
Technical Report 01-EMIS-04

An Incremental Procedure for Improving Path Assignment in a

Telecommunications Network

by

D. Allen

I. Ismail

J. Kennington

and

E. Olinick

Department of Engineering Management, Information, and Systems

School of Engineering

Southern Methodist University

Dallas, TX 75275-0123

Revised September 5, 2003

Abstract

A fundamental problem in the design and management of a telecommunications network

is that of determining an optimal routing pattern for a given set of origin-destination demand

pairs. In addition, reliability considerations may require provisioning a set of backup paths to

protect the working traffic against network failures. In the literature, the problem of finding an

optimal routing for a network with fixed link capacities and a list of point-to-point demands

(origin-destination pairs), each with a set of candidate routing paths has been referred to as the

path-assignment problem. There are three versions of this problem that correspond to the type

of network protection required (no protection, dedicated protection, and shared protection).

The solution to those models can be used to determine an initial design for a new network.

Over time, however, changes in the demand pattern and/or upgrades to the network equipment

may create a situation in which the working and/or backup paths are sub-optimal.

For network managers who are reluctant to make wholesale changes to an established and

reliable routing assignment, a complete modification to obtain an optimal assignment that uses

fewer network resources is viewed as highly risky. This investigation presents a new procedure

to take a given feasible, but sub-optimal design and improve it by making a series of incremen-

tal improvements each of which only changes a small number of path assignments. Network

managers view this strategy as much less risky since only a few customers are affected by any

one change. Test cases that require no protection, dedicated protection, and shared protection

were examined in an empirical analysis. For all cases, near-optimal solutions were achieved

irrespective of the quality of the given sub-optimal starting solutions.

key words: path-assignment problem, spare-capacity planning, greedy heuristic, dedicated pro-
tection

Acknowledgment

This work was partially supported by the Office of Naval Research under Award No. N00014-
96-1-0315 and by the Linda and Mitch Hart eCenter at SMU http://www2.smu.edu/ecenter/.

1 Introduction

This investigation addresses an important, and difficult, combinatorial optimization problem

in the design and management of telecommunication systems. In the path-assignment problem,

one is given a network with fixed link capacities and a list of point-to-point demands (origin-

destination pairs), each with a set of candidate routing paths. A path assignment is said to be

feasible if it meets the following two criteria. First, all traffic for a given origin-destination pair

must be routed along (assigned to) exactly one of the paths available for that pair. Second, the

total volume of traffic routed over any particular link must be within the given capacity limit.

There is a cost associated with using each path and the problem is to find an optimal (i.e.,

minimum-cost) path assignment. The path-assignment problem without protection is NP-

hard. There are versions of this problem that require the determination of both the working

paths and backup paths. One version assumes dedicated backup paths for each working path

and another allows for multiple backup paths to share spare capacity.

The existing literature [1, 3, 13, 16] treats this problem from the perspective of determining

the initial routing assignments for a new network. The implementation of a routing plan may

occur over a period of several months. As a result, the actual demands for services may differ

from those used in the design of the plan. Also, during implementation, situations may arise

that result in circuit routings that differ from those specified in the plan. For example, services

may be required prior to provisioning of the planned network expansion. Furthermore, after

restoration due to a failure in the network, the carrier may not revert to the original optimal

routing, thus, leaving the network routing in a sub-optimal state. Over time, changes in the

network may result in an inefficient use of the current resources. The optimization techniques

developed to find the initial routing assignment and backup paths could also be used to find

an optimal design for the new network conditions. However, the optimal assignment by itself

does not provide the network manager with enough information to re-optimize the system in a

way that minimizes the impact on the customers.

In addition to cost considerations, network managers are also concerned with the quality of

service provided by their networks. Understandably, they are reluctant to make major changes

to an operating network that may inadvertently result in service disruptions for numerous

1

clients simultaneously. This investigation presents a strategy and solution procedures for the

various path-assignment problems in this context.

The objective of this investigation is to develop and test solution procedures that produce a

series of route-improving reassignments of working and/or backup paths for the point-to-point

demands. This allows the network manager to implement the improved routing in stages with

minimal changes to the overall routing plan between any two consecutive stages. Although the

procedure may only reroute a few demands at each stage, the routing after the last stage has

been implemented should be as close as possible to an optimal routing.

We claim three contributions from this investigation. First, we formally define a problem of

interest to telecommunication network managers that has not, to our knowledge, been addressed

in the literature. This problem may be defined as follows: Given a feasible solution to the path-

assignment problem, determine a sequence of incremental assignment modifications that lead to

an optimal assignment. There are various versions of the path-assignment problem based upon

the type of protection required. A solution to this problem provides a network manager with a

low-risk strategy for improving network utilization. Second, we implemented our algorithms in

software and in an empirical analysis demonstrated the efficacy of our procedures for test cases

involving various levels of protection. Finally, we make our software available on the World

Wide Web for downloading free of charge for immediate use by network management groups

who wish to experiment with our procedures.

2 Routing on Mesh Networks

In this section we present models and algorithms for the incremental path assignment problem

for mesh networks. We consider three different versions of the problem depending on the

protection scheme used to protect the network against service disruptions caused by link failures.

In Section 3 we extend the first model and algorithm to systems of SONET rings.

2.1 Without Protection

We now present an integer programming formulation for the simplest version of the path-

assignment problem. For this model, there are no backup paths to protect the working paths.

Let E and N denote the set of links and nodes in the network and D be the set of all point-

2

to-point demands. Since our model does not allow for demand splitting, all of the traffic for a

particular demand d ∈ D must be routed over exactly one of a set of available routing paths,

Jd. However, demand splitting can be accommodated by replacing a demand for r circuits by

r individual demands. Let P = ∪d∈DJd be the set of all available paths and Pe ⊆ P denote

the set of paths traversing link e ∈ E. Let rd denote the number of demand units required, e.g.

OC-48’s, for demand d ∈ D. The cost of using a path p ∈ P and the capacity of link e ∈ E are

denoted as ap and ce, respectively. Let the binary decision variable xp = 1 if path p is used to

satisfy some demand; and 0, otherwise.

Using the above notation, the path-assignment problem without protection is formulated as

the following integer linear program (ILP):

min
∑

p∈P

apxp (1)

s.t.
∑

p∈Jd

xp = 1, ∀d ∈ D (2)

∑

d∈D

∑

p∈Jd∩Pe

rdxp ≤ ce, ∀e ∈ E (3)

xp ∈ {0, 1}, ∀p ∈ P (4)

Thus, the path-assignment problem without protection is to assign each demand d to exactly

one of its candidate routing paths in Jd in accordance with the link capacities so as to minimize

the total routing cost. Constraint sets (2) and (4) ensure that each demand is assigned to

exactly one of its candidate paths and the link capacities are enforced by constraint set (3).

