
SABUL: A Transport Protocol for Grid Computing

Yunhong Gu and Robert Grossman
Laboratory for Advanced Computing, University of Illinois at Chicago
700 SEO M/C 249 851 S Morgan St, Chicago, IL 60607, USA
E-mail: yunhong@lac.uic.edu; grossman@uic.edu

Key words: transport protocol, rate control, bandwidth-delay product, high performance data transport

Abstract

This paper describes SABUL, an application-level data transfer protocol for data-intensive applications over high
bandwidth-delay product networks. SABUL is designed for reliability, high performance, fairness and stability. It uses
UDP to transfer data and TCP to return control messages. A rate-based congestion control that tunes the inter-packet
transmission time helps achieve both efficiency and fairness. In order to remove the fairness bias between flows with
different network delays, SABUL adjusts its sending rate at uniform intervals, instead of at intervals determined by
round trip time. This protocol has demonstrated its efficiency and fairness in both experimental and practical
applications. SABUL has been implemented as an open source C++ library, which has been successfully used in several
grid computing applications.

Abbreviations: SABUL – Simple Available Bandwidth Utilization Library, BDP – Bandwidth-Delay Product, RTT –
Round Trip Time, AIMD – Additive Increase Multiplicative Decrease, MIMD – Multiplicative Increase Multiplicative
Decrease, SYN – Synchronization, ACK – Acknowledgement, NAK – Negative Acknowledgement

1. Introduction

Although 1 Gb/s and higher wide area networks are
now becoming more common, it is still a challenge for
grid applications to be able to use the bandwidth
available, due to the limitations of current network
transport protocols [26]. The limitations of today’s
network transport protocols are one of the main reasons
that it is difficult to scale data intensive applications
from local clusters and metropolitan area networks to
wide area networks [2], [3], [7] and [26].

There are several problems that are the result of
TCP’s window-based congestion control algorithm
when it is used on networks with high bandwidth delay
products (BDP) [26]. BDP is defined to be the product
of the bandwidth and the round trip time (RTT) of a
TCP packet. First, TCP’s congestion control algorithm
is not fair to flows with different RTTs [8]. Flows with
high RTTs will generally get less of the available
bandwidth than flows with lower RTTs when passing
through a common bottleneck. In particular, the
theoretical upper limit of throughput decreases as the
RTT of the link increases [9]. Second, the AIMD
(Additional Increase Multiplicative Decrease)
algorithm used by the congestion control algorithm to
set the sending rate can take a very long time to

discover the available bandwidth on high BDP
networks [4, 5]. Third, dropped packets due to physical
errors on the links, but not due to congestion, can
prevent TCP from obtaining a high throughput [8].

A network transport protocol is considered fair if
multiple flows can evenly share the available
bandwidth. Since data intensive applications often use
parallel flows to transport large data sets [7] or
integrate data from multiple sources [27], fairness is an
important requirement for data intensive grid
applications. The performance of these types of
applications is often limited by the slowest data stream.

We performed a simple series of tests to determine
the performance of TCP over a 1 Gb/s link between
Chicago and Amsterdam. The throughput of a single
TCP stream without tuning the buffer size is about 4.5
Mb/s. The throughput of a single TCP stream is about
128 Mb/s when the TCP buffer is tuned by setting its
size to 12 MB, the approximate BDP value of the link.
With parallel TCP streams, a maximum throughout of
700 Mb/s was obtained using 64 TCP flows, each with
a 2 MB buffer. In another series of experiments, we set
up two separate flows terminating in a common node
in Chicago – one from a local node in Chicago and one
from a remote node in Amsterdam. The former
obtained 890 Mb/s and the latter 3.5 Mb/s.

These results show that TCP tuning and parallel
TCP are not sufficient for data intensive grid
applications. Several new transport protocols have
been introduced to address these issues [12], [13], [14],
[21], [22], [25], but few of them are widely used in grid
computing. There are several reasons for this. First,
many of the new protocols require that the existing
network infrastructure be changed, for example, by
requiring a specially-tuned operating system kernel or
by requiring modifications to the routers. There are
large costs associated with these types of changes, and
additional problems may arise in collaborative
networks. Second, some of the new protocols are fast,
but not fair. This is adequate when a single flow is used
for bulk data transport on a network without
congestion. But it is not adequate for data intensive
computing on grids when multiple flows are needed.
Third, some of the new protocols are not friendly to
TCP. Although this is not a problem on specialized
networks being used for bulk data transport, it is a
problem for data grids in general. This is because grid
and web services rely on TCP and when high volume
flows impact the TCP flows, this can create problems
for a data grid application.

