International Journal of Parallel Programming, Vol. 31, No. 6, December 2003 (© 2003)

Automatic Design of Application
Specific Instruction Set Extensions
through Dataflow Graph Exploration

Nathan Clark,’2 Hongtao Zhong,' Wilkin Tang,"' and
Scott Mahlke'

General-purpose processors are often incapable of achieving the challenging
cost, performance, and power demands of high-performance applications. To
meet these demands, most systems employ a number of hardware accelerators
to off-load the computationally demanding portions of the application. As an
alternative to this strategy, we examine customizing the computation capabilities
of a processor for a particular application. The processor is extended with
hardware in the form of a set of custom function units and instruction set
extensions. To effectively identify opportunities for creating custom hardware,
a dataflow graph design space exploration engine heuristically identifies candi-
date computation subgraphs without artificially constraining their size or shape.
The engine combines estimates of performance gain, cost, and inherent limita-
tions of the processor to grow candidate graphs in profitable directions while
pruning unprofitable paths. This paper describes the dataflow graph exploration
engine and evaluates its effectiveness across a set of embedded applications.

KEY WORDS: Application-specific processor; dataflow graph; embedded
system; hardware customization; instruction set.

1. INTRODUCTION

In recent years, the markets for PDAs, cellular phones, digital cameras,
network routers, and other high performance but special-purpose devices

! Advanced Computer Architecture Laboratory, University of Michigan, Ann Arbor,
Michigan 48109. E-mail: {ntclark, hongtaoz, tangw, mahlke}@umich.edu
2To whom correspondence should be addressed.

429

0885-7458/03/1200-0429 /0 © 2003 Plenum Publishing Corporation

430 Clark, Zhong, Tang, and Mahlke

has grown explosively. Many of these devices perform computationally
demanding processing of images, sound, video, or packet streams. In these
systems, application specific hardware design is used to meet the challeng-
ing cost, performance, and power demands. The most popular design
strategy is to build a system consisting of a number of special-purpose
application-specific integrated circuits (ASICs) coupled with a low cost
core processor, such as an ARM processor.”” The ASICs are specially
designed hardware accelerators to execute the computationally demanding
portions of the application that would run too slowly if implemented on
the core processor. While this approach is effective, ASICs are costly to
design and offer only a hardwired solution that permits no postprogram-
mibility.

An alternative design strategy is to augment the core processor with
special-purpose hardware to increase its computational capabilities in a
cost effective manner. The instruction set of the core processor is extended
to feature an additional set of operations. Hardware support is added to
execute these operations in the form of new function units or co-processor
subsystems. There are a couple of benefits to this approach. First, the
system is postprogrammable and can tolerate changes to the application.
Though the degree of application change is not arbitrary, the intent is the
customized processor should achieve similar performance levels with
modest changes to the application, such as bug fixes or incremental modi-
fications to a standard. Second, some or all of the ASICs become unneces-
sary if the augmented core can achieve the desired level of performance.
This lowers the cost of the system and the overall design time.

The key questions with this approach are whether the augmented core
can achieve the desired level of performance and how to design an efficient
set of extensions for the processor core. For this paper, we focus on the
goal of defining a set of instruction set extensions to accelerate a target
application in a cost-effective manner. This process can be as time con-
suming and expensive as designing an ASIC if done manually, thus we
believe automation is a key to making this strategy successful. Our
approach is to use a dataflow graph exploration engine to identify the
critical computation subgraphs in the target application. The subgraphs
are analyzed to determine the desirability of using specialized hardware to
accelerate them. A number of issues must be considered to determine
desirability, including estimated performance gain, estimated cost of the
custom hardware, encoding of the new operation in the core processors
instruction format, and expected usability of the custom hardware. With
this data in place, a set of hardware extensions to processor are selected
and a compiler generates code with the selected subgraphs replaced by new
instructions.

Automatic Design of Application Specific Instruction Set Extensions 431

There are three contributions of this paper. First, we describe and
categorize the issues associated with adding custom hardware to a core
processor. Next, we propose a novel dataflow graph exploration heuristic
to efficiently determine which computation subgraphs are the best candi-
dates for hardware extensions. Our heuristic is applied to several bench-
marks in order to determine its effectiveness. Finally, the effect of com-
munication latency to and from the custom hardware is explored.

