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Abstract

In this paper a visual approach to querying in spatial databases is presented. A filter flow methodology is used to
comsistently express diflerent types of queries in these sysiems. Fillers are used {0 represent operations on the
database and pictorial icons are used throughout the language for filters, operators and spahal relations, Different
granularnties of the relalions are presemted in a hierarchical fashion for spatial consiraints. The language
framework and functions arc described and cxamples are used to demonsirate 1s capabilitics in representing
different levels of quenes, including spatial joins and composite spatial joms. Here, the primary tocus 15 on the
query language wsell but an overview of the implemented interface of the language 15 also provided.
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1. Introduction

Large spatial databases. such as geographic information systems (GIS) and medical
databases, are distinguished by their need to represent and allow for the manipulation of
large numbers of spatial objects and relations. The spatial concepts in these systems are
naturally visual, and it would therefore seem appropriate o adopl a visual approach to
their development. GIS are a prime example of spatial systems and have a substantial
number of application areas, including environmental, transportation and utility
mapping. Their increasing popularity in recent years highlights the need to design more
effective user interfaces for those systems with a high level of usability. Users of current
(GIS are not expected to be experts in the geographic domain and are possibly even casual
users of database systems. Query languages enable users to interact with the GIS
databases. There is, therefore, a need to design and develop alternative spatial database
query languages.

In this research, a visual approach is adopted to the design and development of a query
language for GIS, that addresses the identified issues and requirements for such languages.
A filter Aow methodology is utilized making it casicr 10 use and learn than textual
alternatives. Example queries are given throughout the paper to demonstrate the language.



108 MORRIS ET AL.

The paper is structured as follows. Section 2 is a literature survey of spatial query
language proposals and approaches. Section 3 lists some general requirements and
problems identified for spatial query languages/interfaces. In Section 4 the language is
defined and a detailed description of its framework and functions is given in Section 5.
Some query examples are described in Section 6 and the language implementation is
overviewed in Section 7. Finally, a summary of the main features of the language and
concluding remarks are given in Section 8.

2. Literature survey

Query languages to GIS are either textual, non textual, or a combination of both. Currently,
many database products support and have extensions to SQL, a standard command
language that allows users to query a database.

2.1. Textual query languages

There have been two main approaches at standardizing the SQL framework in order to
store and manage spatial data. They are SQL3 and OpenGIS SQL. SQLS3 has facilities for
the use of abstract data types (ADTSs) in its specification [25]. The OpenGIS consortium
(OpenGIS inc. [40]) also proposed a specification for incorporating ‘‘geo-spatial ADTs”’
into SQL92 [46]. Many of the features used in this specification were proposed earlier in
the SpatialSQL specification [17]. There are some slight differences between SQL3 and
OpenGIS SQL and these tend to be in the syntax of the languages [25]. Prior to the above
specifications there were a number of propositions to spatially extend SQL, including [17],
[25], [26], [43].

Spatial extensions to SQL inherit the same problems in textual query languages as
traditional databases. Typing commands can be tiring and error prone [18], with a difficult
syntax that is tedious to use and learn [19]. Users could spend ‘‘more time thinking about
command tools to use than thinking about the task at hand’’ [18]. Kaushik and
Rundensteiner [32] also state that spatial relationships are often thought of in terms of
images that depict the spatial positions, but in the SQL style languages these would need to
be translated into a non-spatial language.

The ultimate goal of textual querying is to be expressed in a natural language. This is not
currently achievable. Mark and Gould [35] suggest that natural language would probably
become a more prominent way for users to interact with a GIS. Aufare and Trepied [2]
explain that though a natural language approach would appear to be better for the GIS user,
query expressions can be ‘‘verbose and difficult’’, and there are also problems with
unsolved ambiguities.
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2.2. Non-textual spatial querying languages

A number of approaches for visual representation of query languages have been
proposed. These make use of visual components such as forms, diagrams, icons and
images [2].

The query-by-example (QBE) model [54] has been explored in several works. In its
original format, querying is carried out using ‘‘2-D skeleton tables,”” and users write
examples of results that they require from the database in the grids. Yen and Scamell [52]
reported that users were more satisfied and performed better using QBE than SQL. There
have been a number of spatial extensions to the QBE model, QPE [9], PICQUERY [27]
and PQBE [41] are examples of such extensions. Form-based extensions often do not
release the user from having to perform complicated operations in expressing the queries.
Complex queries usually need to be typed into a condition box that is similar to the
WHERE clause of an SQL statement, and this can cause problems [52]. QBE style
languages have poor representations of data model concepts and are therefore less suitable
for spatial databases that have a number of visual entities [3].

‘“Visual languages are today being widely used as a means for reproducing the user’s
mental model of the data-manipulated content’’[45]. A great deal of work is already being
carried out to devise such languages for traditional and object-oriented databases in order
to address problems in usability. Iconic, diagrammatic, graph-based and multi-modal
approaches are noted. In the spatial domain these approaches have also been proposed
along with sketch-based interfaces.

Lee and Chin [33] proposed an iconic language where icons are used to represent objects
and processes. Queries are expressed by building up iconic sentences in the interface.
Difficulties with this approach arise from the fact that objects in a query expression need to
be explicitly specified along with their associated class and attributes, which renders the
language cumbersome for the casual user. Also, only a limited number of spatial relations
can be used in queries [19]. Another icon-based language has been designed by Sebillo et
al. [45]. Tt is called the metaphor GIS query language (MGISQL). In this approach, users
drag icons of themes known as ‘‘geometaphors’” onto a ‘‘sensitive’’ (drawing) board.
Geometaphors are then spatially arranged, and this specifies the spatial operator between
them. MGISQL is useful for topological, directional and metric relations, but there is a lack
of support for querying the non-spatial parts of the database in a GIS.