In our opinion, there is a need for a network
transport protocol that has high throughput (i.e., is
fast), is fair, is friendly, and has low deployment costs.
This motivated us to design and develop a reliable,
high-performance, application-level, data transfer
protocol named SABUL, or Simple Available
Bandwidth Utilization Library. SABUL is an
application- level data transfer protocol used to support
high performance data transport in wide area lossy
networks. It uses a UDP-based data channel and a
TCP-based control channel. SABUL employs a rate-
based congestion control mechanism. Both simulations
and experimental studies demonstrate that SABUL is
fair to other SABUL flows and is friendly to
concurrent TCP flows.

We believe that SABUL is novel in that it is one of
the few network transport protocols we are aware of
that can be deployed at the application layer, can
efficiently use all available bandwidth on links with
high BDPs, is fair to concurrent SABUL flows, and is
friendly to concurrent TCP flows. We believe that data
grid applications are more easily built using network
protocols for high performance data transport with this
combination of factors.

The rest of this paper will describe the details of
SABUL. Section 2 describes some related work.
Section 3 contains a description of the SABUL
protocol. Section 4 contains some simulation results.
Section 5 contains some experimental results. Section 6
contains some sample grid applications employing
SABUL. Section 7 contains the conclusion.

2. Related Work

Network researchers have been improving TCP for
many years, resulting in a series of TCP variations that
include HighSpeed TCP [12], Scalable TCP [13], and
FAST TCP [25]. In addition to improving TCP,
researchers have also introduced new network transport
protocols designed to overcome TCP’s inefficiencies
on networks with high BDP. Many of these new
protocols, such as SABUL, are rate-based protocols
that send packets at computed intervals instead of using
windows.

Another approach is to design what are called open
loop protocols in which routers provide information to
the sender regarding congestion. Since this approach
requires changing routers, it is not expected to be
deployed for some time.

One of the goals of researchers designing variants
of TCP is to retain compatibility with standard TCP.
For this reason, these types of protocols typically
modify just the sending algorithm. This is possible
since congestion control based upon tuning the sending
rate is done at the sender. The TCP stack on the
receiving side does not have to be changed, simplifying
deployment.

For example, Scalable TCP and HighSpeed TCP
use more aggressive congestion control algorithms to
replace the standard AIMD algorithm. As the
congestion window becomes larger, they both increase
faster; HighSpeed TCP decreases slower, whereas
Scalable TCP has a constant decrease factor of 1/8.
When the window size is below a threshold window
size, they use the same algorithm as standard TCP.
Because of this design, they are friendly to standard
TCP for traditional low BDP networks; while at the
same time, they are more aggressive over high BDP
networks (BDP > threshold window size).

FAST TCP is a variant of TCP Vegas [19], which
uses packet delay as an indicator of congestion in
addition to packet loss. FAST TCP compares the
current estimated RTT with the base RTT (defined as
the smallest RTT ever observed), and tunes the
window size using this ratio.

Window-based approaches to congestion control
have a well known problem in high BDP networks:
often by the time the sender knows there is congestion
along the link, a great number of packets may have
been dropped due to congestion at the gateways. Rate-
based protocols are regarded as a solution to this
problem. Rate-based protocols can be found in
NETBLT [9], VMTP [10], and more recently, Tsunami
[14], RBUDP [22], and FOBS [21].

NETBLT is a bulk data transfer protocol that
transfers data block by block. It updates data sending
rates after each block using the packet loss of the last
data block transfer. VMTP is a message transaction
protocol that also uses rate control.

Recently several application layer protocols based
upon UDP and TCP have been introduced for data
intensive applications on grids, including SABUL,
TSUNAMI, RBUDP, and FOBS.

RBUDP (Reliable Blast UDP), FOBS (Fast Object-
Based Data Transfer System), and Tsunami are simple
rate-based protocols based on UDP. Control
information is sent over a TCP connection. In these
protocols, application data is sent and acknowledged
block by block, which can be thought of as a variation
of selective acknowledgement. Since these three
protocols lack congestion control mechanisms, they
can only be used in QoS enabled networks or in private
networks.