2. DATAFLOW GRAPH EXPLORATION

The overall structure of the dataflow graph exploration engine is
shown in Fig. 1. An application is fed into the system as profiled assembly
code. The code has not been scheduled and has not passed through register
allocation, which is important so that false dependences within the data-
flow graph are not created. Initially, the application passes through a
dataflow graph (DFG) space explorer, which determines candidate sub-
graphs for potential instruction set extensions. The space explorer selects
subgraphs subject to some externally defined constraints such as the
maximum die area allowed for any custom function unit (CFU), or the
maximum allowable register read and write ports. A hardware library pro-
vides timing and area numbers to the space explorer so that it can accura-
tely gauge the cycle time and area requirements of combined primitive
operations. The hardware library was created by synthesizing primitive
operations with Synopsis design tools and a popular 0.18u standard cell
library.

A list of subgraphs, annotated with area and timing estimates, is
passed to a candidate combination stage. This stage groups subgraphs that
would be executed on the same piece of hardware. Grouping the subgraphs
creates a set of candidate CFUs and allows us to calculate an estimate of

External Constraints
- 1/0, Total cost

l

Appii Dataflow Graph Cand_ldat_e CFU selector ———»
. Space Explorer Combination . o
Optimized, unscheduled, Candidate Candidate Prioritized
unallocated assembly code y Subgraphs CFUs ist of CFUs
HWLib
(opcodexwidthxfreq)

Fig. 1. Organizational structure of the DFG exploration engine.

432 Clark, Zhong, Tang, and Mahlke

B. m”*=p[0];
r*=p[1];
7= (((s[(m>>24L)] +
s[0x0100+((m>>16L)&0xff)]) *
s[0x0200 + ((m>> 8L)&0xff)]) +
s[0x0300+((m)&0xff)]) & OxfFEFEftr;

m "= p[2];

m "= (((s[(r>>24L)] +
s[0x0100+((r>>16L)&0xff)]) »
s[0x0200+((r>> 8L)&0xff)]) +
s[0x0300+((r)&0xff)]) & Oxffffffff;

C. Opcode | Area | Cycles

+ 1.0 | 030
AND | 0.12 | 0.06
" <<,>>* | 001 | ~0

XOR 0.16 0.09

e * These are shifts by compile

time constants

Fig. 2. (A) Sample dataflow graph from the blowfish benchmark. Bold arrows indicate the
critical path, and the shaded nodes delineate a CFU discovered by the explorer. An internal
node with only one input edge signifies that the other operand is a constant. (B) Part of the
preprocessed C code from blowfish that this DFG came from. (C) Excerpt of the data from
the hardware library. Areas are relative to a 32 bit carry-lookahead adder and cycle calcula-
tions are based on a 300 MHz clock.

performance gain by using the profile weights of all the set members. The
combination stage also performs some checks to determine which CFUs
can potentially be subsumed by other CFUs. All of this information is
passed to a selection mechanism that determines which CFUs best meet the
needs of this application.

Throughout this section, the DFG shown in Fig. 2 from the blowfish
application® is used for illustrative purposes. For simplicity, each opera-
tion or node is assumed to take 1 cycle to execute in the baseline processor.

2.1. Dataflow Graph Exploration

A CFU is loosely defined as the hardware implementation of a subset
of primitive operations from an application’s DFG. Primitive operations
are atomic assembly operations for a generic RISC architecture, such as
Add, Or, and Load. These operations correspond to nodes in the DFG. No
assumptions are made regarding the connectivity of the nodes in a CFU, so

Automatic Design of Application Specific Instruction Set Extensions 433

linear, tree shaped, or even cyclic graphs can be implemented as CFUs. In
this work we consider only connected subgraphs.

Implementing subsets of the DFG in hardware, as CFUs, typically
allows for better performance, lower power consumption, and reduced
code size than the corresponding implementation as a sequence of primitive
operations. Determining which parts of a DFG would make the best CFUs
is clearly a very difficult problem. The most glaring difficulty is that there
are an exponential number of potential candidates to select as CFUs for a
given DFG. In the most general sense, each node of the DFG can either be
included or excluded from a candidate, yielding O(2%#°*) potential candi-
dates. The DFG exploration proposed here is a novel algorithm to effecti-
vely curve the exponential growth of this problem.