Given an instance of the path-assignment problem, a |P |-component vector x̂0 satisfying

constraint sets (2)-(4), and an integer k, we define an incremental path-assignment sequence as

a sequence of feasible solutions X̂ = {x̂1, x̂2, . . . , x̂`} such that

∑

p

|x̂i
p − x̂i−1

p | ≤ 2k, ∀i = 1, . . . `, and (5)

∑

p∈P

apx̂
i
p <

∑

p∈P

apx̂
i−1
p , ∀i = 1, . . . , ` (6)

The parameter k in (5) indicates the number of paths that may be rerouted at any time.

Observe that rerouting a single demand d from path p ∈ Jd to path q ∈ Jd corresponds to

3

changing two entries in the solution vector: x̂p ← 0 and x̂q ← 1. The inequality (6) ensures

a cost improvement in each successive solution. This procedure for finding X̂ is similar to the

k-interchange heuristic for the traveling salesman problem [15].

Given a feasible solution x̂i to the path-assignment problem, the basic step of our procedure

(using k = 2) is to find a least-cost way of routing a particular pair of demands d1 and d2

while keeping the other demands routed according to the current solution (i.e., x̂i). Let p1 and

p2 be the paths assigned to demands d1 and d2 by x̂i, respectively. That is, x̂i
p1

= x̂i
p2

= 1,

p1 ∈ Jd1
and p2 ∈ Jd2

. A trial consists of choosing a pair of paths q1 ∈ Jd1
and q2 ∈ Jd2

such

that aq1
+ aq2

< ap1
+ ap2

and constructing the candidate solution x̃ from x̂i by letting x̃j = x̂i
j

∀j ∈ P \ {p1, p2, q1, q2}, x̃p1
= x̃p2

= 0, and x̃q1
= x̃q2

= 1. If x̃ is feasible, then the trial is

said to be successful and the procedure reports the reassignment of demand d1 to path q1 and

demand d2 to path q2 as the next incremental demand rerouting and adds the next solution in

the incremental sequence, x̂i+1 ← x̃i.

In the worst case, this process requires |Jd1
| × |Jd2

| − 1 trials. In an attempt to minimize

the number of trials required per pair, the procedure inspects pairs q1 and q2 in non-decreasing

order of total cost (aq1
+ aq2

) until a successful trial is made or until the list of candidate

solutions is exhausted. As shown in Figure 1, this process is repeated for each pair of demands

d1, d2 ∈ D until no more successful trials are possible.

Figure 1 About Here.

2.2 With Protection

Network reliability is a critical issue and working paths are frequently paired with a backup

path that is used when failure occurs. While failure may occur in links, nodes, or individual

channels in the case of WDM networks, our investigation only considers the most common

type, link failures. Furthermore, we assume that the probability of multiple link failures is very

small and provide spare capacity only for single link failures. Excellent discussions of network

protection can be found in [4, 5, 17].

Protection schemes come in two varieties, dedicated protection and shared protection. In a

shared-protection scheme, the spare capacity allocated to backup paths can be shared. If two

4

backup paths share a common link e, then there may be an opportunity to share the spare

capacity allocated to link e. If the backup paths require u1 and u2 units of spare capacity, then

a dedicated scheme provisions u1 + u2 units of spare capacity while a shared scheme may only

require max(u1, u2). If two backup paths are never needed at the same time, then max(u1, u2)

will suffice. Investigations giving models and algorithms for designing fault-tolerant networks

can be found in [2, 6, 7, 8, 9, 10, 11, 12, 14, 18, 19]

2.2.1 Dedicated Protection

For the case of dedicated protection, every working path is paired with a link-disjoint backup

path. These two paths taken together form a cycle and the objective is to select a set of least-

cost cycles that satisfies the link-capacity constraints. Hence, the dedicated protection model is

(1)-(4) with cycles (a working path plus a backup path) used in place of working paths. With

this modification, the incremental path assignment algorithm (Figure 1) applies to this case. In

the literature dedicated protection is referred to as 1+1 protection (see [17]) and we use these

terms interchangeably.

2.2.2 Shared Protection

The difference between dedicated protection and shared protection is illustrated in the example

network given in Figure 2. The working and backup paths for the two demands are illustrated

in Figures 2b and 2c. Note that the backup paths both use links (4, 5) and (5, 6). However, as

seen from Table 1, it can be observed that the backup paths are never in use at the same time

provided there is only a single link failure. Hence, the capacity required is only max(4, 6) = 6

rather than the 4 + 6 = 10 required for dedicated protection.

Figure 2 and Table 1 About Here.

2.2.3 ILP for Path Assignment with Shared Protection

We now extend the ILP model from Section 2.1 to include shared protection. To help clarify

the new model, we will refer to the network topology, demand pairs, and paths from Figure 2

as an example throughout this discussion. Let the working and backup paths in Figure 2b be

5

paths 1 and 2, respectively. Likewise let the working and backup paths in Figure 2c be paths

3 and 4.

In the model for shared protection, xp = 1 if path p is used to carry working traffic; and

zero, otherwise. Let we be the volume of working traffic routed on link e. Thus, in Figure 2 we

have x1 = x3 = 1, x2 = x4 = 0, w(1,2) = w(2,6) = 4, w(2,4) = w(2,3) = 6, and we = 0 for all other

links. Let yp = 1 if path p is used as a backup path; and 0, otherwise. For example y1 = y3 = 0

and y2 = y4 = 1 in Figure 2. Let H be the set of all pairs of paths {p, q} such that p and q

share at least one link in common. If p ∈ Jd is the working path for some demand d ∈ D, then

q ∈ Jd may be selected as the backup path for d only if {p, q} /∈ H.

We refer to the scenario of link e failing as scenario e. The binary variable zpe indicates

whether or not path p is used as a backup path in scenario e. For any given demand d exactly

one path p ∈ Jd will be used in scenario e. Suppose that xp = yq = 1 for p, q ∈ Jd; that is,

p is the working path and q is the backup path. If p ∈ Pe, then backup path q must be used

when link e fails which means that zqe = 1 and zie = 0 for all i ∈ Jd \ {q}. However, if p /∈ Pe,

then the working path p can (and will) be used when link e fails. In this case, zie = 0 for all

i ∈ Jd. As an example, consider the scenario where link (1, 2) fails in Figure 2. From Table 1,

we see that in scenario (1, 2) traffic between nodes 1 and 6 is switched from path 1 to path 2.

Thus z1,(1,2) = 0 and z2,(1,2) = 1. In scenario (2, 3), however, the working path for 1-6 does not

contain the failed link. Thus, no backup path is used for this demand in this scenario; and so,

z1,(2,3) = z2,(2,3) = 0.