As mentioned above, open loop methods have also
been proposed for high performance data transport
over networks with high BDPs. XCP [1] generalizes
the Explicit Congestion Notification (ECN) protocol by
using precise congestion signaling in which the routers
explicitly tell the sender the state of congestion and
how to react to it. In XCP, routers monitor the input
traffic rates of each of their output queues and tell the
flows using the link to increase or decrease their
congestion windows. This information is provided by
annotating the congestion headers of data packets,
which are returned to the sender in the
acknowledgment packet sent by the receiver. XCP uses
a MIMD algorithm for controlling efficiency and an
AIMD algorithm for controlling fairness.

None of the protocols mentioned so far are widely
used today by grid applications; rather, grid
applications today generally use TCP parameter tuning
and/or parallel TCP streams. In particular, parameters
controlling the buffer size or maximum window size
are often changed since the default values are usually
too small for high BDP links. Unfortunately, parameter
tuning typically provides only modest improvements in
throughput, and does not solve the fundamental
problem of TCP congestion control.

Parallel TCP implementations, such as GridFTP
[7] and PSockets [6], increase throughput by using
multiple parallel TCP connections. Unfortunately in
practice, parallel TCP usually requires extensive tuning
[11], which can be quite labor intensive. In addition,
parallel TCP exhibits performance and fairness
shortcomings in lossy, wide area networks [11]. The
Web100 and Net100 projects [18] are developing
methods for automatic tuning that would reduce some
of these problems.

3. The SABUL Protocol

3.1. Design Rationale

SABUL is designed to transport data reliably. Since
SABUL uses UDP for the data channel (which is not
reliable), this means that the SABUL protocol itself

must detect and retransmit dropped packets. Using
TCP as a control channel reduces the complexity of the
reliability mechanism.

To use available bandwidth efficiently, SABUL
must be able to estimate the bandwidth available and
recover from congestion events as soon as possible.
The AIMD algorithm of TCP, which increases 1
segment for every RTT, is too slow for high BDP
links; efficiency is improved by using a larger increase
parameter as the bandwidth increases.

To improve performance, SABUL does not
acknowledge every packet, but instead acknowledges
packets at constant time intervals. This is a type of
selective acknowledgement.

SABUL is designed to be fair to other SABUL
flows so that grid applications can employ parallelism.
Specifically, SABUL is designed so that all SABUL
flows ultimately reach the same rate, independent of
their initial sending rates and of the network delays.

SABUL is designed to be friendly to TCP flows so
that it can be safely deployed on public networks.

SABUL is designed as an application layer library
so that it can be easily deployed today, without
requiring changes to an operating system’s network
stacks or to the network infrastructure.

3.2. General Architecture

Figure 1 shows the architecture of SABUL. SABUL
uses two connections: the control connection over TCP
and the data connection over UDP. Note that the data
connection is a logical and not a physical connection,
since UDP is connectionless.

In this paper, for simplicity, we describe data
transfer in one direction only. Data is sent from one
side (the sender) to the other side (the receiver) using
UDP. Control information is sent in the opposite
direction from the receiver to the sender using TCP.

Memory management is handled as follows: The
sender records each user buffer to be sent, but does not
replicate it. The buffer can be of any size. The receiver
has its own protocol buffer to temporally store the
received data before it is copied into an application
buffer in a “recv” call.

To guarantee data reliability, both the sender and
the receiver maintain a data structure to record the
sequence numbers of lost packets. This data structure is
called a loss list, and the sequence numbers are sorted
in ascending order.

The sender transmits data packets at fixed time
intervals set by the rate control algorithm. The time
interval is called the inter-packet time. The sender
transmits data packets as long as the total number of
unacknowledged packets does not exceed a fixed
window size, which can be set by the application. The
receiver is responsible for receiving and reordering the

data packets, detecting any lost packets, and sending
back acknowledgements. The sender then adjusts the

sending rate and updates the sender’s buffer based
upon feedback from the receiver.

[1] Sent and acknowledged data; [2] Send but not acknowledged data; [3] Unsent data; [4] Empty buffer area that new
data can be written; [5] Acknowledged data that can be read by application; [6] Dirty data area (unacknowledged).

Figure 1. SABUL Architecture.

