
seven + i XUML state machines, where i is the number of state machines corresponding
to the number of instances of the Joint object. The compositional checks utilized local
properties of the verifiable component. All external variables of the local properties were
closed by making assumptions about the inputs of the component.

The O rows of Table 3 show that model checking all but two DOF models failed for the
conventional object-oriented model, due to the memory/time (M/T) exhaustion. The V rows
of Table 3 show that application of assume-guarantee reasoning to the MV model enabled
completion of model checking for all models and verification of properties that fail was
completed for models up to five DOF. For five and higher DOF models, the compositional
checks of properties that failed on smaller models ran out of memory. Design for verifiability
made a rather dramatic difference in the complexity of systems which could be model
checked.

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 259

Table 4. Verification results of property P2 (property fails) for 2, 4 and 7 DOF models.

2-DOF 4-DOF 7-DOF
Reduction (states/min:sec/MB) (states/min:sec/MB) (states/min:sec/MB)

AG M/T exhaustion M/T exhaustion M/T exhaustion

AG+POR 1.5e+18/545:34/1,718 M/T exhaustion M/T exhaustion

AG+BDDs M/T exhaustion M/T exhaustion M/T exhaustion

AG+bounds 2.3e+12/338:15/736 7.1e+17/482:1/1,424 M/T exhaustion

AG+PA Exhaustion during Exhaustion during Exhaustion during
abstraction abstraction abstraction

AG+bounds+POR 1.7e+10/227:3/524.9 3.4e+15/469:5/1,392 3.7e+21/964:4/2,178

AG+bounds+BDDs M/T exhaustion M/T exhaustion M/T exhaustion

AG+bounds+PA 1.4e+9/174:6/244.2 5.3e+12/344:2/798.8 Exhaustion during
abstraction

AG+bounds+ M/T exhaustion M/T exhaustion M/T exhaustion
POR+BDDs

AG+bounds+ 1.3E+6/119:15/79.5 1.1e+9/201:40/514 Exhaustion during
POR+PA abstraction

AG+bounds+POR+ Exhaustion during Exhaustion during Exhaustion during
BDDs+PA abstraction abstraction abstraction

5.2. Evaluation of state space reduction methods

Tables 4 and 5 give an overview of a subset of state graphs we have generated using
different reduction techniques. Results are given for experiments with the RCS variables
bounded within the robotic specific ranges. The examples of the robotic domain types that
were discretized and represented by integer types are angles interval, bounded to the [−360
360] range, coordinates interval, bounded to the [−1000 1000] range, and counter interval,
bounded to the [0 17] range. The latter type was used to control instances of the robot arm
joints. We, thus, have chosen for the declaration of the counter interval the largest DOF
number (largest possible number of joints of the robot arm) used in the test-bed system. The
results are given for verification of properties 2 and 13 (P2, P13). Both, a safety property
P2 and a liveness property P13 hold during verification.

In the tables AG stands for the assume-guarantee reasoning, POR stands for the partial
order reduction, BDDs stands for binary decision diagrams, bounds stands for the robotics-
specific variable bounding, and PA stands for the predicate abstraction techniques. The
results are given for the assume-guarantee reasoning in conjunction with the localization
reduction that is automatically invoked in COSPAN for any verification effort. However,
assume/guarantee reasoning served as the base technique for combination with other state
space reduction methods.

The following conclusions can be drawn from Tables 4 and 5:

1. When assume/guarantee reasoning was applied according to design-for-verification
rules, it made verification of realistic RCS (with more than two DOF) feasible.

260 SHARYGINA ET AL.

Table 5. Verification results of property P15 (property holds) for 2, 4 and 7 DOF models.

2-DOF 4-DOF 7-DOF
Reduction (states/min:sec/MB) (states/min:sec/MB) (states/min:sec/MB)