Using the notation above, our ILP model for the path-assignment problem with shared

protection is stated as follows. First, the objective is to minimize the total cost of the working

and backup paths. Thus, the objective function is given by

∑

p∈P

ap(xp + yp) (7)

For each demand, we must select a pair of link-disjoint working and backup paths. Thus, we

have the following set of constraints:

∑

p∈Jd

xp = 1, ∀d ∈ D (8)

6

∑

p∈Jd

yp = 1, ∀d ∈ D (9)

xp + yq ≤ 1, ∀d ∈ D, p ∈ Jd, q ∈ Jd, {p, q} ∈ H (10)

The following set of constraints accumulate the working traffic on the links:

∑

d∈D

∑

p∈Jd∩Pe

rdxp = we, ∀e ∈ E (11)

We must ensure that each link e ∈ E has sufficient capacity to carry its working traffic plus

the additional traffic that would be diverted to backup paths that use e if any link f ∈ E \ {e}

fails. Thus, we impose the following set of constraints:

∑

d∈D

∑

p∈Jd∩Pe

rdzpf + we ≤ ce, ∀e ∈ E, f ∈ E \ {e} (12)

For a given failure scenario f , path p cannot be used as a backup path if it contains link f . So,

we can use the following constraints to set some of the z variables to zero:

zpf = 0, ∀f ∈ E, p ∈ Pf (13)

The following constraints ensure a consistent relationship between the y and z variables:

zpf ≤ yp, ∀f ∈ E, p ∈ P \ Pf (14)

The following set of constraints ensure the correct relationship between the x and z variables.

Suppose that link f ∈ E fails and consider a demand d ∈ D; either the working path for d is

used (if it does not contain f) or else an appropriate backup path is used. This requirement is

expressed mathematically as

∑

p∈Jd\Pf

(xp + zpf) = 1, ∀f ∈ E, d ∈ D (15)

Finally, we impose integrality and non-negativity constraints on the decision variables as follows:

xp, yp ∈ {0, 1}, ∀p ∈ P, (16)

zpe ∈ {0, 1}, ∀p ∈ P, e ∈ E, (17)

we ≥ 0, ∀e ∈ E (18)

7

Thus, the ILP for the model with shared protection is to minimize (7), subject to (8)-(18).

2.2.4 Incremental Path-Assignment with Shared Protection when k = 2

The procedure shown in Figure 1 can be modified to work with the shared-protection model.

Given a feasible solution [x̂i, ŷi, ẑi] to the path-assignment problem with shared protection, the

basic step of our modified procedure is to find a least-cost way of routing and protecting a

particular pair of demands d1 and d2 while keeping the rest of the demands routed according

to the current solution.

Let p1 and p2 be the working paths assigned to demands d1 and d2 by x̂i. Let q1 and

q2 be the corresponding protection paths. That is, x̂i
p1

= x̂i
p2

= 1, p1 ∈ Jd1
, p2 ∈ Jd2

, and

ŷi
q1

= ŷi
q2

= 1, q1 ∈ Jd1
and q2 ∈ Jd2

. With shared protection, a trial consists of choosing a pair

of working paths p3 ∈ Jd1
and p4 ∈ Jd2

, and a pair of protection paths q3 ∈ Jd1
and q4 ∈ Jd2

such that ap3
+ aq3

+ ap4
+ aq4

< ap1
+ aq1

+ ap2
+ aq2

. We then construct the candidate

solution [x̃, ỹ] where x̃j = x̂i
j ∀j ∈ P \ {p1, p2, p3, p4}, x̃p1

= x̃p2
= 0, x̃p3

= x̃p4
= 1, and ỹj = ŷi

j

∀j ∈ P \ {q1, q2, q3, q4}, ỹq1
= ỹq2

= 0, and ỹq3
= ỹq4

= 1. Given x̃ and ỹ, the z̃ vector can be

derived in a straight-forward manner. If [x̃, ỹ, z̃] is feasible, then the trial is successful and the

procedure reports the reassignment of the working and protection paths for demands d1 and d2

as the next incremental demand rerouting. It then inserts this solution as the next solution in

the incremental sequence, x̂i+1 ← x̃i, ŷi+1 ← ỹi, and ẑi+1 ← z̃i.

We now introduce some additional notation so that we may describe the procedure in more

detail. Let Ep denote the set of links in path p. For each d ∈ D and p ∈ Jd, let rpp = rd. For

a given routing assignment [x, y, z], let bef denote the additional units of demand that must

be routed over link e in the event that link f fails. In the example illustrated by Figure 2

and Table 1, b(4,5),(1,2) = 4 and b(4,5),(2,3) = 6. Observe that under a shared protection scheme

the spare capacity requirement for a given link e is the maximum value of bef over all failure

scenarios f . Given a set of working and backup paths, we define the residual capacity of link

e as rce = ce − we −maxf∈E bef . In the following subsection, we describe how our procedure

uses information about the residual capacities for the current routing assignment to reduce

the number of trials it must consider for a given pair of demands and to determine if a given

solution is feasible.

8

Figure 3 gives pseudo code for the main routine of our procedure for finding an incremental

path-assignment sequence with shared protection. The procedure begins by calling the subrou-

tine shown in Figure 4 to calculate Ep for all paths p and to calculate the initial values of the b

matrix and rc vector. Thus, it determines the residual capacity for each edge given the initial

set of working and backup paths.

Figures 3 and 4 About Here.

The first step in generating a set of trials for a given pair of demands d1 and d2 is to unroute

the demands with the subroutine in Figure 5. Unrouting a pair of demands consist of reducing

the volume of working traffic on each link in p1 (p2) by rd1
(rd2

). That is, we temporarily

remove the traffic for d1 and d2. This reduces the working traffic on the edges in p1 and p2, and

also reduces the spare capacity requirements on the links in the backup paths q1 and q2 under

certain failure scenarios. Specifically, we can reduce bef for each e ∈ q1 (q2) and f ∈ p1 (p2) by

rpp1
(rpp2

). Finally, we recalculate the residual capacities of the links in p1, q1, p2, and q2.

Figure 5 About Here.

As shown in Figure 6, the procedure uses the updated residual capacities to select certain

combinations of new working and backup paths for rerouting d1 and d2. Consider link-disjoint

paths p3 and q3 (p4 and q4) in Jd1
(Jd2

). Specifically, there must be at least rd1
(rd2

) units of

residual capacity on every link in the cycle formed by p3 and q3 (p4 and q4) in order to use

them as the new working and backup paths for d1 (d2). This criterion along with the total cost

of the paths is used to determine the set of candidate trials for d1 and d2.

Figure 6 About Here.

Given a set of working and backup paths that meet the above criteria, our procedure con-

structs a candidate path assignment by rerouting demands d1 and d2. This is done with the

subroutine shown in Figure 7 which also updates the residual capacity for the links in the

proposed new working and backup paths p3, p4, q3, and q4. If the residual capacities on these

links are all non-negative, then the candidate path assignment is feasible and the procedure

9

updates the x, y, and z variables. Otherwise, the procedure unroutes d1 and d2 and tries the

next candidate trial.

Figure 7 About Here.