3.3. Packet Formats

There are three kinds of packets in SABUL. The
application data is packed in DATA packets, each with a
32-bit sequence number. The other two packet types are
ACK, positive acknowledgement, and NAK, negative
acknowledgement. The ACK packet tells the sender that
the receiver has received all the packets up to the end
sequence number. The NAK packet carries the number of
lost packets and their sequence numbers (loss list).

All packets are limited to a MTU (Maximum
Transfer Unit) size so that they will not be segmented
automatically by UDP. Applications should try to send
data in multiples of the SABUL payload size if possible.
Smaller packets are allowed, although some efficiency
will be lost.

Note that SABUL uses packet based sequencing, i.e.,
the sequence number increases by 1 for each sent packet.

3.4. Data Sending and Receiving

The sender always first checks the loss list when it is
time to send a packet. If there are lost packets, the first
packet in the list is resent and then removed. Otherwise,
the sender determines whether the number of
unacknowledged packets exceeds the flow window size,
and if not, it packs a new packet and sends it out. The
sender then waits for the next sending time decided by
the rate control.

The flow window serves to limit the rate of packet
loss due to congestion, when TCP control reports may be
delayed. The maximum window size can be determined
by the application: a good window size is the product of
bandwidth and (SYN + RTT). Smaller values can limit

the throughput. This is similar to the maximum window
size in TCP.

After each constant synchronization (SYN) interval,
the sender triggers a rate control event that updates the
inter-packet time. The rate control algorithm will be
introduced in Section 3.5.

The receiver receives and reorders data packets. The
sequence numbers of lost packets are recorded in the loss
list, and removed when the resent packets are received.

If the sequence number of the current packet is
greater than the largest sequence number ever received
plus 1, then all the packets whose sequence numbers are
between these two numbers are regarded as lost. If the
sequence number of the current packet is not greater than
the largest sequence number ever received, it is regarded
as a retransmitted packet. Each of these conditions may
be caused by out-of-order packets, but this is an
infrequent condition.

The receiver sends ACK periodically if there are any
newly received packets. The ACK interval is the same as
SYN time. The higher the throughput is, the lower the
ratio of bandwidth that ACK packets should occupy.
NAK is sent immediately once loss is detected. The loss
will be reported again if the retransmission has not been
received after k*RTT, where k is initialized as 2 and is
increased by 1 each time the loss is reported. The
increase of k reduces the frequency of repeated NAKs so
that the sender is not blocked by the continuous arrival of
loss reports. Loss information carried in NAK is
compressed to save space for continuous loss.

In the worst case, there is 1 ACK for every received
DATA packet if the packet arrival interval is not less
than the SYN time. There are M/2 NAKs when every
other DATA packet is lost.

Application/Protocol Buffer

Loss seq. no. List

TCP Connection

Control ACK/NAK | Number | Loss List

Loss seq. no. List

Protocol Buffer

Seq. No. Flag Array

UDP Connection

DATA Seq. No | User Data

[1] [2]

[3] [4] [5] [6]

3.5. Rate Control

SABUL’s rate control tunes the inter-packet transmission
time. However, if the number of packets sent per unit of
time is regarded as a virtual window, this window control
becomes a modified AIMD algorithm: the increase
parameter is the nearest power of ten that is not greater
than the current sending rate; the decrease factor is a
constant value.

The constant SYN interval in SABUL is 0.01
seconds. This number has been determined to be an
acceptable trade-off between efficiency and fairness
(both intra-protocol fairness and TCP friendliness).
Larger values can cause SABUL to be less responsive to
network change, slower in loss recovery, but more stable
and friendlier to TCP; smaller values are the opposite.
However, to achieve intra-protocol fairness, all SABUL
implementations must use the same SYN value (i.e., 0.01
seconds).

Every SYN interval, the sender calculates the
exponential moving average of the loss rate. If the loss
rate is less than a small threshold (e.g., 0.1%), the
sending rate is increased by the following scheme:

1. Calculate the increase in the number of packets to be
sent in the next SYN interval with the following increase
algorithm:
a) Calculate the current sending speed (S), in b/s:

S = MTU * 8 / ipt
where MTU is in the unit of bytes, and ipt is the current
inter-packet time.
b) Round S to the next highest power of ten (Sr):

Sr = 10^(ceiling(log10(S)))
c) Calculate the number of packets to be increased in the
next SYN time (inc):

inc = Sr * SYN * beta / (MTU * 8)
where beta is the constant 1.2*10-5.