Jungert [29] proposed a query language named GRAQULA. Simple queries are carried
out by the user selecting objects on the map, and executing functions between the objects.
This language is mainly textual, and the graphical aspect of the language refers to the
selection of the querying items. Another graph-based language is given in Traynor and
Williams [48] and Traynor [49]. Users place panels together in a graphical diagram. Each
of the panels can represent categories or themes. In this language, users are not released
from having to use textual commands, and the ‘And’’ construct used has a layout that is
opposite of logical and flowchart convention. There is also no “‘Or’’ function specified in
the language and no descriptions of any spatial relationships that one would expect in a
spatial query language.

Kaushik and Rundensteiner [31] proposed a direct manipulation approach named
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SVIQUEL (spatial visual query and exploration language). Users can specify topological
and directional spatial relations between region objects using filters called ‘‘S-sliders’’.
This approach is limited in that it only allows users to query between two region objects.
As it is, the interface is simple to use but there can be ambiguities and different
interpretations for a query by the system and end-users [21]. In Kaushik and Rundensteiner
[32] the system was extended to allow non-spatial data to be queried in a separate window
from the spatial queries. Non-spatial queries are made using sliders which meant that only
simple queries could be applied. Direct manipulation interfaces alone are intuitive for
simple queries on a smaller and possibly fixed number of data sets, but with data intensive
systems such as GIS they could easily become very complex.

Most sketch-based languages adopt a query-by-example approach where users sketch
an example of the results that they would like displayed. In spatial databases these tend to
be sketches of spatial configurations [19]. Sketch! [36] was one of the first sketch-based
languages for spatial databases. Queries are constructed using a ‘‘syntax directed editor’’.
The non-spatial parts of the database are queried using diagrams that are similar to the E-R
model. Haarslev and Wessel [24] argue that although formal semantics are used in Sketch!,
there are no mathematical foundations to the spatial relations. Cigales [7] is another
example of a sketch-based query language for GIS. Users express queries by selecting
features and operations and the system then induces drawings of queries. The main
drawback of Cigales comes from the ‘‘multiple interpretations and multiple visual
representations of queries’’, and also a lack of logical and negation operators [42]. LVIS
[42] was defined as an extension of the Cigales language. The extension defined some new
operators, attempted to resolve interpretation ambiguities and was integrated into a
“‘customisable visual environment’’. However, the attempt at resolving ambiguities was
limited [21].

In spatial-query-by-sketch [5], [19], users build up queries by drawing spatial
configurations on a touch sensitive screen. Users can reduce the similarity ranking to
lower the accuracy threshold for the result by relaxing spatial relations. This enables exact
and similar matches to be browsed through. A pictorial query language (PQL) is proposed
in Ferri et al. [20] for geographic features in an object-oriented environment. Users
formulate queries by placing together configurations using ‘‘symbolic features’’. In Ferri
etal. [21], a “*syntactic and semantic correctness’’ method for feature configurations in the
language is defined in order to reduce the ‘‘multiple interpretations’’ of the queries. In
general sketch- and drawing-based approaches are suitable for expressing similarity-based
queries to spatial databases and can become complex to use in a general context when
composite queries are built. Users need to know what they require from the spatial
database in these approaches and they do not benefit users who might only want to scan
through the data sets [32]. Also, they either assume that users are able to sketch a query and
express spatial relationships in a drawing or rely on different modalities for offering the
user guidance in developing a sketch. Exact queries can be generally ambiguous due to the
several possible interpretations of the visual configurations [42].

VISCO [24], [51] is a multi-modal query language ‘‘for defining approximate spatial
constellations of objects’’. The basic language elements of VISCO use a metaphor that is
based on the semantics of everyday physical objects. It uses a combination of an iconic
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library, command line operators as well as constructing queries by drawing in the query
pane. A drawback of this language is that it can only query the spatial data in a GIS,
and only simple thematic descriptors such as ‘‘Lake’” or ‘‘City’’ can be typed onto the
objects.

3. General requirements and identified problems

It is important that GIS provide easy and efficient access to the functions that can be used
to manipulate spatial data [34]. Users of query interfaces need to enjoy using, feel
comfortable with, and ‘‘easily communicate their requests’’ to the system [8]. In this
section, a number of requirements are identified for the development of spatial query
languages. Some of these issues can be addressed at the language design level, while
others need to be addressed at the implementation level of the query interface. Issues
arising due to the spatial nature of the database include the following,

3.1. Spatial database issues

1. Representation of spatial objects: Geographic objects have associated spatial
representations to define their shape and size. Objects may be associated with more
than one spatial representation in the database to handle different map scales or
different application needs. Spatial representations of objects determine and limit the
types of spatial relationships that they may be involved in. Explicit representation of
the geometric type(s) of geographic features is needed to allow the user to express
appropriate constraints over their locations.

2. Spatial operations and joins: It is difficult for a non-expert user to realize all the
possible spatial operations that may be applied on a geographic object or the possible
spatial relationships that may be applied on a geographic object or the possible spatial
relationships that may be computed over sets of geographic objects. The semantics of
the operations and relationships are implicit in their names. Those names may not
have unique meanings for all users and are dependent on their implementation in the
specific system in use. For example, an overlap relationship between two regions may
be generalized to encompass the inside relationship in one implementation or may be
specific to only mean partial coverage in another as shown in figure 1. In this research
a visual, qualitative, representation of spatial operations and relationships is proposed
to facilitate their direct recognition and correct use. Also, different granularities of
spatial relationships need to be explicitly defined to express different levels of coarse
and detailed spatial constraints. Bonhomme et al. [6] note that a number of spatial
operators are not provided in query languages, such as directional operators. These are
also proposed in this research.

3. Composite spatial constraints: Multiple spatial constraints are used in query
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Figure 1. Types of overlap relationship between two spatial regions.

expressions. Again, the semantics of the composite relation may be vague, especially
when combined using binary logical operators of AND and OR. Means of visualizing
composite spatial relations would therefore be useful. For example, ‘‘Objectl is north-
of Object2 and close to it but outside a buffer of 10 m from Object3’’.