3 Routing on Ring Networks

In this section we describe how the incremental path-assignment algorithm described in Section

2.1 and Figure 1 can be adapted to a system of SONET rings. There are variety of ring-based

protection schemes for SONET systems all of which are based on the strategy of placing node

equipment on a loop (ring) of fiber-optic cable. The ring topology provides two link-disjoint

paths between each pair of nodes it connects. Thus, if a particular fiber link between two nodes

on the ring is broken, service can be restored quickly and automatically by rerouting traffic in

other direction around the ring. Each node on a SONET ring uses a device called an add-drop

multiplexer to send and receive traffic to and from other nodes. A node may be placed on

multiple rings, but requires one ADM for each ring on which it is placed (see [17] and [21] for

more information at SONET rings). Our approach to the incremental path-assignment problem

for ring-based systems is to model them as mesh networks and then apply the results of Section

2.1. For this investigation we only considered 4-fiber, bi-directional line-switched rings (BLSR)

each having a capacity of OC-192, but our approach can easily be modified for other types of

rings.

When designing SONET ring networks, one approach is (a) to determine a set of candidate

rings (cycles) that provide connectivity between all nodes, then (b) to decide which of these

candidate rings should be equipped with one or more SONET ADM ring systems. Figure 8

shows an example network with four candidate rings. Based on the offered traffic demands, ten

OC-192 SONET ring systems are required to carry the traffic, as shown in Figure 9 . Notice

that multiple SONET ring systems are “stacked” on each candidate ring. The notation nirj

refers to an ADM in SONET ring system j located at node i of the network in Figure 8a. A

SONET ring system that is based on a particular candidate ring does not have to have ADMs

at every node in the candidate ring. For example, observe that SONET ring systems 5 and 6

in Figure 9 are based on candidate ring 2 in Figure 8b, but have glassthroughs at node 3.

10

Figures 8 and 9 About Here.

Figure 10 depicts a mesh representation of a network consisting of SONET ring systems

3, 4, 5, and 6. In this figure, nodes n1, n2, n3, and n4, represent digital cross connects (DCS)

placed at nodes 1, 2, 3, and 4 of the network in Figure 8a. A DCS at node i is used to switch

traffic from one SONET ring system to an other. For example, the DCS at node 1 in Figure

10 is used to switch traffic between the ADMs installed at node 1 in SONET ring systems 3,

4, 5 and 6. In this investigation, we use OC-48 as the base demand unit. Since we are working

with OC-192 rings, each ADM has the capacity to add/drop a total of 8 OC-48s: four from/to

the “East” direction and four from/to the “West”. Thus, the link from node ni to node nirj in

our mesh representation has a capacity of eight units and the links between nodes on the same

modular ring have a capacity of four units. Our procedure for converting a network of SONET

ring systems to a mesh representation is described as follows:

1. If node i of the underlying network has ADMs connecting it to SONET ring systems

j1, j2, . . . , jk, then the node set in the mesh representation will contain nodes ni, nirj1 , nirj2 ,

. . . , nirjk
, and links (ni, nirj1), (ni, nirj2), . . . , (ni, nirjk

). These links have a capacity of

eight units.

2. If SONET ring system j links nodes i1, i2, . . . , ik in clockwise order, then the edge set

E in the mesh representation contains links (ni1rj, ni2rj), (ni2rj , ni3rj), . . . , (nikrj, ni1rj).

These links have a capacity of four units.

3. A point-to-point demand for the o-d pair i-j may be routed over any path in the mesh

that starts at node ni and ends node nj provided that there is sufficient capacity on each

of the links in the path. To determine the cost of a path in the mesh representation we

assign a cost of two to each link connecting an ADM node to a DCS node (i.e., each

eight-unit link) and cost of one unit to each intra-ring link (i.e., each four-unit link). This

metric favors paths with fewer hops and fewer ring-to-ring transitions.

4. Since SONET rings automatically provide a form of dedicated protection, we don’t need

to find protection paths for the demands. Thus, the incremental path assignment problem

for SONET rings maps to the the no-protection model in Section 2.1.

11

Figure 11 illustrates the node architecture and traffic for node 4 for the complete network

consisting of all SONET ring systems depicted in Figure 9.

Figures 10 and 11 About Here.

4 Empirical Analysis

In this section, we present the results of our computational experiments with the procedures

described in Figures 1 and 3. The data files and codes are available on the World Wide Web at

http://www.engr.smu.edu/∼olinick/papers/da/da.html. All computational experiments

reported in this paper were made on a Compaq DS20E AlphaServer System with dual EV6.7

processors and 4GB RAM.

Table 2 gives the problem characteristics for the eight mesh problems in our test suite. We

constructed three basic models for each of the eight problems: one with no protection using the

ten shortest, loopless paths as Jd for each d ∈ D, one using up to ten cycles per demand for

a solution with 1+1 protection, and one using the shared protection model. Table 3 gives the

total number of paths used for each problem instance for each of the three models.

Tables 2 and 3 About Here.

4.1 No Protection Model

We implemented model (1)-(4) with the AMPL modeling language and solved the problem

instances with the CPLEX mixed integer programming solver. The ILP characteristics and

results for the problems without protection may be found in Table 4.

Table 4 About Here.

To test the procedure for finding an incremental path-assignment sequence, we used two

starting solutions for each of the eight problem instances. The first solution was generated

by changing the objective function in the path-assignment ILP from minimize to maximize -

that is, we used CPLEX to find the worst possible solution. The second starting solution was

obtained by restoring the original objective function and adding a constraint that the solution

cost at least 4% more than the optimal solution.

12

Tables 5 and 6 About Here.

Table 5 gives a summary of the results of using the incremental path-assignment procedure

with the worst possible starting solution for the no-protection model. On average, the starting

solutions (x̂0) were 55.3% more expensive than optimal. In all eight cases, the sequence of

incremental solutions terminated in an optimal solution. As shown in Table 6, the procedure

also found optimal solutions for all problems except DA50 when the initial path assignment

was already fairly close to optimal (i.e., within about 4% of optimality). The average solution

time reported in Tables 5 and 6 is 3.8 seconds.

Based on the above results, it is clear that this simple heuristic can be applied to improve

a sub-optimal routing. Ideally, a network manager would first obtain an optimal solution and

compare this objective value with that of the current solution. If the current solution is close

to optimal, then no changes should be planned. However, if changes appear to be needed, the

incremental path-assignment procedure can be run to determine the sequences of modifications

required. One disadvantage of our procedure is that it may require many minor modifications to

the initial routing. As illustrated in Table 5, DA200 with 200 demands required 199 successful

trials. Since each successful trial reroutes at least one demand, this means that on average,

every demand routing must be modified at least once and some require multiple changes. At

ten changes each day, it could take a month to modify the routings. Some of these changes

result in only minor improvements and should be ignored. We modified the heuristic to ignore

any new assignment that failed to yield at least a 10% cost reduction for the current pair.

Tables 7 and 8 summarize the results from these runs. The final solutions were not quite as

good, but the reduction in the number of changes required was substantial. For DA200 the

modifications were reduced from 199 and 31 to 134 and 11. Based on these results, we believe

that most network managers will prefer sequences requiring the 10% minimum improvement.

Therefore, we imposed this requirement on the computational runs for the models providing

network protection.

Tables 7 and 8 About Here.