This formula gives a proper increase parameter
relative to the current sending rate. For example, if the
MTU is 1500 bytes, the increase parameters are:

1Mb/s < S <= 10Mb/s, inc = 0.01;
10Mb/s <S <=100Mb/s, inc = 0.1;
100Mb/s < S <= 1000Mb/s, inc = 1;
and so on.

d) inc is, at minimum, 1/MTU. (Note that 1 packet/MTU
is 1 byte.)
2. The inter-packet time (I) is then recalculated according
to:

SYN / Inew = SYN / Iold + inc
where Inew and Iold are the inter-packet time after and
before this rate control, respectively.

The loss rate threshold allows some physical link
error when packet loss is not caused by congestion. This
threshold should be higher than the physical link bit error
rate but less than the average loss rate caused by network

congestion. Here we assume that the loss rate caused by
congestion in a short period is much larger than that
caused by a physical link error, otherwise SABUL will
not work well. In fact, most transport protocols regard all
loss as caused by congestion, which confirms that this
assumption is reasonable.

The rate decrease algorithm is as follows:

1. The inter-packet time is increased by 1/8 as soon as
the sender receives a NAK packet and:

1) If the lost sequence number is greater than the
largest sent sequence number when the last
decrease occurred.

2) If it is the 2dec_countth NAK since the last time
condition 1) was satisfied, where dec_count is
set to 4, once 1) is satisfied and increased by
1, each time 2) is satisfied. That is, the series
of thresholds are 16, 32, 64, etc.

2. The packet sending is frozen (no data is sent out) for a
RTT once condition 1) is satisfied.

The objective of the increase scheme is to maintain

an acceptable bandwidth distribution between coexisting
TCP and SABUL flows, while allowing fast bandwidth
discovery independent of network delay. However, it
may lead to unfairness between flows with differing
initial rates. This problem is alleviated by the decrease
formula, supposing all flows that share the same
bottleneck link have the same loss rate in the long run.
Flows with higher sending rates will decrease more
often. In addition, setting dec_count as 4 after the first
decrease favors lower rate flows.

During high congestion periods, the sending rate may
be decreased continuously. Meanwhile, the increase
becomes slower as the sending rate decreases. The flow
window limits the number of unacknowledged packets,
and the feedback mechanism limits the frequency of
control reports, so congestion collapse is avoided.

The flow window is 1 packet initially. Its size is
increased to the number of acknowledged packets after
each received ACK until it reaches the maximum
window size or an NAK packet is received. Once the
NAK is received, the flow window is set to the maximum
value, and is not changed. The initial sending rate can be
determined by the application.

4. Simulation Analysis

We have built SABUL on a NS-2 simulator [24] to
examine its efficiency and fairness. All of these
simulations use a DropTail queue with queue size set to
max (BDP, 10).

The simulation shows that SABUL can utilize
available bandwidth efficiently, independent of
bandwidth and network delay. The increase in

transmission speed grows as the current sending rate
increases. It will only decrease when necessary. Figure 2
shows the bandwidth utilization of SABUL under
different link capacities and RTTs.

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
3

94

95

96

97

98

99

RTT (ms)Link Capacity (Mbps)

B
an

dw
id

th
 U

til
iz

at
io

n
(%

)

Figure 2. SABUL Bandwidth Utilization.

Intra-protocol fairness is examined by simulating

SABUL flows with different initial sending rates and
different RTTs.

The result is shown in Figure 3. This graph shows the
performance of three simulated SABUL flows sharing a
1 Gb/s link. The flows have different RTTs and different
initial sending rates. The flows all converge at about 280
Mb/s. This shows that the performance is independent of
the RTTs and that it fairly distributes the available 1 Gb/s
bandwidth.

Unfairness may be caused by a flow having a higher
than normal initial sending rate. However, this unfairness
is limited by the decrease formula; flows with higher
sending rates tend to suffer more loss, so the rate
decreases will occur more often.

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

Time (sec)

Th
ro

ug
hp

ut
 (M

bp
s)

RTT=0.22sec, Init. Rate = 300Mbps
RTT=0.04sec, Init. Rate = 300Mbps
RTT=0.04sec, Init. Rate = 3Mbps

Figure 3. Intra-protocol Fairness.

TCP compatibility is one of the objectives of

SABUL. SABUL’s major objective is to utilize
bandwidth efficiently in high BDP environments where
TCP is inefficient. In environments where TCP only uses

a small percentage of the total available bandwidth, UDP
will utilize the rest, while allowing TCP to transmit at its
normal speed. On the other hand, in low BDP
environments, SABUL and TCP should share the
bandwidth fairly.