AG M/T exhaustion M/T exhaustion M/T exhaustion

AG+PO 9.4e+6/54:15/44.8 1.5e+14/165:3/148.7 3.1e+22/262:5/232.1

AG+BDDs M/T exhaustion M/T exhaustion M/T exhaustion

AG+bounds 4.02e+6/38:15/36.2 7.3e+11/142:1/134.4 2.1e+19/182:4/203.7

AG+PA Exhaustion during
abstraction

Exhaustion during
abstraction

Exhaustion during
abstraction

AG+bounds+POR 7.5e+5/16:10/9.2 2.4e+9/62:23/65.9 5.4e+14/147:02/139.2

AG+bounds+BDDs M/T exhaustion M/T exhaustion M/T exhaustion

AG+bounds+PA 4.3e+5/7:28/6.3 1.7e+9/68:50/73.3 Exhaustion during
abstraction

AG+bounds+
POR+BDDs

M/T exhaustion M/T exhaustion M/T exhaustion

AG+bounds+
POR+PA

1.6e+5/6:48/5.2 4.8e+8/46:50/58.7 Exhaustion during
abstraction

AG+bounds+
POR+BDDs+PA

Exhaustion during
abstraction

Exhaustion during
abstraction

Exhaustion during
abstraction

2. Domain-specific bounding of variables was required to complete verification of even
the smallest system. Domain specific bounding results in a tremendous reduction of the
state space of software and, therefore, should be always used during verification.

3. Application of partial order reduction resulted in a significant reduction of the system
state graph. When the static POR is available (as it was throughout this research), it
should be always used during formal model generation process since static POR can
always be integrated with other reduction techniques.

4. Symbolic verification did not succeed for any property checked on models of different
complexity. The failure of the symbolic verification may have been caused by the complex
ordering of the RCS computations, which prevented efficient construction of BDDs. An
interesting topic for future research is to determine whether software systems may be
engineered to enable symbolic verification to be effective.

5. Application of the predicate abstraction algorithm given in [30] was not successful for
large systems. Memory exhaustion occurred on a computer with 4GB memory during
the computation of the abstraction predicates for the concrete programs with more than
five DOF. We did not try other predicate abstraction algorithms. Clearly, however, that
the high computational cost of computing predicates may render complete predicate ab-
straction intractable for large systems. An important future research topic is to minimize
a set of predicates that is computed during abstraction.

5.3. Summary of verification results

The result of combining assume-guarantee reasoning with the OBJECTCHECK-supported
state space reduction techniques made reasonably complex RCS system tractable for model

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 261

checking. But model checking still was intractable for redundant and truly fault tolerant
RCS systems.

6. Loop abstraction

An abstraction (loop abstraction) which enabled completion of model checking of some
additional properties for RCS’s with full redundancy was derived from the observations
that:

– There are important safety and liveness properties (control properties) which are depen-
dent only on the static control flow graph of the system. These properties are independent
of the number of traversals of the loops of the control flow graph and of the values for
variables not used in determining control. Therefore the control properties of the concrete
program can be model checked by model checking of an abstract program with the same
static control flow graph.

– The execution behaviors of control software systems, including the RCS, are typically
dominated by cycles in the static control flow graph which implement feedback loops.
The structure of the control flow graph is usually determined by a small set of control
flow variables. The paths in the control flow graph of a program with loops are usually
determined by conditional statements (guards) which depend on a subset of the control
flow variables (loop variables). Model checking of such systems generates a traversal of
the loops in the control flow graph for each possible value of each loop variable. Each
traversal of the loop with different values of the loop variables is distinct in the state
graph of the program. Additionally, each traversal of a loop will typically involve many
variables (“don’t care” variables) which do not participate in determination of the paths
through the control flow graph. But each execution of a loop with different values for the
“don’t care” variables is also distinct in the state graph generated by the model checker.

The loop abstraction is an instance of an abstraction based on data independent behavior
[22, 34, 44]. The loop abstraction technique generates an abstract program with the same
static task graph as the concrete program from which it is derived. It differs in specifying
a minimum (or nearly minimum) number of traversals of the loops of the static task graph
and in freeing he values of the “don’t care” variables. These abstract programs typically
have orders of magnitude smaller state spaces than the concrete programs from which
they are derived. The loop abstraction algorithm and a proof of its correctness are detailed
in [38]. Figure 8 is a schematic of the implementation of the abstraction algorithm. The
loop abstraction program takes as an input results of the program behavioral analysis
conducted using the discrete event simulator. The event simulator is a part of the XUML
specification and validation environment. During the simulation the program is executed by
traversing possible event sequences which can arise from the execution of interacting XUML
state machines. The set of actions that are repeatedly initiated by some event are manually
annotated with a Loop Label in the XUML specification environment. The algorithm also
uses the following features provided by COSPAN to support the loop abstraction procedure:

262 SHARYGINA ET AL.

Figure 8. Implementation framework of the loop abstraction algorithm.