Exploration starts by examining each node in the DFG and using it
as a seed for a candidate subgraph. Initially, the technique used a naive
implementation that looked at all possible directions to grow the seed
nodes and then added pairs of nodes (the seed plus a node in one growth
direction) to a list of potential candidates. Next, these pairs were used as
seeds, and candidates of size three were grown from the dataflow edges
entering and leaving the candidates. The algorithm recursed until certain
external constraints were met, for example the resultant candidate could
not grow without crossing a function call or the die area of the resultant
candidate was too large. The number of candidate subgraphs quickly grows
out of control with sufficiently loose external constraints, preventing the
algorithm from completing on most MediaBench® applications. Empirical
experiments showed that running the algorithm with tight external
constraints produced very poor quality candidates, as it unnecessarily
restricted the discovered candidates.

The key observation gained from experimenting with this naive
approach is that the majority of candidates examined by exponential
growth simply do not make sense. For example, assuming the goal is
maximizing performance on the DFG in Fig. 2, CFU 6-10 has little value,
because node 10 is not on the critical path. To avoid searching these useless
candidates, we propose using a guide function to rank which nodes are the
best directions to grow in. The guide function allows heuristic determina-
tion of the merit of each growth direction, and arbitrary control on the
fanout from seeds. Allowing a larger number of candidates from each seed,
or large fanout, will ensure better coverage of the design space, while
allowing smaller fanout will result in reduced run times and memory
consumption.

One important part of our technique is that restricting fanout enables
more efficient design space exploration. For example, higher fanout could
be used in blocks that have higher profile weight, as they are more likely to

434 Clark, Zhong, Tang, and Mahlke

yield important candidates; alternately, higher fanout could be used at the
initial levels of the search and then more tightly constrain the number of
growth directions as the candidates increase in size. Flexibility is one of the
major benefits of this technique. All previously proposed solutions use a
single exploration strategy for all parts of the application, where as this
technique can modify its strategy to effectively avoid searching likely
useless portions of the design space.

2.2. Guide Function

The purpose of the guide function is to intelligently rank which growth
directions will create the best candidates. The guide function is essentially
trying to replace the architect by making design decisions, thus its decisions
must reflect the same desirable properties the architect would strive for.
The guide function proposed here uses four categories to rank the desira-
bility of growth directions: criticality, latency, area, and input/output.
Giving each of these categories different weights toward the overall score of
the guide function will greatly affect the types of candidates that are gen-
erated. Many experiments have been performed varying the weights of each
of these factors and they point to the conclusion that, generally speaking,
evenly balancing the factors yields the best candidates.

In the DFG space explorer, each of the guide function categories is
allotted 10 points of weight, and the sum of these categories determines the
total desirability of each candidate direction. If a direction receives fewer
than half of the total desirability points, then it is considered a bad direc-
tion and it will not be explored. This is not to say that half of the directions
will be ignored, merely that directions with less than half of the points are
not worth investigating.

Criticality. This category rewards candidate directions when they
appear on the critical path (longest dependence path(s)) of a DFG. CFUs
that occur on the critical path are likely to give the application perfor-
mance improvement, which is typically the most desired result of CFUs.
An example of this from Fig. 2 would be investigating ways to grow can-
didate 4-6. The direction including nodes 1, 7, or 8 would rank higher in
terms of criticality than would the direction of nodes 5, 9, or 10, because the
aforementioned nodes are on the critical path. Points are awarded using the
equation ﬁ, where slack is the number of cycles an operation can be
delayed without lengthening the critical path. Thus, node 1 would get
35 = 10 points and node 10 would get 5'%; = 3.33 points.

Experiments have shown that it is important to give candidate direc-

tions credit even when they lie slightly off the critical path. This is because

Automatic Design of Application Specific Instruction Set Extensions 435

in several instances replacing some nodes on the critical path can expose an
auxiliary critical path in the DFG. For example, if we selected a CFU for
nodes 7-11-14-18 and 8-12-15-19 in Fig. 2 then nodes 9, 13, 16, and 22
would become a new critical path. Giving candidates that grow in these
directions some credit keeps them available for selection, even if they do
not initially appear useful.