13

4.2 Dedicated Protection Model

Optimal solutions for the test cases using dedicated protection may be found in Table 9. The

results from running the incremental path-assignment procedure on the 1+1 protection prob-

lems are given in Tables 10 and 11. On average, the worst possible starting solutions were 51.9%

above optimal and the procedure found incremental sequences of solutions leading to path as-

signments that were within 1.7% of optimality. Starting with solutions that were approximately

4% more expensive than optimal, the procedure found solutions that were, on average, only

0.8% more expensive than the optimal path assignments. The worst-case time for the runs

reported in Tables 10 and 11 was 62 seconds.

Tables 9, 10, and 11 About Here.

4.3 Shared Protection Model

As shown in Table 12, the MIP’s for the shared protection model are significantly larger and

more time consuming to solve than those arising from the models without protection or with 1+1

protection. The results from running the incremental path-assignment procedure outlined in

Figure 3 on the shared-protection model are given in Table 13. On average the starting solutions

listed in Table 13 were approximately 33% above optimal and the procedure found incremental

sequences of solutions leading to path assignments that were within 6% of optimality in all eight

cases. The average solution time for these runs was about 34 minutes. The largest problem

required 95 routing modifications.

Tables 12 and 13 About Here.

4.4 SONET Ring Problems

We generated six problems for a SONET ring architecture using a commercial SONET planning

software system. The base topology for these problems comes from a network that has 35 links

connecting 18 European cities and is described in [20]. We input the topology of this network

and 330 point-to-point demands for 1 to 4 OC-48s each into the planning software which then

proposed a system of 211 modular rings (OC-192 4-fiber BLSRs). Our six problem instances

all use the ring system proposed by the planning software and a randomly selected subset of

14

the demands. We converted these problems to a mesh representation as described in Section 3

using the routes proposed by the planning software and the 10 shortest paths for each demand

as the candidate paths. The characteristics for the mesh representations of these problems are

given in Tables 14 and 15.

Tables 14 and 15 About Here.

Table 16 gives a summary of the results of using the incremental path-assignment procedure

with the worst possible starting solution for the SONET ring problems. On average, the starting

solutions (x̂0) were 48.11% more expensive than optimal. In all six cases, the sequence of

incremental solutions terminated in a near-optimal solution with an average final deviation

from optimal of 1.57%. With the exception of DA200, the heuristic required less than a minute

of CPU time for these problems and the average solution time reported in Table 16 is less than

five minutes.

Table 16 About Here.

5 Summary and Conclusions

In this investigation, we present procedures to produce a sequence of path-assignment modifi-

cations that can be used to modify a poor set of assignments to one that is near optimal. The

potential for major service disruptions is reduced since changes can be made incrementally to

achieve a near optimal solution. The procedures apply to both mesh and ring architectures

including applications that require backup path protection as well as those for which protection

is not required.

Our procedures are for the specific case of k = 2 (i.e. modify at most two working paths

and two backup paths at each iteration); however, the basic idea could be extended in a fairly

straight-forward way to work with larger values of k. Although we cannot guarantee that

our procedures will always find optimal working and backup paths, in our experiments they

produced near-optimal solutions for large, realistic problem instances with 68 nodes, 107 links,

up to 200 origin-destination pairs with 10 routing paths each. The solutions produced were

15

good regardless of the quality of the initial starting solution. Based on our computational

results, this appears to be an effective heuristic for solving real-world instances of this problem.

An interesting direction for further study of this problem would be to consider alternative

problem statements. For example, what is the minimum number of incremental changes re-

quired to move from the initial path assignment to one that is within a given percentage of

optimality? Or, what is the minimum number of moves required to improve the solution by a

given amount?

16

References

[1] C. Anderson, K. Fraughnaugh, M. Parker, and J. Ryan. Path assignment for call routing:
An application of tabu search. Annals of Operations Research, 41:301–312, 1993.

[2] T. Chujo, H. Komine, K. Miyazaki, T. Ogura, and T. Soejima. Distributed self-healing
network and its optimum spare-capacity assignment algorithm. Electronics and Commu-
nication in Japan, 74:1–9, 1991.

[3] L. Cox, L. Davis, and Y. Qiu. Dynamic anticipatory routing in circuit-switched telecom-
munications networks. In L. Davis, editor, Handbook of Genetic Algorithms. Van Nostrand
Reinhold, New York, 1991.

[4] O. Gertsel and R. Ramaswami. Optical layer survivability: A services perspective. IEEE
Communications Magazine, pages 104–113, March 2000.

[5] O. Gertsel and R. Ramaswami. Optical layer survivability: an implementation perspective.
IEEE Journal on Selected Areas in Communications, 18:1885–1899, 2000.

[6] W. Grover, T. Bilodeau, and B. Venables. Near optimal synthesis of a mesh restoreable
network. In GLOBECOM ’91, pages 2007–2012, 1991.

[7] W. Grover and D. Stamatelakis. Cycle-oriented distributed preconfiguration: Ring-like
speed with mesh-like capacity for survivable networks with hop limits. In Proceedings ICC
’98, volume 1, pages 537–543, 1998.

[8] M. Herzberg. A decomposition approach to assign spare capacity channels in self-healing
networks. In GLOBECOM ’93, pages 1601–1605, 1993.

[9] M. Herzberg and S. Bye. An optimal spare capacity assignment model for survivable
networks with hop limits. In GLOBECOM ’94, volume 3, pages 1601–1606, 1994.

[10] R. Iraschko, M. MacGregor, and W. Grover. Optimal capacity placement for path restora-
tion in STM or ATM mesh survivable networks. IEEE/ACM Transactions on Networking,
6(3):325–336, 1998.

[11] J. Kennington and M. Lewis. The path restoration version of the spare capacity alloca-
tion problem with modularity restrictions: Models, algorithms, and an empirical analysis.
INFORMS Journal on Computing, 13:181–190, 2001.

[12] J. Kennington and J. Whitler. An efficient decomposition algorithm to optimize spare
capacity in a telecommunications network. INFORMS Journal on Computing, 11(2):149–
160, 1999.

[13] M. Laguna and F. Glover. Bandwidth packing: A tabu search approach. Management
Science, 39:492–500, 1993.

[14] K. Murakami and H. Kim. Optimal capacity and flow assignment for self-healing ATM net-
works based on line and end-to-end restoration. IEEE/ACM Transaction on Networking,
6:207–221, 1998.

17

[15] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John Wiley and
Sons, New York, NY, 1988.

[16] M. Parker and J. Ryan. A column generation algorithm for bandwidth packing. Telecom-
munications Systems, 2:185–195, 1994.

[17] R. Ramaswami and K. Sivarajan. Optical Networks: A Practical Perspective. Morgan
Kaufman Publishers, Inc., San Francisco, CA, second edition, 2002.

[18] D. Stamatelakis and W. Grover. IP layer restoration and network planning based on
virtual protection cycles. IEEE Journal on Selected Areas in Communications, 18:1938–
1949, 2000.