– the assume/guarantee mechanism of COSPAN is used to add fairness constraints (as
required by the abstraction algorithm) and refinement assumptions to the model-checking
process.

– the localization reduction algorithm, automatically invoked by COSPAN during model-
checking, is used to eliminate from consideration variables that do not effect the
verification property.

The properties of the loop abstraction algorithm [38] are:

– It is computationally simple and requires storage linear in the size of the program since it
is a source to source transformation based on static analysis of the program. This property
allows the loop abstraction technique to outperform the predicate abstraction techniques
where computational cost impedes their application to large systems.

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 263

– It is based on syntactic manipulation of expressions, and produces a reduced program
and therefore, it can be applied without change to the verification tool or the verification
algorithm.

– It produces a syntactic representation of the abstract program and thus other model
checking state space reduction techniques, such as symbolic model checking and partial
order reduction, can be applied to the abstract program.

– It typically introduces only a small set of new behaviors so that the effort required for
refinement is modest.

The application of the loop abstraction technique to syntactic analysis of the XUML mod-
els identified the existence of multiple loops in the robot control algorithms. The loops were
abstracted by syntactic program transformation following the loop abstraction algorithm.
We verified the control properties (both safety and liveness) given in Table 2. We considered
several RCS variants of different complexities, defined by the number of joints i of a robot
arm. We used two models to check the properties. The first model is the complete (concrete)
structure of the robot arm. The second model is the abstract version of the concrete model
to which the loop abstraction method has been applied.

Table 6 compares run-time and memory usage for Properties 1, 3 (P1 and P3). Experiments
were conducted using application of assume-guarantee rules to verification of the RCS
Kinematics component. The verification results demonstrate significant reduction in both
time and space for the abstract model, as compared to the concrete model. The reduction
becomes more pronounced for larger values of DOF. Verification for the robot configurations
possessing more than four joints could not be completed for the concrete model due to the
memory/time exhaustion (denoted as M/T exhaustion in Table 6), but COSPAN succeeded
for the abstracted model. Verification of control properties succeeded for the most complex
configuration of the RCS system (up to seventeen DOF systems). Notably, these systems
were model checked without application of any state space reduction algorithms except the
combined use of assume-guarantee reasoning, localization reduction and loop abstraction.
Model checking performance might be even better if other state space reduction had been
applied. That was not needed, however, during verification of the RCS state space explosion
was not encountered.

It would be expected that a selective and limited scope abstraction such the loop ab-
straction would introduce fewer unrealistic behaviors into the abstract program than more

Table 6. Comparison of verification of the concrete and abstract robotic systems.

P1:Concrete P1:Abstract P3:Concrete P3:Abstract
DOF (st./min:sec/MB) (st./min:sec/MB) (st./min:sec/MB) (st./min:sec/MB)

2 2.2e+12/350:4/735 26K/0:28/4.03 2.3e+11/344:4/713 17K/0:17/3.38

3 3.1e+18/415:4/1,246 63K/3:10/4.9 2.6e+17/410:3/1,19 63K/3:10/4.9

4 6.2e+23/592:4/1,802 145K/11:28/8.4 6.7e+24/662:3/2,190 116K/7:03/7.1

5 M/T exhaustion 688K/28:10/23.9 M/T exhaustion 554K/13:40/19.1

6 M/T exhaustion 1.1M/42:17/96.5 M/T exhaustion 715K/33:17/36.2

264 SHARYGINA ET AL.

comprehensive abstractions. This proved to be the case for the robot control system. Only
a few refinements were needed. This occurred where false negatives in model checking
were identified in model checking the abstract program. Then refinements were manually
implemented.

In summary, the loop abstraction appears to hold particular promise for model checking
of control software systems, nearly all of which implement feedback loops.

7. Summary of the RCS verification

Attempts were made to apply the integrated state space reduction process to verification
of 37 properties. Model checking was eventually successfully completed for 22 of these
properties. Verification of control properties succeeded for the most complex robot config-
urations. Verification of data-dependent properties of large DOF systems (more than five
DOF) could not be verified but was completed for systems with less than five DOF. In
almost every case multiple attempts were necessary to model check a property. The case
study was successful in that model checking of this complex system revealed six serious
logical errors [37] which had not been detected by conventional testing.