Latency. Latency tries to guide exploration towards combining
operations which require fewer cycles to execute when combined into a
CFU than they do as stand-alone operations. The largest performance
gains are possible by combining low latency operations, such as logicals,
where many can be executed in a single cycle. Latency points are distrib-
uted using the equation i * 10. The latency of a CFU is calculated by
summing up the fractional delays of each atomic operation (see Fig. 2c)
along the critical path of the candidate subgraph. Using candidate 4-6 on
Fig. 2 as an example again, note that currently these operations can be
executed back to back in 0.15 cycles. Exploring the direction of node 1,
which has a latency of 0.3 cycles, would get ;7915 * 10 =3.33 points. In
contrast, growing towards node 10 would get all (0'?5110 10 =10) the
points allotted for latency.

Area. Since cost is a major constraint in the design of embedded
processors, area is an important factor in the choice of CFUs. This metric
should factor in the area of the CFU, the additional inter-connect and
control logic, and the impact on decode logic to the core processor. Register
file ports are considered a design constraint and will never be added to
support a custom instruction, so they do not factor into the area. It is
difficult to measure the impact on decode and control logic, and so the
simplifying assumption is made that CFU area is the dominant term. The
guide function considers area to be the sum of the cost of each primitive
operation in the CFU (see Fig. 2c).

The area category gives more points to directions that least increase
the total area of the candidate. Area points are calculated the same way as
latency, 292 4 1(), except that the old and new areas are rounded up to the
nearest half adder (that is a cost of 0.49 or 0.01 adders becomes 0.5).
Rounding is done so as not to penalize operations unfairly when the seed is
too small. Consider the case of growing candidate 10-17. If no rounding
was done, then growing to node 23 would only yield 32 % 10 points and
growing to node 6 would only yield 3% x 10 points. This does not mean that
growing toward node 6 is bad decision from an area standpoint, however.

Input/Output. The maximum number of input/output operands
allowed for a CFU is limited. Register file ports are generally fixed on the

436 Clark, Zhong, Tang, and Mahlke

core processor based on cost, power, and cycle time constraints. Further,
instructions for a CFU that has too many operands may not be encodable
in a conventional instruction set. Thus, the maximum number of input and
output operands available is treated as design constraint, meaning any
candidates that exceed the prescribed limits are discarded.

The purpose of the I/O category is to guide the search in directions
that reduce or keep constant the number of inputs and outputs to the can-
didate. Giving preference to directions that do not increase I/0O facilitates
discovering larger subgraphs that still meet I/O constraints. Points are
awarded based on the number of input and output ports using the equation
min(::ii‘;‘f;‘fs * 10, 10). Taking the minimum of the two terms in the equa-
tion is done because the number of ports may be reduced by growing
certain directions due to reconvergence points in the DFG. As an example
of this calculation, if directions from candidate 8-12 from Fig. 2 were
examined, growing toward node 15 would not increase the number of
inputs or outputs, yielding ;2 » 10 = 6.67 points. Growing towards node 6
would actually increase both the number of inputs and outputs, though,
yielding ;35 * 10 = 4 points.

One issue not considered by the current guide function is power con-
sumption. As with performance, CFU candidates can be favored that best
reduce power by enabling more efficient implementation of the candidate
DFG by using custom hardware. The extension of the guide function is
relatively straight forward and is the subject of future work.

With the guide function heuristic in place, it was important to verify
two points: first that the heuristic does indeed prune the search space, and
second that good candidates are not missed because the guide function
incorrectly dismisses them. Figure 3 demonstrates the first point. The
intelligent heuristic is able to effectively curve the exponential growth
associated with the DFG exploration problem. This algorithm can be used
on very large code segments and without artificially constraining the types
of candidates generated, which are both weaknesses of previously proposed
algorithms. To ensure that good candidates are not dismissed, the heuristic
was compared against a full exponential search for several small bench-
marks. The results showed that both approaches selected identical sets of
candidates. The heuristic was also compared against full exponential search
using restricted constraints (3 input, 2 output ports and a five adder
maximum cost) on many larger benchmarks. Again, the results found using
the heuristic were comparable with those of full exponential search.