[19] D. Stamatelakis and W. Grover. Theoretical underpinnings for the efficiency of restorable
networks using preconfigured cycles (“p-cycles”). IEEE Transactions on Communications,
48:1262–1265, 2000.

[20] B. Van Caenegem, W. Van Parys, F. De Turck, and P. Demesster. Dimensioning of sur-
vivable WDM networks. IEEE Journal on Selected Areas in Communications, 16(7):1146–
1157, 1998.

[21] T-H. Wu. Fiber Network Service Survivability. Artech House, Inc., 1992.

18

Procedure: Find Incremental Path-Assignment Sequence for k = 2
Input: A feasible path assignment x̂0, ap for all p ∈ P , ce for all e ∈ E, and rd for all
d ∈ D
Output: An incremental sequence of feasible path assignments X̂ = {x̂1, x̂2, . . . , x̂`}
{Iinitialization: let c path[d] be the current path assigned to d ∈ D}
For d ∈ D, p ∈ Jd

If x̂0
p = 1 Then c path[d] ← p

done ← “false”, i← 0
Repeat

done ← “true”
For Each d1, d2 ∈ D Do

p1 ← c path[d1], p2 ← c path[d2]
C ← {(q1 ∈ Jd1

, q2 ∈ Jd2
) : aq1

+ aq2
< ap1

+ ap2
}

better routing found ← “false”
Repeat

For Each (q1, q2) ∈ C such that aq1
+ aq2

= min(p,q)∈C(ap + aq) Do

feasible ← “true”, C ← C \ {q1, q2}
For {e ∈ E : q1 ∈ Pe or q2 ∈ Pe} Do

{find the total flow on link e in the proposed rerouting}
f ← 0
For d ∈ D \ {d1, d2}

If c path[d] ∈ Pe Then f ← f + rd

If q1 ∈ Pe Then f ← f + rd1

If q2 ∈ Pe Then f ← f + rd2

If f > ce Then

feasible ← “false” And Break

If feasible Then

Begin

i← i + 1, x̂i ← x̂i−1

x̂i
p1
← 0, x̂i

q1
← 1, c path[d1] ← q1

x̂i
p2
← 0, x̂i

q2
← 1, c path[d2] ← q2

X̂ ← X̂ ∪ {x̂i}
done ← “false”, better routing found ← “true”
Break

End

End

Until better routing found = “true” Or |C| = 0
End

Until done = “true”
Return X̂

Figure 1: Pseudocode for Incremental Path-Assignment

19

1

4 5 6

2 3

6

2

a. Network Topology

31

54

backup

working
Legend

Path 1: 1-2-6 (working path)

Path 2: 1-4-5-6 (backup path)

c. Paths Used for Demand 4-3 of 6 OC48s

5

32

64

1
working

backup

b. Paths Used for Demand 1-6 of 4 OC48s

Figure 2: Example Network With Two Demands

20

Procedure: Incremental Path-Assignment Sequence with Shared Protection for k = 2
Input: A feasible path assignment with shared protection [x̂0, ŷ0, ẑ0],
ap for all p ∈ P , ce for all e ∈ E, and rd for all d ∈ D
Output: A sequence of incremental path assignments [X̂, Ŷ , Ẑ]
where X̂ = {x̂1, x̂2, . . . , x̂`}, Ŷ = {ŷ1, ŷ2, . . . , ŷ`}, and Ẑ = {ẑ1, ẑ2, . . . , ẑ`},

(working path, backup path, w, b, rc) ← Initialize(x̂0, ŷ0, ẑ0)
Repeat

done ← “true”
For Each d1, d2 ∈ D Do

p1 ← working path[d1], p2 ← working path[d2]
q1 ← backup path[d1], q2 ← backup path[d2]
(rc, b)← Unroute(d1, d2, p1, q1, p2, q2, b)
C ← Generate Trials(d1, d2, p1, q1, p2, q2, rc)
better routing found ← “false”
Repeat

C ′ ← {(p3, q3, p4, q4) ∈ C :
ap3

+ aq3
+ ap4

+ aq4
= min(p5,q5,p6,q6)∈C(ap5

+ aq6
+ ap6

+ aq6
)}

For (p3, q3, p4, q4) ∈ C ′ Do

(rc, b)← Reroute(d1, d2, p3, q3, p4, q4, b)
feasible ← “true”
For e ∈ Ep3

∪Ep4
∪Eq3

∪Eq4
Do

If rce < 0 Then

feasible ← “false”, (rc, b)← Unroute(d1, d2, p3, q3, p4, q4, b)
Break

If feasible Then

x← x̂i, y ← ŷi, z ← ẑi

For p ∈ Jd1
∪ Jd2

Do xp ← 0, yp ← 0
For p ∈ Jd1

∪ Jd2
, e ∈ E Do zpe ← 0

xp3
← 1, xp4

← 1, yq3
← 1, yq4

← 1
For {e ∈ E : p3 ∈ Pe} Do zq3e ← 1
For {e ∈ E : p4 ∈ Pe} Do zq4e ← 1
i← i + 1, x̂i ← x, ŷi ← y, ẑi ← z
X̂ ← X̂ ∪ {x̂i}, Ŷ ← Ŷ ∪ {ŷi}, Ẑ ← Ẑ ∪ {ẑi}
working path[d1] ← p1, working path[d2] ← p2

backup path[d1] ← q1 , backup path[d2] ← q2

done ← “false”, better routing found ← “true”
Break

Until better routing found =“true” Or |C| = 0
If better routing found = “false” Then (rc, b)← Reroute(d1, d2, p1, q1, p2, q2, b)

Until done = “true”
Return [X̂, Ŷ , Ẑ]

Figure 3: Pseudocode for Incremental Path-Assignment with Shared Protection

21

Procedure: Initialize
Input: A feasible path assignment with shared protection [x̂0, ŷ0, ẑ0]
Output: Vectors working path, backup path, w, b and rc

done ← “false”, i← 0
For e ∈ E Do we ← 0
For d ∈ D, p ∈ Jd Do

If x̂0
p = 1 Then

Begin

working path[d] ← p
For e ∈ Ep Do we ← we + rd

End

Else If ŷ0
p = 1 Then backup path[d] ← p

For {p ∈ P , f ∈ E : zpf = 1} Do

For e ∈ Ep Do bef ← bef + rpp

For e ∈ E Do rce ← ce − we −maxf∈E bef

Return working path, backup path, w, b, rc

Figure 4: Pseudocode for Initializing Data Structures

22

Procedure: Unroute
Input: A pair of demands d1 and d2, with working and backup paths p1, q1, p2, and q2;
and bef for all e, f ∈ E
Output: Residual and backup capacity vectors rc and b resulting from unrouting d1

and d2

For f ∈ Ep1
Do

wf ← wf − rd1

For e ∈ Eq1
Do bef ← bef − rd1

For f ∈ Ep2
Do

wf ← wf − rd2

For e ∈ Eq2
Do bef ← bef − rd2

For e ∈ Ep1
∪Eq1

∪Ep2
∪Eq2

Do rce ← ce − we −maxf∈E bef

Return rc, b

Figure 5: Pseudocode for Procedure Unroute

Procedure: Generate Trials
Input: A pair of demands d1 and d2, with working and backup paths p1, q1, p2, and q2;
and rce for all e ∈ E
Output: A set of trial incremental routings C for d1 and d2