4. Integration of spatial and non-spatial data queries: The handling of spatial and non-
spatial data is non-uniform in querying languages, and they should be manipulated
together to ‘‘avoid the tiredness of a cognitive overload’ [6].

5. Non-spatial operators: With regards to spatial querying, some of the traditional
database operators are not specified in the languages [6]. This can be particularly true
in the sketch-based systems where everything in the drawings have to ‘‘co-exist’’, and
separate sketches would be needed to express a disjunction (OR). Negation (NOT)
operators are also not expressed in these types of language [16]. A good specification
of spatial and traditional operators would therefore be useful in the new language.

6. Schema visualization: GIS are often schema poor; for instance, the majority of the
object classes stored are spatial with no explicit relationships defined among them.
Spatial relationships are usually derived by queries. Devising suitable visualization
techniques for the schema will help users in relating locations of the data sets and their
scales of representation.

3.2. General database issues

What follows are issues arising in general non-spatial databases but which would apply to
spatial databases as well, and in particular the querying systems available for commercial
GIS. In a study of three query languages, Greenblatt and Waxman [22] noted that a
common error was the application of numeric operators to non-numeric fields. They
suggested that this could be solved using more detailed column names, such as
“‘roadname’’ instead of ‘‘road’’. In a graphical user interface another solution might
be to only allow users to select items from menus or specify them using fixed type edit
boxes.

In a review of previous experiments (for example, Greene et al. [23] and Michard [37]),
Young and Shneiderman [53] note that a common error in textual query languages is that
of using the logical AND operator as opposed to the logical OR operator when translating
from English sentences. They also note that users found it difficult to specify precedence in
query expressions due to ‘‘parenthesis complexity’’ [39]. Syntactical errors are also a
problem in query languages [23], [38], [44], [50], [53]. In their evaluations, Young and
Shneiderman [53] chose not to rate queries with syntax errors as incorrect, and Reisner
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[44] categorized these types of errors as ‘‘minor’’ and placed them under the banner
‘“‘essentially correct’ queries.

Katzeft [30] found that users of query languages often divided queries into stages. They
built complex queries by adding to an initial simpler query (sub-query). Visualizing results
of sub-queries while building a query would therefore be useful. Murray [39] suggests that
a query history mechanism be provided.

4, Language definition

The approach to the new language design and implementation in this research is visual and
can be classed as multi-paradigmatic. It uses a combination of graphical data-flow, icons
and direct manipulation. In the approach, query diagrams are constructed using filters,
represented by icons, between data input and output elements. The flow of data is
constrained by the filters in the diagrams. The approach is an extension and a considerable
modification of an example of a filter flow metaphor proposed by Young and Shneiderman
[53].

In Young and Shneiderman [53] a fixed interface with only one database table was used,
and users could apply filters to restrain the data from the attributes. The approach used a
metaphor of a stream of water passing through filters. As the channel of water (data)
passed through the filters (attribute menus) it reduced in volume, and this was indicated by
the thickness of the line. The binary logic operators of AND and OR were represented by
divisions in the channels of the water stream. Figure 2 shows an example of the filter flow
language. The system does not require the use of parentheses and the graphical diagrams

FILTER / FLOW INTERFACE

[Ttocatiow | Twanacer J[ satary | mme || — || RESULTING
s | l 3| 12 EMPLOYER
i

- Ty (e 1
[CEET] ot 1931t oy it actien Labamty sty of Moyt 80 Bits apered

Figure 2. Graphical filter flow [53].
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remove the confusion regarding precedence of operations. In a comparative experiment
with SQL, Young and Shneiderman found that subjects preferred the filter flow approach,
performed better and found it easier to use. The functionality of the system was very
simplistic and it was only used with one table. There were no join operations or
comprehensive means for handling query results.

Another significant influence on the research in this paper is the work of Murray [39].
He extended Young and Shneiderman’s [53] approach to devise a flow-based language for
querying object-oriented databases, in traditional business applications. The new approach
in this thesis is designed for querying a spatial database. The data flow metaphor designed
in this approach is simpler and more logical than that used in the above approaches. Non-
spatial and spatial filters are represented visually as opposed to textually with icons that
indicate the type of constraint used. Pictorial representations are also designed for
expressing spatial relations and spatial objects. Operators are produced in the language for
the manipulation of geometry in the display. A new metaphor is designed for the consistent
visualization of both non-spatial and spatial joins and composite spatial joins can also be
expressed in the language. This research focuses on deriving a query language for the
vector data model, a model supported in most popular GIS [34], but the language could
also be adapted for use with the raster data model. In what follows, the query language
constructs are described in detail.

5. Language framework and functions

In this section the framework and functions designed for the new language are described.

5.1. Example database

Throughout this paper, the attributes and classes/tables of the example database of figure 3
are used. There are four classes, County, Town, Road and Supermarket. The data types of
the attributes are also given in the figure alongside their names. At this point, the way in
which the spatial database schema is depicted is not the primary concern. This is
considered further in Section 7.

5.2. Object class representation

One of the general requirements noted in Section 3 was the representation of geographic
objects that have associated spatial representations to define their shape and size. Objects
may be associated with more than one spatial representation in the database to handle
different map scales or different application needs. Spatial representations of objects also
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County Database b Supermarket
Attribute DataType Attribute DataType
cname String sname String
hpopulation Integer stown String
spopulation Integer geometry Point
geometry Polygon
Road Town
Attribute DataType Alttribute DataType
o tname Siri
rname String fowh.twi String
rtype .Sjlr!ng tpopulation String
rsurface E:lr!ng geometry Integer
rcounty String athie Pulylg(}n
geometry | LineString geometry Point

Figure 3. Example database.

determine and limit the types of spatial relationships that they may be involved in. There is
therefore a need to explicitly represent the geometric types of geographic features to allow
the user to express appropriate constraints over their locations.