Figure 4 summarizes the results of simulations where
TCP and SABUL flows share the same link for various
different bandwidths and RTTs. In low BDP
environments, TCP obtains more of the available
bandwidth. In high BDP environments, where TCP is
less efficient, SABUL is able to effectively use the
available bandwidth.

This simulation uses TCP SACK with the maximum
window size set to BDP, and the gateway uses a
DropTail queue.

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

RTT (ms)Bandwidth (Mbps)

R
at

io
 (T

C
P

 /
S

A
B

U
L)

Figure 4. TCP Friendliness.

Besides efficiency and fairness, stability is also a

consideration in SABUL. We discussed congestion
collapse in Section 3.5. Another concern is that delays in
the TCP control connection might affect SABUL, since
TCP has its own congestion control mechanism that can
be affected by the data flow in UDP channels. In fact,
this effect is so small that it can be ignored, because the
number of packets in the control flow is far lower than
the number of packets in the data flow.

The use of TCP for the control channel has a
negative effect during high congestion. This is because
the TCP channel, which only retransmits after a time out
event, can delay the delivery of control packets. Due to
the small number of control packets, the selective ACK
mechanism of TCP [20] is not effective in this situation.
This can cause SABUL to be less responsive to packet
loss. But in a grid computing environment, where only a
few data sources share the abundant bandwidth, such a
situation should seldom occur.

5. Experimental Results

In addition to simulation testing, we also tested SABUL
experimentally. The testing was done using the

NetherLight and CANARIE networks and the StarLight
optical interchange facility. We used clusters located in
Chicago, Ottawa, and Amsterdam for these tests.

All nodes in the clusters ran Linux Kernel 2.4 on
dual Intel Xeon 1.8GHz CPU’s. The TCP version used
was TCP Reno with the SACK option and ECN enabled.
The TCP buffer was set to at least the BDP.

We first tested the end-to-end throughput of a single
SABUL stream. We started 3 parallel SABUL flows
from Chicago to Amsterdam. Each route had a 1 Gb/s
link capacity with 110ms RTT. The result is shown in
Figure 5.

0 10 20 30 40 50 60 70 80 90 100
550

600

650

700

750

800

850

900

950

1000

Time (sec)

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 5. SABUL Trans-Atlantic Performance

At IGrid 2002 (3rd International Grid Conference),

we successfully reached approximately 2.7 Gb/s
throughput on the same network (Table 1) [3].

Table 1: IGrid 2002Data Speed

SABUL 1 SABUL 2 SABUL 3 Total
902.8 902.9 907.1 2712.8

The relationship between SABUL and TCP, when

sharing the same link in real networks, was also
examined. In the first experiment, 2 TCP and 2 SABUL
streams were started in a StarLight local network (Figure
6), where the link capacity was 1 Gb/s and the RTT was
0.0004 seconds. TCP obtained slightly higher bandwidth
than SABUL in this environment.

0

100

200

300

400

SABUL 1

SABUL 2

TCP 1

TCP 2
0

100

200

300

400

500

600

700

800

900

Time (sec)

Th
ro

ug
ho

ut
 (M

bp
s)

Figure 6. SABUL and TCP coexist on local high speed

network

We also examined the impact of SABUL on a large
amount of small TCP flows in which 1 MB of data was
transferred in each connection. This experiment showed
the performance of a very large number of small TCP
flows on a 1Gb/s link connecting Chicago and
Amsterdam in the presence of between 0 and 9 SABUL
background flows. The result is shown in Figure 7.

The TCP version used in these experiments was
SACK and the buffer size is set to at least the BDP.

-1 0 1 2 3 4 5 6 7 8 9 10
50

60

70

80

90

100

110

120

Number of SABUL

TC
P

 T
hr

ou
gh

pu
t (

M
bp

s)

Figure 7. 500 TCP mice streams with SABUL

background.

Disk IO makes high performance, end-to-end
throughput more difficult since its IO speed is often
bursty, and therefore not as continuous as a network
interface; the disk IO speed is affected by many more
factors, such as file system organization and disk
scheduling. The bursty nature of the disk requires the
network protocol to quickly adapt to the end-to-end
available bandwidth.