C ← ∅
C1 ← {p3 ∈ Jd1

, q3 ∈ Jd1
: (p3, q3) /∈ H}

C2 ← {(p3, q3) ∈ C1 : mine∈Ep3
∪Eq3

rce ≥ rd1
}

C3 ← {p4 ∈ Jd2
, q4 ∈ Jd2

: (p4, q4) /∈ H}
C4 ← {(p4, q4) ∈ C3 : mine∈Ep4

∪Eq4
rce ≥ rd2

}
C5 ← C2 × C4

For (p3, q3, p4, q4) ∈ C5 Do

If ap3
+ aq3

+ ap4
+ aq4

≤ 0.9(ap1
+ aq1

+ ap2
+ aq2

) Then

C ← C ∪ {(p3, q3, p4, q4)}

Return C

Figure 6: Pseudocode for Generating Trials for Shared Protection for k = 2

23

Procedure: Reroute
Input: A pair of demands d1 and d2, with working and backup paths p1, q1, p2, and q2;
and bef for all e, f ∈ E
Output: Residual and backup capacity vectors rc and b resulting from rerouting d1

and d2

For f ∈ Ep1
Do

wf ← wf + rd1

For e ∈ Eq1
Do bef ← bef + rd1

For f ∈ Ep2
Do

wf ← wf + rd2

For e ∈ Eq2
Do bef ← bef + rd2

For e ∈ Ep2
∪Eq2

∪Ep3
∪Eq3

Do rce ← ce − we −maxf∈E bef

Return rc, b

Figure 7: Pseudocode for Procedure Reroute

24

Q � Q �

Q �Q �

Q � Q �

Q �

Q �

Q � Q �

Q � Q �

Q �

Ring 1

Ring 3

Ring 2

Ring 4

a. Example Network

Q � Q � Q �

Q � Q �Q �

b. Candidate Rings

Figure 8: Example Network With Four SONET Rings

25

Q � U �

Q � U �

Q � U �

Q 	 U �

Q � U �

Q � U �

Q � U �

Q
 U �

Q � U �

Q 	 U �

Q � U �

Q � U �

Q � U �

Q 	 U 	

Q � U 	

Q � U 	

Q � U 	

Q 	 U �Q � U �

Q � U �

Q 	 U
Q � U

Q � U

Q � U �

Q 	 U �

Q � U �

Q � U �

Q 	 U �

Q � U �

Q
 U �

Q � U �

Q 	 U �

Figure 9: SONET Ring Systems

26

Q � U �

Q � U �

Q � U �

Q � U �

Q � U �

Q � U �

Q � U �

Q � U �

Q � U �

Q � U �Q � U �

Q � U �

Q � U �Q � U �

Q �

Q � Q �

Q �

Capacity = 4 OC48s

Capacity = 8 OC48s

Figure 10: Mesh Representation of stacked SONET Rings

27

D
W
D
M

D
W
D
M

ADM
R6

ADM
R5

ADM
R4

ADM
R3

ADM
R10

ADM
R9

ADM
R8

ADM
R7

TE TE

Fiber Fiber

Add/Drop
OC-48Traffic

Inter-Ring
OC-48 Traffic

Single
OC-192
Channel

(Contains Multiple
OC-192 Channels)

Figure 11: Node 4 Architecture and Traffic Flow

28

Table 1: Spare Capacity Used For Various Link Failures

Failed Path Used Spare Capacity Used
Link Demand 1-6 Demand 4-3 (1,4) (3,6) (4,5) (5,6)

(1,2) backup working 4 0 4 4

(2,6) backup working 4 0 4 4

(2,3) working backup 0 6 6 6

(2,4) working backup 0 6 6 6

Spare Capacity Required 4 6 6 6
Under Shared Protection

Spare Capacity Required 4 6 10 10
Under Dedicated Protection

Table 2: Problem Characteristics

Problem Number of
Name Nodes Links Demands

ATT55 11 23 55

KL100 18 33 100

DA50 68 107 50

DA75 68 107 75

DA100 68 107 100

DA125 68 107 125

DA175 68 107 175

DA200 68 107 200

Table 3: Number of Paths used in each Model

Problem Protection Model
Name None Dedicated Shared

ATT55 550 332 518

KL100 1000 770 904

DA50 500 500 500

DA75 750 741 742

DA100 1000 984 992

DA125 1250 1216 1234

DA175 1750 1698 1734

DA200 2000 1903 1952

29

Table 4: ILP Characteristics and Results for Model with No Protection

Problem Total Binary CPU Optimal
Name Constraints Variables Seconds Solution

ATT55 78 550 1 93

KL100 133 1,000 1 220

DA50 157 500 1 85,589

DA75 182 750 1 121,139

DA100 207 1,000 1 161,488

DA125 232 1,250 1 205,156

DA175 282 1,750 1 297,563

DA200 307 2,000 1 333,547

Table 5: Results for Model with No Protection with Worst-Possible Starting Solution

Problem Starting Starting Best Final CPU Number of Number
Name Solution Deviation Solution Deviation Seconds Trials Successful

ATT55 205 120.4% 93 0.0% 0.6 62 55

KL100 472 114.5% 220 0.0% 1.8 102 100

DA50 111,394 30.1% 85,589 0.0% 3.2 2,309 51

DA75 166,077 37.1% 121,139 0.0% 1.7 349 78

DA100 220,401 36.5% 161,488 0.0% 4.9 1,251 102

DA125 278,976 36.0% 205,156 0.0% 5.8 846 127

DA175 394,769 32.7% 297,563 0.0% 7.1 174 174

DA200 451,248 35.3% 333,547 0.0% 6.4 199 131

Ave. — 55.3% — 0.0% — — —

Table 6: Results for Model with No Protection Starting 4% Above Optimal

Problem Starting Starting Best Final CPU Number of Number
Name Solution Deviation Solution Deviation Seconds Trials Successful

ATT55 97 4.3% 93 0.0% 0.3 3 2

KL100 229 4.0% 220 0.0% 1.5 2 2

DA50 89,013 4.0% 85,623† 0.0% 3.3 1,531 15

DA75 125,985 4.0% 121,139 0.0% 1.9 429 17

DA100 167,948 4.0% 161,488 0.0% 3.3 738 19

DA125 213,363 4.0% 205,156 0.0% 8.4 1,418 10

DA175 309,466 4.0% 297,563 0.0% 5.6 37 37

DA200 346,889 4.0% 333,547 0.0% 4.8 31 31

Ave. — 4.0% — 0.0% — — —

†not optimal.