In the language, object classes are depicted using a rectangular box containing the name
of the class and an icon representing its spatial data type (see figure 4). Icons enable users
to instantly recognize concepts and make the process of learning them easier, ‘‘because
people often remember visual concepts far better than verbal data’’ [28]. The spatial data
types that could be used include point, linestring, polygon, or any other composite spatial
data type defined in the database. Icons offer the user initial knowledge of the spatial
representation associated with the feature. A thick edge on the icon box is used if the
object has more than one spatial representation in the database (see figure 4 for the town
object). For example, the town object from the schema could be represented by a polygon
to depict its actual shape and by a point for manipulation on smaller scale maps.

The object classes are used as inputs to the queries. A basic query skeleton is shown
in figure 5. It consists of a data input and data output elements and a filter in between.
Every input spatial object will have a related result object that can be displayed. The filters

™. | Road U Town

U County [ Supermarket

Figure 4. Visual representations of spatial objects
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Input

|

Filter

v

Output

Figure 5. Basic query diagram.

act on the instances flowing from the input element to restrict the data according to the
defined criteria.

5.3. Query results

The results of the query (output element in figure 5) are depicted as shown in figure 6, by a
double-edged rectangular box, with the class name written within. Any particular
attributes that have been selected to appear in the results are listed on the right hand side,
and if none of them are selected then they all pass through to the results. In the case of
figure 6, the road names are selected. By default, the result of the query is displayed if the
object has a spatial representation, thus eliminating the need to list the geometry attribute
found in the spatial SQL SELECT clause.

The results box can be checked at any time during query formulation and its content
displayed as a map and/or by listing the results in a table. A natural language English
expression of the query producing the result box is also available for examination through
the result box as shown in figure 6. The result box shown in figure 7 contains the results of
a query where the road and county classes have been joined. More than one geometric type
has been produced from the query. In this case roads and counties that satisfy the join
condition will be displayed on the result map. A result box containing a join table is
indicated with a BH symbol on the top left hand side of the box.

One of the general requirements identified in Section 3 is the visualization of the results
of sub-queries during the process of query formulation. This is achieved in the new

The SQL for this query is:

SELECT road.geometry, road.rname
FROM road
WHERE road.rtype = “motorway""; | rtype ="motorway"

Display the roads with rname
road type “motorway”.

Figure 6. Result box in query.
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Road, County

Figure 7. Join table result box.

language, where users can view the results in the result boxes and then build more complex
queries by adding to an initial simpler query.

54. Filters and operators

This section describes the filter element of the query skeleton shown in figure 5. Filters or
constraints in a query are made on the non-spatial (aspatial) properties of a feature as well
as on the spatial properties and location of a feature. The use of non-spatial operators in a
query language for spatial databases was noted as a requirement in Section 3. Another
requirement was the integration of spatial and non-spatial data queries. In the language,
both spatial and non-spatial data are manipulated together.

All the spatial operators proposed in the OpenGIS [40] SQL specifications, summarized
in tables A.1, A.2, A.3 and A.4 (in the appendix), are provided in the new approach. The
concept of filters between the input and output elements is first described, and then the
spatial operators that can be applied to the results are explained.

5.4.1. Filters

i. Non-spatial/spatial filters
Figure 8 demonstrates a non-spatial filter depicted by an A (for attributes) symbol. It
represents constraints over the stored attributes. The condition is written beside the
icon as shown in the figure. Figure 9 demonstrates a spatial filter depicted by the co-
ordinate symbol. It represents constraints that can be computed on the geometric
properties of the object. Three possible operators are defined in the language: length,
area and boundary. The length operator computes the length of a linestring, and the
area and boundary operators are used with polygon geometry. In the OpenGIS

A |rtype="motorway”

o

Figure 8. Non-spatial filter.

;—v length(road) =501

Figure 9. Spatial filter.
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Figure 10. Negated constraints.

Class 1

5=

Class 1 join Class 2

Figure 11. Non-spatial join.

specification [40], the boundary operator returns a geometry. Here, the boundary
operator computes the size of the circumference of the polygon object. Other
operators could be defined in a similar fashion. For example, an envelope operator that
returns a minimum bounding rectangle of a geometry could be used; Envelope (town).
Composite operators could then be written; for example, Area(Envelope(town)) >
15 selects all objects where the area of the envelope is greater than 15 miles squared.
Negated constraints (NOT) are depicted by the filters shown in figure 10.
ii. Join filters

Two kinds of join operators are possible in spatial databases namely, non-spatial joins
and spatial joins. Both types are represented coherently in the language. Figure 11
demonstrates a non-spatial join filter. It is also depicted by an A symbol that
represents a join between stored attributes of two classes. A result box is associated
with every joined class and linked to the join filter. In the figure, class 1 flows to the
filter and is joined by class 2 using a common attribute of both.

Spatial joins are expressions of spatial relationships between spatial objects in the
database. The visual representation of spatial relationships was noted in Section 3 as a
requirement in a spatial database querying language. Spatial relationships may be
classified as topological, directional or proximal.

Topological spatial joins. Figure 12(a) demonstrates the general filter for the spatial join.
On specifying the type of spatial relationship the icon in the filter is replaced. In figure
12(b) a topological relationship has been selected and the icon demonstrates the
relationship between linestring and polygon geometries of classes 1 and 2. A choice of
possible topological relations are available depending on the spatial data types of the
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Class |

v
Fe e ]

Y ! Class 1 cross

(a) Class 2 [h)

Figure 12. (a) Spatial join filter, (b) topological spatial join.

objects joined. These are specified in the OpenGIS [40] SQL specification and are now
explained.

Topological relations

The visual representation of spatial relations was noted as a requirement for a spatial
database querying language in Section 3. This section explains the topological relations
and different levels of granularity of relations in the new language. These are intended to
allow users to express different levels of granularity of spatial constraints.