7.1. Identification of errors

Failure of Properties 1, 2 and 3 upon verification revealed errors in the robot control algo-
rithms. The failure of Property 1 indicated that the system does not always terminate its
execution as expected. Property 3 designed to check the correct system termination con-
firmed that the system would not always terminate properly. It was found that an error in the
fault resolution algorithm caused the problem. Recall that failure of one of the robot joints to
satisfy the specified limits activates the fault recovery procedure. If during the fault recovery
process some of the newly recalculated joint angles do not satisfy the constraints in their
turn, another fault recovery procedure is called. Analysis of the counterexample provided
by COSPAN for Property 3 indicated that, for several faulty joints a mutual attempt was
made, to recompute the joint angles of other joints without first resolving the fault situation.

Another failure occurred during verification of Property 2. This error reflected a coordi-
nation problem between the Arm and JointChecker processes. The original design assumed
sequential execution. It was expected that at each step, the arm status variable of the Arm
process would be updated before the JointChecker process issued a command to move the
EndEffector to its next position. Concurrent execution of the processes, however, led to a
situation where the JointChecker process could issue the command based on an out-of-date
value of the arm status variable.

The errors found by model checking were not discovered either during the conventional
testing performed by the original code developers or during the validation by simulation of
the formalized XUML design. In order to correct these errors a redesign of both the original
system and the XUML model was required. Figure 9 provides both the original and the
modified class collaboration diagrams of the Kinematics component. The latter demonstrates
the design changes we made in order to correct the found errors. We introduced a new class
called Recovery, whose functionality provides a correct resolution of the above-described

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 265

Figure 9. Collaboration diagrams of the original and modified Kinematics Components.

fault recovery situation. Additionally, we added exchange messages between the processes
Arm and JointChecker that corrected the coordination problem.

8. Lessons learned

The lessons learned are implicit in the process through which we went to model check the
robot controller system. Some of what we learned, we clearly should have known before we
started. But there is an old saying “Too soon old, too late smart.” While we don’t assume
that others will miss the obvious as we sometimes did, it seems worthwhile to summarize
some of what we now know.

8.1. Representation issues

8.1.1. Design level representation.

Executable design level representations such as XUML offer advantages over conventional
procedural language representations for development of model checkable software systems.

– Property formulation is facilitated by control being expressed in an explicit design model.
– Use of executable design level specifications which can be tested at design level but

compiled to conventional procedural programs bypass some of the sources of difficulties
and errors in directly model checking programs in procedural code. All operations (i.e.,
finite state model extraction, property specification, abstraction, decomposition, etc.) can

266 SHARYGINA ET AL.

be made on the same representation or result from an automated transformation of the
representation.

– Much less abstraction is necessary since data definitions are more abstract than for pro-
cedural programs.

– Source to source transformations to create property specific abstractions for state space
reduction are straightforward.

8.1.2. Design for verifiability.

Design of the software system should take cognizance of the requirements of model checking.

Design of software has a strong impact on its “ability” properties: testability, maintain-
ability and evolvability. Design for “model checkability” was an essential step successfully
completing verification of RCS systems of non-trivial complexity.

8.2. Property formulation

Effective property formulation requires a systematic derivation process.

Property formulation is one of the most difficult tasks in model checking of complex
software, perhaps even more difficult than test generation. The steps in property formulation
followed in this case study were:

– The requirements specifications for the system were reviewed and made precise through
a collaboration among the software developers and the model checkers.

– Properties were identified from the requirements specification for the software system.
– Properties were formulated in the name space of the design model.

8.3. Interaction of system structure and state space reduction algorithms

The effectiveness of state space reduction algorithms is largely determined by the structure
and execution behavior of the software system.

A very strong correlation between the structure and execution behaviors of the software
system and the effectiveness of state space reduction algorithms was found. The structure
and execution behaviors of the RCS which we observed to impact state space reduction
algorithms are:

1. Strict functional partitioning and strict name space locality.
2. Multiple paths among states.
3. Little concurrent/parallel execution in a correctly synchronized system.
4. The initial state of the robot is usually a single assignment of values to state variables.
5. The execution behavior of the RCS is dominated by traversal of feedback loops.