The results of end-to-end disk transport tests are
listed in Table 2. Note that the major bottleneck is the
disk IO and the synchronization between network
interface and disk. With higher performance RAID disks,

we expect that the end-to-end disk to disk performance
would approach the end-to-end memory to memory
performance on links with high BDPs, although the
experimental testbed we used did not allow us to test this.

Table 2: File Transfer Performance

 StarLight
(write 500)

Canarie
(write 550)

SARA
(write 800)

StarLight
(read 800)

460 500 560

Canarie
(read 800)

440 500 -

SARA
(read 900)

440 - 600

6. Uses Case for Grid Computing

We have used SABUL for several grid-based data
mining applications. In this Section, we briefly describe
three of these.

First, we have used SABUL in a grid application
called DataSpace. DataSpace is an infrastructure for
accessing, browsing, exploring, analyzing and mining
remote and distributed data [17]. DataSpace uses
standard TCP for moving small amounts of data and
metadata, but it uses SABUL for moving large amounts
of data and metadata.

Second, we developed an application called Lambda-
FTP that uses SABUL for bulk data transfer [28]. Table 1
shows the results of using Lambda-FTP with three-way
striping for transferring data across the Atlantic from
Amsterdam to Chicago.

Third, we have also used SABUL to transport data
for a distributed data mining application involving
streaming data. In this application, two streams of data
are merged using a best effort algorithm prior to the
application of anomaly detection algorithm [15]. This
application is called Lambda Merge.

Table 3. Lambda Merge Performance

window
size
(records)

Random
(%)

Match (%) Speed
(Mb/s)

10000 2 92 600
10000 10 82 630
10000 20 79 655
10000 33 71 671

Some performance data from the Lambda Merge

application is shown in Table 3. This table shows the
results of merging, in Chicago, two data streams
originating in Amsterdam. The links had a maximum
bandwidth of 1 Gb/s. The goal of the application is to
provide a best effort merge of two high volume data
streams based upon a common key using a windowed,
hash based algorithm; records can only be matched when

they are both in the window. This is easy if the two data
streams are ordered and synchronized, and becomes
harder as the streams become less ordered and less
synchronized. The table shows the results as the streams
are randomized so that they become less ordered. When
TCP replaced SABUL, the speed dropped to about 55
Mb/s.

7. Conclusions and Future Work

SABUL is an application level library that is designed for
data intensive grid applications over high performance
networks. At the same time, it can coexist with TCP in
both traditional, low BDP environments and high speed
wide area networks. In both simulation and experimental
studies, we have demonstrated that SABUL can
efficiently use available bandwidth even on links with
high BDP, that SABUL is fair to other SABUL flows,
and that SABUL is friendly to concurrent TCP flows.

An initial version of SABUL was first developed in
2000 [16]. SABUL has now been implemented on a
variety of UNIX platforms and released as an open
source project to the public [23]. SABUL has been used
for several grid applications, including the DataSpace
infrastructure for distributed data mining [17], Lambda-
Merge for streaming data mining [15], Lambda-FTP for
high performance bulk data transport [28].

We are currently working on several improvements
to SABUL. There is a possibility of unfairness between
concurrent SABUL flows, although it is limited to an
acceptable ratio. In future work, we plan to improve the
fairness of SABUL.

Another improvement we are working on is to use
bandwidth estimation techniques to set the rate control
parameters more efficiently. Finally, we are also working
on designing a dynamic flow control mechanism instead
of the fixed one that is currently used. For example, the
window size used by the flow control can be dynamically
set as the product of current available bandwidth and
RTT.

Acknowledgements

This research work was supported in part by the National
Science Foundation under grant number 0129609 and
9977868.

References

1. D. Katabi, M. Hardley, and C. Rohr., “Internet Congestion

Control for Future High Bandwidth-Delay Product
Environments.” Proceedings of ACM SIGCOMM 2002.

2. I. Foster, C. Kesselman, and S. Tuecke. “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.”
International J. Supercomputer Applications, 15(3), 2001.

3. R. L. Grossman, Y. Gu, D. Hanley, X. Hong, D. Lillethun,
J. Levera, J. Mambretti, M. Mazzucco, and J. Weinberger.
“Experimental Studies Using Photonic Data Services at
IGrid 2002.” FGCS, 2003.

4. S. K. Dao, E. Yan, and Y. Zhang. “A Measurement of TCP
over Long-Delay Network.” Proc. of 6th Intl. Conf. on
Telecommunication System.