Defined relationships

The OpenGIS [40] SQL specification used the calculus based method [10]-[12] to
describe topological relations. In the method, a set of relations were named and defined for
the DE + 9IM model, which was a combination of the ‘‘Dimension extended method”’
[10] and the ‘‘9-intersection method’’ [15] for describing spatial relationships. Five
general relationships were defined in Clementini and DiFelice [11]: Touch, In, Cross,
Overlap and Disjoint that could express all of the spatial configurations of the DE + 9IM
model (table 1).

Topological icons

In the spatial join filter shown in figure 12, it was explained that the icon in the filter was
replaced with an icon depicting the relation that is used. From an understanding of the
studies on spatial relations described above, different topological icons have been
designed for the new language. They depict relationships between simple geometries and
are shown in figures 13—18.

Table 1. Spatial relations [11].

Relation Description

Touch The Touch relationship applies to area/area, line/line, line/area, point/area, point/line situations.
In The In relationship applies to every situation.

Cross The Cross relationship only applies to line/line and line/area situations.

Overlap The Overlap relationship applies to area/area and line/line situations.

Disjoint The Disjoint relationship applies to all situations.
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Figure 13. Point/point spatial relationships.

P2e P
.
&pq P2
Disjoint In
» Point/Line
N \ }
Disjoint Touch

Figure 14. Point/line spatial relationships.

e Point/Area

®.

Disjoint

Figure 15. Point/area spatial relationships.

Touch

s Areaf/Area
Touch Touch Overlap Disjoint
In In In

Figure 16. Area/area spatial relationships.
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Note that there are two icons for the Touch relation and three icons for the In relation.
These indicate the different levels of granularity in the relations and are defined in the
language so that users can express detailed spatial constraints in their queries. Different
icons for different levels of relation are also defined between Line/Area and Line/Line
geometries.

e Line/Area

=

rJ

¥
W
%

Touch Touch Touch Touch Touch
In In In In Disjoint
Cross Cross Cross Cross Cross.

Figure 17. Line/area spatial relationships.

» Line/Line
a L] b b 8 "
b i ;Il A"/;:—-\' b b
a
Touch Touch Touch Touch Touch
a
a b b 2 .
\ \\. 5 !rg i A/
In In Cross Disjoint
a L b b
/I/; \ & A
b b b~ N
Overlap Overlap Overlap Overlap

Figure 18. Line/line spatial relationships.
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A Lt a2
Point Line Area

Figure 19. Spatially equal geometry.

The OpenGIS [40] SQL specification also defines the equals relation for geometries that
are ‘‘spatially equal’’. Figure 19 illustrates the icons that have been designed in the new
language for this relation.

The Contains and Intersect relations were defined in OpenGIS [40] for user
convenience. Contains has the same representations as the In (Within) relations and
Intersect has opposite representations from the Disjoint relations.

Directional spatial joins. 1In figures 20 (a), (b), (c) and (d) the general filter has been
replaced by directional spatial join filters. In 20(e), the icon depicts the North of
relationship. It finds the geometries of class 1 that are North of the geometries of class 2.
The South, East and West relations are also available.

Proximal spatial joins. In figure 21 an icon for a proximal relationship has replaced the
general filter of figure 12(a). Qualitative proximal relationships, such as Near and Far are
vague unless they clearly have a pre-defined range of measures. Hence, using proximal
relationships requires an indication of the measure of proximity required, for example

“{ _l_ (‘.]1.4& 1
N L]
®
Class 1 north of
+_). 2 <+ Class 2
E W
(e)
(c) (d)

Figure 20. Directional spatial joins.

Class 1

‘] m

% Class | within

Im of Class 2

Figure 21. Proximal spatial join.
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Class 1 disjoint and
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Figure 22. Composite join.

within a distance of x miles. In figure 21, the filter finds the geometries of class 1 that are
within a distance of 1 mile of class 2. The distance operator was defined in the OpenGIS
specification and is summarized in Chapter 2.

Composite joins. Multiple spatial joins may be expressed in the language by combining
join filters. The use of composite spatial constraints was noted as a requirement in Section
3.1In figure 22, the filter finds the geometries of class 1 that are disjoint and West of class 2.

5.4.2. Geometric operators. There are a number of operators defined in the OpenGIS
SQL specification that can result in geometry to be displayed on a map or data that can be
written in a table of results. These operators are defined in the basic functions, spatial
analysis, point, linestring and polygon tables in the Appendix (tables A.1, A.2, A.3 and
A.4). Some of the new language visual representations for the operators defined in the
tables have already been described in Section 5.4.1. This section will describe the new
languages visual representations of the remaining operators.

Display operators. All of the operators defined in table 2 can result in the selection and
display of geometry on a map when applied. In the flow diagrams, they are placed beneath
the result box as shown in figure 23.

Tabular operators. All of the operators defined in table 3 can result in data that is written
to a table of results. In the flow diagrams, the operators are placed on the right or left of the
result box as shown in figure 24. The double arrow indicates the flow of geometry into the
operator and back into the result box. Some of the operators are very specialized and might
not be utilized by normal users of GIS. They are, however, defined in the language and

Result
Town —Box

’
K

Town Envelope

Figure 23. Envelope operator.
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Table 2. Result display operators.

Operator Example Description
'.'-1 This operator will result in the display of the minimum bounding rectangle of the
Town Ee town geometry.
This shows the boundary geometry operator that in this case will display the
County

Houndary Geom

Road
Convex Hull
P
&
Road :_” .
IsClosed
Road '._ _)
IsHing
P
Town 2
Centrold
County .
PolmOnSurface
County o {/‘
Extariorfing
£
County L
InteriorRingH

Supermarket

Super-
miarket

boundary of a county.

This demonstrates the convex hull operator that in this case will display the convex
hull of the road geometry.