• Item (1) suggests assume/guarantee reasoning should be effective for properties which
are defined locally on a subset of components. This was confirmed.

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 267

• Item (2) suggests partial order reduction in the format of static partial order reduction
should be effective and this was confirmed.

• Item (4) suggests symbolic verification may not offer significant reduction in state
space. This was confirmed.

• Item (5) motivated the loop abstraction.

8.4. Structure, execution behavior and property specific abstractions

Structure specific and execution behavior specific abstractions may be required for model
checking of complex software systems.

8.5. Knowledge integration

Model checking of software systems requires integration of knowledge of the discipline area
of the software, the program itself and model checking.

9. Conclusions and related work

This article has presented a case study of verification of a non-trivial software system. This
case study motivated development of new software verification techniques and employed
them in conjunction with a wide range of previously-developed, time-proven methods to
successfully model check twenty two significant properties of a robot control system.

The approach used in this work uses an executable design level representation of a
software system as a basis. The executable design is validated by testing and then verified
by model checking. This approach is different from the majority of software model checking
projects that implement model checking based on application of advanced static analysis
algorithms supported by theorem proving to actual software code, such as Java or C. The
BLAST [14], CMC [28], FEAVER [15], MAGIC [7], and SLAM [3] projects are examples
of C verifiers. BANDERA [10] and JAVA PATHFINDER [6] project are examples of JAVA

verifiers. They have many case studies on model checking of software systems in the
context of these projects. The CMC toolkit has been applied to model check three different
implementations of the AODV routing protocols [28]. The FEAVER toolkit has been applied
to model check the call processing code of an industrial telephone switch [15]. The SLAM
toolkit has been applied to model check a large number of Windows device drivers [3]. The
JAVA PATHFINDER has been applied to model check the implementation of an AI-based
spacecraft controller [6].

The actual code based approach validates the actual code by testing and typically manu-
ally or automatically generates an abstraction of the program which is then model checked.
Generation and resolution of abstractions can be a major problem. The approach based
on an executable design level representation bases both validation and verification on
the same representation of the software. When validation and verification are complete
then the executable design may be compiled to obtain the actual code in C, C++ or Java
[4, 18, 35].

268 SHARYGINA ET AL.

Ameliorating the state space explosion is the principal requirement for effective model
checking of software systems. Many efficient state space reduction techniques have been
developed and successfully applied in the verification of hardware. The key state space
reduction techniques are compositional reasoning [1, 2, 9, 21, 25–27, 32, 42] and data
abstraction [3, 8, 11, 19, 21, 23].

This article develops two independent techniques that address the state space explosion
problem. The first technique is a methodological approach to software design that enables the
applicability of assume-guarantee compositional reasoning. The second method is an orig-
inal data abstraction algorithm. Both methods are design-level techniques defined for soft-
ware systems formulated in XUML. These design-level techniques can be applied without
changes in the verification tools or the verification algorithms. This enables low cost integra-
tion with existing model checking tools. Additionally, since they are the syntactic program
transformations, they can be used in integration with other state space reduction techniques.

We developed a set of design principles and rules that structure an entire software system
as a set of components. The components are designed to minimize interactions with other
components. Then each component can be verified separately in the context of a defin-
able execution environment. Existing assume-guarantee compositional rules then become
applicable to software components.

We also present an original data abstraction algorithm. The abstraction algorithm mini-
mizes the contribution of loop executions to the program state space. The loop abstraction
generates an abstract program possessing the same static task graph as the concrete program
from which it derives but having a minimum (or nearly minimum) number of loop traversals.
These abstract programs have state spaces smaller by orders of magnitude than the concrete
programs from which they derive. We prove [38] the correctness of the loop abstraction
algorithm. The correctness result implies that a control specification holds for the “con-
crete” program if it holds for the “abstract” program. Some loss of the abstraction’s data
computation precision is traded for the ability to conduct verification of control properties
in practice. The abstraction algorithm is computationally simple and requires storage only
linear in the size of the program since it is a source to source transformation based on static
analysis of the program. We implemented the loop abstraction technique in the front-end
of the model checking tool, COSPAN. The implementation uses the XUML2SR translator.