5. W. Feng and P. Tinnakornsrisuphap. “The Failure of TCP
in High-Performance Computational Grids.” Proc. of
Supercomputing 2002.

6. S. Bailey, R. L. Grossman, and H. Sivakumar. “PSockets:
The Case for Application-level Network Striping for Data
Intensive Applications using High Speed Wide Area
Networks.” Proc. of Supercomputing 2000.

7. B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnal,
and S. Tuecke. “Data Management and Transfer in High
Performance Computational Grid Environments.” in
Parallel Computing Journal, Vol. 28 (5), May 2002.

8. T. V. Lakshman and U. Madhow. “The Performance of
TCP/IP for Networks with High Bandwidth-Delay
Products and Random Loss.” IEEE/ACM Trans. on
Networking 5, 3 (1997).

9. D. Clark, M. Lambert, and L. Zhang. “NETBLT: A High
Throughput Transport Protocol.” Proc. of SIGCOMM '87,
(Stowe, VT), pp. 353--359.

10. D. Cheriton. “VMTP: Versatile Message Transaction
Protocol Specification.” RFC1045, April 1993.

11. T. Hacker, B. Athey, and B. Noble, “The End-to-End
Performance Effects of Parallel TCP Sockets on a Lossy
Wide-Area Network”, in Proc. of IPDPS 2002.

12. Sally Floyd, "HighSpeed TCP for Large Congestion
Windows." RFC 3649, Experimental, December 2003.

13. Tom Kelly, "Scalable TCP: Improving Performance in
High Speed Wide Area Networks", Computer
Communication Review, April 2003.

14. Tsunami, http://www.anml.iu.edu/anmlresearch.htm,
retrieved on 04/07/2003.

15. M. Mazzucco, A. Ananthanarayan, R. L. Grossman, J.
Levera, and G. B. Rao, “Merging Multiple Data Streams
on Common Keys over High Performance Networks”, in
Proceedings of SC 02.

16. H. Sivakumar, R. L. Grossman, M. Mazzucco, Y. Pan, Q.
Zhang, “Simple Available Bandwidth Utilization Library
for High-Speed Wide Area Networks”, in Journal of
Supercomputing, 2004, to appear.

17. R. Grossman and M. Mazzucco, “DataSpace - A Web
Infrastructure for the Exploratory Analysis and Mining of
Data”, in IEEE Computing in Science and Engineering,
July/August, 2002, pp. 44-51.

18. T. Dunigan, M. Mathis and B. Tierney, “A TCP Tuning
Daemon”, in Proc. of IEEE SuperComputing 2002.

19. L. Brakmo, S. O'Malley, and L. Peterson, “TCP Vegas:
New techniques for congestion detection and avoidance”,
1994 ACM SIGCOMM Conference, pages 24 - 35.

20. Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A.,
“TCP Selective Acknowledgement Options”, RFC 2018,
April 1996.

21. P. Dickens, “FOBS: A Lightweight Communication
Protocol for Grid Computing”. Europar 2003.

22. E. He, Leigh, J., Yu, O., and DeFanti T. A., “Reliable
Blast UDP: Predictable High Performance Bulk Data
Transfer”, in IEEE Cluster Computing 2002, Chicago, IL,
Sep. 2002.

23. SABUL source code,
http://sourceforge.net/projects/dataspace, retrieved on
10/03/2003.

24. NS-2. http://www.isi.edu/nsnam/ns/.
25. Cheng Jin, David X. Wei and Steven H. Low, "FAST

TCP: motivation, architecture, algorithms, performance",
IEEE Infocom, March 2004.

26. A. Chien, T. Faber, A. Falk, J. Bannister, R. Grossman, J.
Leigh, "Transport Protocols for High Performance:
Whither TCP?", Communications of the ACM, Volume
46, Issue 11, November, 2003, pages 42-49.

27. Marco Mazzucco, Asvin Ananthanarayan, Robert L.
Grossman, Jorge Levera, and Gokulnath Bhagavantha
Rao, Merging Multiple Data Streams on Common Keys
over High Performance Networks, Proceedings of the
IEEE/ACM SC2002 Conference, 2002, IEEE Computer
Society, page 67.

28. Project DataSpace, Lambda-FTP, retrieved from
http://sourceforge.net/projects/dataspace on December 10,
2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