This demonstrates the IsClosed operator for linestring geometry. It assesses
whether a curve is closed (start point = end point). In this case it is applied to the
road class and any roads that meet the constraint are displayed.

This demonstrates the IsRing operator for linestring geometry. It assesses whether a
curve is closed (start point = end point) and simple (it does not pass through the
same point more than once). In this case it is applied to the road class and any roads
that meet the constraint are displayed.

This demonstrates the Centroid operator for polygon geometry. It finds a point that
is the mean centre value of the polygon. In this case, it finds the Centroid of the
towns in the town class and displays the points.

This demonstrates the PointOnSurface operator for polygon geometry. It finds a
point that is guaranteed to be on the surface (the surface is the input and the
operation returns a point). In this case, it finds and displays a point on the counties
of the county class.

This demonstrates the ExteriorRing operator for polygon geometry. It finds the
exterior ring of the polygon. In this case, it finds and displays the exterior rings of
counties in the county class.

This demonstrates the InteriorRingN operator for polygon geometry. It finds the
Nth interior ring of the polygon. The N is an integer defined by the user. In this case,
the Nth interior ring of the county geometry is displayed.

This demonstrates the Buffer operator. It finds the geometries that are less than or
equal to the distance of another geometry. In this case, the supermarkets that are
within a buffer of 2 miles of the supermarkets in the result box are displayed. (if
ASDA supermarkets have been selected, then the operator will display all
supermarkets within 2 miles of the ASDAs)
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«»| Arca (Town)

Figure 24. Area tabular operator.

Table 3. Result table operators.

Operator

Description

Length (Road)

Area (Town)

Distance (Town,
Supermarket)

IsEmpty (Road)

IsSimple (Road)

(a) X (Supermarket)
(b) Y (Supermarket)

(a) StartPoint (Road)
(b) EndPoint (Road)

NumPoints (Road)

PointN (Road, 3)

NumlInteriorRing
(Country)

AsBinary (Road)

SpatialReference
(Town)

Length operator for linestring geometry: It has also been described in the spatial
filter section of 5.4.1. In this case, it lists the lengths of the road geometries.

Area operator for polygon geometry: It has also been described in the spatial filter
section of 5.4.1. In this case, it lists the areas of the town geometries.

Distance operator: It has also been described in the spatial join section (in 5.4.1). In
this case, it lists the shortest distances between the geometries of the town and
supermarket classes.

IsEmpty operator: In this case, the operator will indicate if the set of road geometry
is empty or not.

IsSimple operator: In this case, the results will indicate those roads that are simple
(the linestring geometry does not pass through the same point more than once).

X and Y operators for linestring geometry: If the operator in (a) is used, it will list
the x co-ordinate values for the supermarket geometries, and if (b) is used it will list
the y co-ordinate values of the supermarket geometries.

StartPoint and EndPoint operators for linestring geometry: If the operator in (a) is
used, then the start point (x and y) of the roads in the road class will be listed, and if
(b) is used then the end point of the roads in the road class will be listed.

NumPoints operator for linestring geometry: It finds the number of points in a
linestring. In this case, it will find the number of points in the road geometries.

PointN operator for linestring geometry: It will find a point (x and y) that the user
specifies (V: integer) in a linestring. In this case, it finds the third point of the road
geometries.

NumlInteriorRing operator for polygon geometry: It finds the number of interior
rings in the polygon. In this case, it uses the county geometries.

Export operator: It is used to convert the geometry into either a textual or binary
representation. For textual representations, the AsText( ) operator should be used,
and for binary representations the AsBinary( ) operator should be used. In this case,
the road geometries are converted into a binary representation.

SpatialReference operator: In this case, it finds the spatial reference IDs for the
town geometries.
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Figure 26. Example using intersection geometric set operator.

may be used for spatial analysis by an expert user or to form the basis for composing more
meaningful queries to the system.

Geometric set operators. These functions are similar to the set operators of traditional
SQL, but here they execute set-theory and constructive geometry operations on geometry
values [40]. The filters that have been described for the new language are shown in figure
25. They are Intersection, Union, Difference and Symmetric Difference.

An example of a geometric set operation is shown in figure 26. The result boxes from
each query are shown flowing into the sides of the intersection filter. Following this, a new
result box is made that will contain the geometry of a polygon made from both classes.
This is indicated in the result box using gc.

5.5. Dataflow
One of the general issues noted in Section 3 was the common errors that are often made in

using logical AND and OR operators when translating from an English sentence. In the
query language, the arrangement of the filters in the flow diagrams denote the logical
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Figure 27. Single filter.

Figure 28. Filters joined by AND.

operators of AND and OR. This eliminates the need for using textual operators.
Parentheses are also not needed with this approach due to the fact that the filter
arrangement determines the precedence between the constraints of a query. This was also
noted as an issue that needed to be addressed in Section 3. This section will describe the
different data flow layouts that can be used in the language.

A single filter is shown in figure 27. The data flows through only when the filters criteria
is satisfied. In figure 28, two filters are shown in series, representing filters joined by an
AND. The data flows through only when the criteria in both are satisfied. The logical
operation between the filters is: F1 AND F2. A concise representation of the filters is
shown on the right of figure 28. In figure 29, a parallel arrangement of filters is used to
indicate that the data flows through when the criteria in either or both filters are satisfied.
This represents filters that are joined by an OR. The logical operation between the filters is:

Fl F2

Figure 29. Filters joined by OR.
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Figure 30. Filter configuration: (F1 AND (F2 OR F3)).

Figure 31. Filter configuration: ((F1 AND F2) OR F3).

F1 OR F2. Again, a concise representation of the filters is shown on the right of figure
29.

Any number of filters may be joined together by the representations of logical operators
as shown in figures 30, 31 and 32. In figure 30 the logical operations between the filters
are: (F1 AND (F2 OR F3)). For the filters in figure 31 the logical operations are: (F1 AND
F2) OR F3). Finally, in figure 32 the logical operations between the filters are: (F1 AND
(F2 OR F3 OR (F4 AND F5)) AND F6).