30

Table 7: Results for Model with No Protection, a Worst-Possible Start, and a 10% Minimum
Incremental Improvement

Problem Starting Starting Best Final CPU Number of Number
Name Solution Deviation Solution Deviation Seconds Trials Successful

ATT55 205 120.4% 93 0.0% 0.6 62 55

KL100 472 114.5% 220 0.0% 1.8 102 100

DA50 111,394 30.1% 87,078 1.7% 0.5 188 34

DA75 166,077 37.1% 123,870 2.3% 1.1 63 54

DA100 220,401 36.5% 164,297 1.7% 1.9 73 72

DA125 278,976 36.0% 210,081 2.4% 2.8 91 88

DA175 394,769 32.7% 305,362 2.6% 5.6 115 115

DA200 451,248 35.3% 341,806 2.5% 7.2 134 134

Ave. — 55.3% — 1.65% — — —

Table 8: Results for Model with No Protection Starting 4% Above Optimal, and a 10% Mini-
mum Incremental Improvement

Problem Starting Starting Best Final CPU Number of Number
Name Solution Deviation Solution Deviation Seconds Trials Successful

ATT55 97 4.3% 93 0.0% 0.3 3 2

KL100 229 4.0% 220 0.0% 1.5 2 2

DA50 89,013 4.0% 86,130 0.6% 0.5 50 4

DA75 125,985 4.0% 121,557 0.3% 0.6 6 6

DA100 167,948 4.0% 162,200 0.4% 1.5 5 5

DA125 213,363 4.0% 205,679 0.3% 1.6 5 5

DA175 309,466 4.0% 299,133 0.5% 4.5 8 8

DA200 346,889 4.0% 334,395 0.3% 4.1 11 11

Ave. — 4.0% — 0.3% — — —

31

Table 9: MIP Characteristics and Results for 1+1 Protection

Problem Total Binary CPU Optimal
Name Constraints Variables Seconds Solution

ATT55 71 325 0.1 233

KL100 118 755 0.1 558

DA50 157 500 0.3 201,051

DA75 182 741 0.1 283,988

DA100 207 984 1.1 379,286

DA125 232 1,216 3.9 486,925

DA175 282 1,698 1.9 706,502

DA200 307 1,903 1.7 798,693

Table 10: Results for Model with 1+1 Protection, a Worst-Possible Start, and a 10% Minimum
Incremental Improvement

Problem Starting Starting Best Final CPU Number of Number
Name Solution Deviation Solution Deviation Seconds Trials Successful

ATT55 421 80.7% 236 1.3% 2.0 1,461 60

KL100 995 78.3% 560 1.8% 4.6 944 92

DA50 284,011 41.3% 204,026 1.5% 7.8 3,510 42

DA75 429,114 51.1% 290,005 2.1% 13.7 8,942 64

DA100 554,334 46.2% 387,576 2.2% 25.7 6,949 86

DA125 692,977 42.3% 494,038 1.5% 61.8 14,465 108

DA175 980,192 38.7% 718,014 1.6% 24 1,732 128

DA200 1,090,111 36.5% 812,739 1.8% 42.2 3,167 143

Ave. — 51.9% — 1.7% — — —

32

Table 11: Results for 1+1 Protection Model Starting 4% Above Optimal, and a 10% Minimum
Incremental Improvement

Problem Starting Starting Best Final CPU Number of Number
Name Solution Deviation Solution Deviation Seconds Trials Successful

ATT55 243 4.3% 234 0.4% 2.7 1,300 5

KL100 581 4.1% 560 0.4% 3.0 531 3

DA50 209,094 4.0% 202,847 0.9% 1.3 859 5

DA75 295,348 4.0% 286,460 0.9% 0.9 479 5

DA100 394,458 4.0% 383,870 1.2% 8.3 1,696 3

DA125 506,402 4.0% 494,116 1.5% 31.4 7,880 12

DA175 734,763 4.0% 710,933 0.6% 13.5 931 11

DA200 830,641 4.0% 807,283 1.1% 35.9 3,379 12

Ave. — 4.0% — 0.8% — — —

Table 12: MIP Characteristics and Results for Shared Protection

Problem Total Binary CPU Optimal
Name Constraints Variables Time Solution

ATT55 14,500 11,371 00:00:03 225

KL100 35,430 28,190 00:00:10 548

DA50 73,198 54,500 00:05:19 197,689

DA75 103,149 80,878 00:07:10 280,808

DA100 134,172 108,128 00:19:45 373,347

DA125 164,335 134,506 01:02:34 479,326

DA175 226,565 189,006 01:26:22 698,796

DA200 253,904 212,768 01:09:17 789,394

33

Table 13: Results for Model with Shared Protection and a 10% Minimum Incremental Improve-
ment

Problem Starting Starting Best Final CPU Number of Number
Name Solution Deviation Solution Deviation Time Trials Successful

ATT55 397 76.4% 229 1.8% 00:00:45 96 55

KL100 861 57.1% 548 0.0% 00:05:28 88 88

DA50 243,691 23.3% 208,312 5.4% 00:05:58 59 19

DA75 354,944 23.2% 297,123 5.8% 00:13:51 242 34

DA100 473,174 26.7% 385,127 3.2% 00:25:38 68 52

DA125 559,822 16.8% 508,305 6.0% 00:35:59 129 41

DA175 809,592 15.9% 722,315 3.4% 01:18:52 202 70

DA200 968,395 22.7% 815,149 3.3% 01:46:25 203 95

Ave. — 32.8% — 3.6% — — —

Table 14: Characteristics for SONET Problems††

Problem Number of
Name Nodes Links Demands Paths

SONET50 605 1114 50 720

SONET75 605 1114 75 1064

SONET100 605 1114 100 1426

SONET125 605 1114 125 2018

SONET175 605 1114 175 2486

SONET200 605 1114 200 2845

††Data refer to the mesh represenation. The SONET system has 211 modular rings built on a
network of 18 nodes and 35 links.

Table 15: MIP Characteristics for Mesh Represenation of SONET Ring Networks

Problem Total Binary CPU Optimal
Name Constraints Variables Seconds Solution

SONET50 627 719 0.03 274

SONET75 837 1,063 0.06 438

SONET100 954 1,425 0.07 599

SONET125 1,034 2,018 0.12 757

SONET175 1,163 2,485 0.22 1,061

SONET200 1,212 2,844 0.43 1,234

34

Table 16: Results for SONET Ring Network with Worst Possible Starting Solution and a 10%
Minimum Incremental Improvement

Problem Starting Starting Best Final CPU Number of Number
Name Solution Deviation Solution Deviation Time Trials Successful

SONET50 442 61.31% 283 3.28% 00:00:01 59 37

SONET75 677 54.57% 443 1.14% 00:00:04 1,668 66

SONET100 889 48.41% 605 1.00% 00:00:16 4,645 85

SONET125 1111 46.76% 758 0.13% 00:00:38 10,138 106

SONET175 1500 41.38% 1072 1.04% 00:00:20 78,824 128

SONET200 1681 36.22% 1269 2.84% 00:23:27 398,926 123

Ave. — 48.11% — 1.57% — — —

35