Another notable aspect of this work is that our re-engineering study of the robot con-
troller system generalized the framework for the resulting integrated software design and
verification methodology. Throughout the report we presented a two-phase approach for
development of OO software systems which combines validation of OO models formulated
in XUML with formal verification through model checking. The first phase resulted in the
development of rigorously specified robot controller XUML models that were thoroughly
validated by conventional testing. In the second phase, model verification with the aid of
the techniques developed in this work was used to check the consistency of the robotic
specifications. The results of both phases are encouraging. Not only were we able to verify
a large set of functional and performance properties of the robot control but we also uncov-
ered some design flaws. We verified both safety and liveness describing the safety-critical
properties of robot control. These included the fault recovery, fault tolerance, generalized
obstacle avoidance and proper robot control termination properties. While model checking

LESSONS LEARNED FROM MODEL CHECKING A NASA ROBOT CONTROLLER 269

confirmed that most properties hold, some did not pass verification. Examination of the
failed properties revealed the most common cause of robot control errors. It was an incor-
rect assumption that programs would execute sequentially. Instead, distributed interaction
caused the failure of the safety and liveness checks. Since distributed control is widespread
in robot control, the identification of these errors is of major importance. These errors would
have been extremely difficult to identify by conventional testing due to the non-reproducible
nature of the non-deterministic actions of a distributed system.

Notes

1. This is an existential abstraction technique that produces over-approximation of the original program. That
is that some unrealistic behaviors can be introduced by the abstraction process. The existential abstraction
approach provides a popular class of weakly preserving abstraction for universally quantified path properties
(for example, LTL properties). Weak preservation in this case follows trivially: if more behaviors (i.e. more
execution paths) are added and a property is true for all paths then it is true for any subset of those paths,
including the behavior of the concrete system.

2. Validation of the re-engineered model and the results of the validation are covered in detail in [37].
3. Realistic fault tolerance requires at least six degrees of freedom.

References

1. M. Abadi and L. Lamport, “Conjoining specifications,” ACM Transitions on Programming Languages and
Systems (TOPLAS), 1995.

2. R. Alur and T.A. Henzinger, “Reactive modules,” in LICS, 1996, pp. 207–218.
3. T. Ball and S. Rajamani, “The SLAM toolkit,” in Computer-Aided Verification (CAV), 2001, pp. 260–264.
4. BidgePoint, Project Technologies, http://www.projtech.com.
5. G. Booch, Object-Oriented Analysis and Design with Applications, Benjamin-Cummings: Redwood City,

CA, 1994.
6. G. Brat, K. Havelund, S. Park, and W. Visser, “Java pathfinder—A second generation of a java model checker,”

in Workshop on Advances in Verification, 2000.
7. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith, “Modular verification of software components in

C,” in Proceedings of the 25th International Conference on Software Engineering (ICSE), 2003, pp. 385–
395.

8. E. Clarke, O. Grumberg, and D. Peled, Model Checking, MIT Press, 1999.
9. E.M. Clarke, D.E. Long, and K.L. McMillan, Compositional Model Checking, 1989.

10. J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, R.C.S. Pasareanu, and H. Zheng, “Bandera: Extracting
finite-state models from java source code,” in ICSE, 2000.

11. D. Dams, O. Grumberg, and R. Gerth, “Abstract interpretation of reactive systems: Abstractions preserving
ACTL∗, ECTL∗, and CTL,” in PROCOMET 94: Programming Concepts, Methods, and Calculi, 1994, pp. 561–
581.

12. S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,” in O. Grumberg (Ed.), Proc. 9th
International Conference on Computer Aided Verification (CAV’97), Vol. 1254, 1997, pp. 72–83.

13. R. Hardin, Z. Har’EL, and R.P. Kurshan, “COSPAN,” in Computer-Aided Verification (CAV), 1996, pp. 423–
427.

14. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstraction,” in Symposium on Principles of
Programming Languages, 2002, pp. 58–70.

15. G.J. Holzmann and M.H. Smith, “Software model checking: Extracting verification models from source code,”
Software Testing, Verification, and Reliability, 2001.

16. R. Hooper and D. Tesar, “Multicriteria inverse kinematics for serial robots,” The University of Texas at
Austin, Report to U.S. Dept. of Energy, Grant No. DE-FG02 86NE37966 and NASA Grant No. NAG 9-411,
1994.