6. Query examples

In this section, a number of example queries are demonstrated in the filter flow language.
The SpatialSQL expressions are also given along with the queries.

6.1. Foundational queries

The example in figure 33 demonstrates a basic query that uses a non-spatial filter. In this
case, it finds and displays the counties with a sheep population greater than 150,000, and
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Figure 32. Filter configuration: (F1 AND (F2 OR F3 OR (F4 AND F5)) AND F6).

selects their names. Other comparison operators could be applied such as equals or less
than. Also, spatial (unary) operators may be used to filter the results, for example area,
length, and perimeter/boundary. An example of using a spatial filter is shown in figure 34.
This query allows only roads with a length greater than 50 miles to pass through to the
results. The lengths of the roads are also selected.

In figure 35, three filters are used and are joined together using the dataflow
representations of the Boolean logic operators. One of the filters in the query is a negated
filter. In this query, towns that either have a population greater than 20,000 with a twin
town that is not named ‘‘Esslingen’’, or towns with an area greater than 15 miles are
selected. The envelope operator is also used in the query to place a minimum bounding
rectangle around the geometry of towns in the result box.

cname
‘

The SQL for this query is:
SELECT cname

FROM county

WHERE spopulation > 150,000

Figure 33. A non-spatial filter in a simple query.
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. | Road

,(L’ length(road) = 50

4—’( length(road)

The SQL for this query is:

SELECT length(road.geometry)
FROM road

WHERE length(road.geometry) > 50:

Road

Figure 34. A spatial filter in a simple query.
6.2. Joins

Two kinds of join operations are possible in spatial databases namely, non-spatial joins and
spatial joins. Both types are represented coherently in the language. Spatial joins are
expressions of spatial relationships between spatial objects in the database. Examples of
spatial join queries are: Display all the motorway objects crossing Mid Glamorgan, and
Display all the towns north of Cardiff within South Glamorgan. An example of a non-
spatial join is given in figure 36. It selects all of the towns that have an ASDA or Tesco
supermarket. The names of the town and supermarkets are also selected.

Note that the result box from the join operation has been modified to reflect the contents
of the join table. In figure 37, a spatial join query is given. The query finds all motorway
roads that cross counties with a human population greater than 50,000. A symbol of the
spatial relationship sought is used to replace the general ‘‘co-ordinate’’ symbol in the

town-twin = “Esslingen”
) area(town)> 15
tpopulation > 20,000

The SQL for this query is:
SELECT town.geometry, town.tpopulation,
Envelope(town.geometry)

FROM town tpopulation
WHERE (not (town-twin = “Esslingen”) and tpopulation > 20,000)

or (area(town.geomelry) > 15); ‘
r""l
]

Town Envelope

Figure 35. A query that uses and, or and not.
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Figure 36. Example query of a non-spatial join.

spatial join filter. A choice of possible spatial joins is available depending on the spatial
data types of the objects joined. These are explained in Section 5.4.1. In figure 37, all the
possible relationships between line (for roads) and polygons (for counties) will be
available.

6.3. Composite joins

Multiple spatial joins may be expressed similarly either with the same object type, for
example to find the supermarkets outside and north of towns, or with more than one object
type, for example to find the supermarkets that are either outside and north of towns that
have a population greater than 10,000 or are within a buffer of 5 km from motorways as
shown in figure 38.

e |

hpopulation > 50,000

County

The SQL for this query is:

SELECT *

FROM road, county

WHERE road.type = “Motorway™
and county.hpopulation > 50,000 Road, County
and road.geometry CROSS county.geometry;

Figure 37. Example query of a spatial join. Specific relationship icon replaces general spatial join to indicate
the cross relationship.
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rtype= tpopulation =

“Motorway™ g

S5km
=

|

-
3
=
Z
=

L

l
Wit

-
The SQL for this query is: —I|-l Supermarket, Road, Town
SELECT *
FROM supermarket, road, town
WHERE (road.type = “Motorway™ and distance(supermarket. geometry, road.geometry) < 5) or
(town.tpopulation > 10000 and direction(supermarket.geometry, town.geometry) = North and
supermarket.geometry DISJOINT town.geometry);

Figure 38. Composite query. Find the supermarkets that are within a buffer of 5km of a motorway or are
outside and north of a town whose population is greater than 10,000.

7. Implementation

This section will briefly explain the language interface. Full details of the language
implementation are a subject of a different report. In implementing the language, a number
of issues identified in Section 3 are addressed including: error prevention, guided
querying, feedback, query history and dynamic result visualization.

The main part of the interface is the query formulation window where users build up the
queries. A result window is also implemented to present the results of the queries in the
form of maps and tables. Multiple windows are placed into pages in a tabbed notebook
format. The query formulation window is accessed by clicking the Query Window tab on
the interface notebook. A window with four main frames is then displayed. The frames are:
a query builder pane, the filter options, message guiding to the following steps and an SQL
interpretation of the formed query. Error recovery is facilitated by undo and redo buttons
shown at the bottom of the page. Figure 39 shows an example of this window with pointers
to the above items.

Users build up filters in a consistent guided manner, and direct manipulation is used for
the prevention of errors. The system decides all of the possible filters and choices that may
be utilized by the user at the various stages of query formulation. Six filters are available to
the users. These can be placed into the filter flow diagrams on the query frame. The filters
available are non-spatial (stored data), spatial, negated non-spatial, negated spatial, and
spatial and non-spatial joins. Join filters are distinguished by a double border around their
icon, and three types of spatial join are available in the interface that are based on the
direction, proximity or connectivity between the objects geometries.
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Figure 41. Database schema window using Select by Scale.

When a query is complete in the formulation window, queries are translated and
processed by clicking the Query Results tab. The results are then displayed on a map, as
shown in figure 40. The results can also be viewed in tabular form. The sliders shown on
the left of the window (figure 40) allow users to dynamically adjust the queries and
instantly view the results in the map or table.