270 SHARYGINA ET AL.

17. C. Kapoor and D. Tesar, “A reusable operational software architecture for advanced robotics (OSCAR),” The
University of Texas at Austin, Report to U.S. Dept. of Energy, Grant No. DE-FG01 94EW37966 and NASA
Grant No. NAG 9-809, 1998.

18. Kennedy Carter tool sets, Kennedy-Carter Corp. http://www.kc.com/MDA/xuml.html.
19. Y. Kesten and A. Pnueli, “Control and data abstraction: Cornerstones of the practical formal verification,”

Software Tools and Technology Transfer, Vol. 2, No. 4, pp. 328–342, 2000.
20. R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigun, “Static partial order reduction,” in B. Steffen

(Ed.), Proc. of TACAS’98, LNCS 1384, 1998, pp. 335–357.
21. R.P. Kurshan, Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach,

Princeton University Press, 1994.
22. R.S. Lazic, “A semantic study of data independence with applications to model checking,” PhD thesis, Oxford

University, 1999.
23. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajani, and S. Bensalem, “Property preserving abstractions for the

verification of concurrent systems,” Formal Methods in System Design, Vol. 6, No. 1, pp. 11–44, 1995.
24. K.L. McMillan, Symbolic Model Checking: An Approach to the State Explosion Problem, Kluwer Academic

Publishers, 1993.
25. K.L. McMillan, “A compositional rule for hardware design refinement,” in Computer Aided Verification, 1997.
26. K.L. McMillan, “Verification of an implementation of tomasulo’s algorithm by compositional model check-

ing,” in Computer Aided Verification, 1998.
27. J. Misra and K.M. Chandy, “Proofs of networks of processes,” IEEE Transactions on Software Engineering,

Vol. 7, No. 4, 1981.
28. M. Musuvathi, D.Y.W. Park, A. Chou, D.R. Engler, and D.L. Dill, “CMC: A pragmatic approach to model

checking real code,” in OSDI, 2002.
29. Y. Nakamura, Advanced Robotics: Redundancy and Optimization, Addison-Wesley, 1991.
30. K.S. Namjoshi and R.P. Kurshan, “Syntactic program transformations for automatic abstraction,” in Computer

Aided Verification, 2000, pp. 435–449.
31. D. Peled, “Combining partial order reduction with on-the-fly model-checking,” Formal Methods in System

Design, 1996.
32. A. Pnueli, “In transition from global to modular temporal reasoning about programs,” Logics and Models of

Concurrent Systems, 1985.
33. M. Pryor, “Task-based resource allocation for improving the reusability of redundant robots,” PhD thesis, The

University of Texas at Austin, 2002.
34. B. Sarna-Starosta and C.R. Ramakrishnan, “Constraint-based model checking of data-independent systems,”

in ICFEM, 2003.
35. SES: CodeGenesis, “CodeGenesis technical reference,” SES Inc, 1998.
36. SES: ObjectBench, “ObjectBench technical reference,” SES Inc, 1998.
37. N. Sharygina, “Model checking of software control systems,” PhD thesis, The University of Texas at Austin,

2002.
38. N. Sharygina and J.C. Browne, “Model checking software via abstraction of loop transitions,” in ETAPS:

Fundamental Approaches to Software Engineering (FASE), Vol. 2621 of LNCS, 2003, pp. 325–340.
39. N. Sharygina, J.C. Browne, and R. Kurshan, “A formal object-oriented analysis for software reliability: Design

for verification,” in ETAPS: Fundamental Approaches to Software Engineering (FASE), Vol. 2029 of LNCS,
2001, pp. 318–332.

40. S. Shlaer and S. Mellor, Object Lifecycles: Modeling the World in States, Prentice-Hall, 1992.
41. J.E. Smith, “Decoupled access/execute computer architectures,” ACM Transitions on Computer Systems, 1984.
42. E. Stark, “A proof technique for rely/guarantee properties,” in FST&TCS, Vol. 206 of LNCS, 1985.
43. L. Starr, Executable UML: The Models that Are the Code, Model Integration, LLC, 2001.
44. P. Wolper, “Expressing interesting properties of programs in propositional temporal logic,” in POPL, 1987.
45. F. Xie, V. Levin, and J.C. Browne, “Objectcheck: A model checking tool for executable object-oriented

software system designs,” in ETAPS: Fundamental Approaches to Software Engineering (FASE), Vol. 2306
of LNCS, 2002, pp. 331–335.