The schema window shown in figure 41 has only been partially implemented and is
currently under construction. The new schema allows users to select the database tables
by themes (roads, towns . ..) or source data scale. The prototype implementation differs
slightly from what is shown in the figure. In the figure, a minimum-bounding rectangle
(MBR) is used to illustrate the spatial extent of the different map layers. Upon restricting
the scale of viewing, only those data sets or themes with that source data scale are
shown. A flashing boundary line indicates the existence of more than one source data
scale for the theme viewed. Also the MBR are color coded to distinguish the different
types of map themes. When two map themes overlap, the boxes or parts of the boxes are
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shaded to indicate the existence of more than one map theme in the location. The
approach allows users to have an overview of the database contents, and enables them to
make efficient decisions on data sets for querying. In the complete implementation of the
schema, a link will be provided to an Input Data panel in the query formulation window.
Users could then drag an icon of the selected data set into the input box of the flow
diagram.

8. Conclusion

In this paper, a visual approach to querying spatial databases was explained. Examples
from the GIS domain have been used throughout to demonstrate the expressiveness of the
language. The design of the language itself tried to address several of the requirements and
problems associated with query languages to GIS. The following is a summary of the
design aspects.

e Icons are used to represent the geographic features with explicit indication of their
underlying spatial representation, and thus offering the user a direct indication to the
data type being manipulated.

e Visual representations of spatial operators and relationships are designed so that the
user could realize all of the possible operations that were available. Composite spatial
relations were also included.

e A data flow metaphor is used consistently with different types of query filters namely,
non-spatial and spatial filters as well as negated filters and spatial and non-spatial
joins.

e The consistent use of the metaphor is intended to simplify the learning process for the
user and should make the process of expressing and reading queries easier.

e The query history is retained, and complex queries can be built by adding to initial
simpler queries.

® Sub-queries and complex queries are built consistently.

e Parenthesis complexity and common errors in the use of Boolean logical operators
(AND and OR) have been addressed by utilizing a series and parallel flow metaphor
that allows users to understand order of precedence and recognize the difference
between AND and OR.

The approach is aimed at casual and non-expert users, or at expert domain users who are
not familiar with query languages to databases. The implementation of the language aims
to cater for different levels of user expertise. One of the intentions of the filter flow
language was to design a comprehensive language that provides much of the functionality
of a spatially extended version of SQL. In the interface, visual queries are parsed and
translated to spatially extended SQL queries.

The proposed language design takes into account all of the specifications for a standard
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SQL that supports ‘‘geo-spatial feature collections’’ [40]. It can therefore be considered
complete as a spatial query language.

Appendix

This section describes the set of operators that have been specified by the OpenGIS
consortium [40] for relations between geometries and operations on sets of geometry. The
OpenGIS [40] have specified a number of operators for the geometry class. These are
summarised in table A.1, compiled by Shekar et al. [46] and Clementini and DiFelice [13].

A spatial relationship that is not defined in the OpenGIS specification [40] but has been
defined in a number of papers [1], [12], [14], [19] is a directional relation. It describes the
location of an object with respect to the location of another object (North of, East of. . .).

In the OpenGIS specification there are also methods defined for operations on the
particular geometry types. These are shown in tables A2, A3 and A4. Note, some of the
operators have an (O) in their descriptions. This indicates that the operators result in
information on an object level rather that a geometric level.

Table A.1. OpenGIS [40] geometry operators [13], [46].

Basic SpatialReference() Returns the Reference System of the geometry
functions Envelope() The minimum bounding rectangle of the geometry
Export() Convert the geometry into a different representation
IsEmpty() Tests if the geometry is a empty set or not
IsSimple() Returns True if the geometry is simple
Boundary() Returns the boundary of the geometry
Topological Equal Tests if the geometries are spatially equal
operators Disjoint Tests if the geometries are disjoint
Intersect Tests if the geometries intersect
Touch Tests if the geometries touch each other
Cross Tests if the geometries cross each other
Within Tests if the given geometry is within another given geometry
Contains Tests if the given geometry contains another given geometry
Overlap Tests if the geometry overlaps another geometry
Spatial Distance Returns the shortest distance between two geometries
analysis Buffer Returns a geometry that represents all points whose distance
from the given geometry is less than or equal to the specified distance
ConvexHull Returns the convex hull of the geometry
Intersection Returns the intersection of two geometries
Union Returns the union of two geometries
Difference Returns the difference of two geometries

SymDiff Returns the symmetric difference of two geometries
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Table A.2. Point geometry operators [40].

For Point geometry, the following operators are defined:
X() The x co-ordinate value for this Point (O)
Y() The y co-ordinate value for this Point (O)

Table A.3. LineString geometry operators [40].

For LineString geometry, the following operators are defined:

Length( ) The length of this Curve in its associated spatial reference
StartPoint( ) The start point of this Curve (O)
EndPoint( ) The end point of this Curve (O)
IsClosed( ) Returns 1 (TRUE) if this Curve is closed (StartPoint ( ) = EndPoint ())
IsRing( ) Returns 1 (TRUE) if this Curve is closed (StartPoint ( ) = EndPoint ( ))
and this Curve is simple (does not pass through the same point more than once)
NumPoints( ) The number of points in this LineString (O)
PointN( ) Returns the specified point N in this LineString (O)

Table A4. Polygon geometry operators [40].

For Polygon geometry, the following operators are defined:

Area( ) The area of this Surface

Centroid( ) The mathematical centroid for this Surface as a Point.
PointOnSurface( ) A point guaranteed to be on this Surface (O)

ExteriorRing( ) Returns the exterior ring of this Polygon

NumlInteriorRing( ) Returns the number of interior rings in this Polygon
InteriorRingN( ) Returns the Nth interior ring for this Polygon as a LineString
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