2.3. Candidate Combination

Once candidate subgraphs are discovered, it is a fairly straight forward
process to group identical ones together into candidate CFUs. A simple

Automatic Design of Application Specific Instruction Set Extensions 437

100000000 -
- ¢- Intelligent === Al Paths
k-]
Q
f=
'E 10000000 ~
©
X
1]
("]
3
© -
T 1000000 "
ko] o7
c -
£ .
o "
- .
9 .-
= -
£ 100000 -
E .
=]
4
10000 : ‘ : ‘ : |
0 1 2 3 4 5 6

Cost Constraint (Adders)

Fig. 3. Comparison of the number of candidates examined by the intelligent heuristic
compared with growth in all available directions on blowfish. The X-axis shows the maximum
die area the candidates were allowed to grow to. There are no points at costs four and five for
““all paths” because we did not have access to a machine with enough memory to run the
experiment.

test checking graph equivalence, while taking into account commutativity,
accomplishes this. For example, if subgraphs 7-11-14-18 and 8-12-15-19
were discovered in Fig. 2, the graphs would be checked for equivalence and
then combined into the candidate CFU “<<-AND-ADD->>.” The profile
weights are then used to get an estimation of the number of cycles each
CFU improves performance. Using a compiler instruction scheduler to get
an exact measurement is possible, but the complexity makes this solution
undesirable. Investigation has shown that performance estimates based
solely on the dynamic number of occurrences of each subgraph prove
reasonably accurate.

After candidate grouping, there are two passes over the list of CFUs.
The first pass records which CFUs can be subsumed by others. Subsumed
subgraphs take advantage of the fact that most atomic operations have an
associated identity input, allowing values to pass through a node without
changing. Using Fig. 2 as an example, if CFU “AND-ADD->>" was dis-
covered, CFU “AND->>" can be executed on the same hardware because
the subsumed hardware could set one input of the ADD operation to zero.
CFUs “AND-ADD” and “ADD->>" would also be recorded as being
subsumed by “AND-ADD->>.” Recording which CFUs are subsumed

438 Clark, Zhong, Tang, and Mahlke

by others proves useful for value and cost estimation done by the selection
heuristic described later.

The second pass records a single wildcard option for each CFU.
Wildcards are defined as CFUs with identical subgraphs except for differ-
ent operations at one node. Combining two CFUs with similar structure
like this allows us to cheaply add another CFU without greatly increasing
the associated cost, as much of the hardware can be shared between the
two CFUs. Many CFUs could potentially be wildcard matches for each
other, but for simplicity only the wildcard match with the best estimated
cycle savings is recorded for each CFU.

2.4. Candidate Selection

Contrary to combining the candidate subgraphs, CFU selection is not
straight forward. Selection is very similar to the 0/1 knapsack problem.
There is a set of resources (the candidate CFUs) which all have values (the
estimated cycle savings) and weights (the cost in die area), and the goal is
to maximize the total value for a given weight threshold. It is widely known
that the 0/1 knapsack problem is NP-complete, although it is solvable
in pseudo-polynomial time using dynamic programming. Strategies are
needed to avoid intractability in this stage of design automation as well.

It is important to mention that CFU selection has one caveat missing
in the 0/1 knapsack problem: the values of all the other CFUs change once
a CFU is selected for inclusion. Individual operations can appear in mul-
tiple subgraphs and thus multiple CFU candidates. Once a CFU is selected,
it is necessary to update the estimated cycle savings of the other CFUs so
that double counting does not occur. Using an example from Fig. 2 again,
assume the two highest ranked CFUs were 7-11-14-18, and 7-11-14. If 7-11-
14-18 was selected first and did not update the value of 7-11-14 to reflect
the fact that it can no longer use any of its operations, then 7-11-14 would
be selected also, even though it would provide no gain above what 7-11-
14-18 already provided.

The strategy used for CFU selection is a simple greedy method, illus-
trated in Fig. 4. Given a list of CFU candidates, the one with the best ratio
of V:j:f is greedily selected (note best value alone is also a valid heuristic).
Once a CFU is selected (number 2 in this example), the heuristic iterates
through the list of remaining CFU candidates and removes operations that
were already claimed by CFU 2. The estimated performance gain attrib-
uted to each operation is kept track of to make updating statistics easy.
In Fig. 4 operations 1 and 7 were removed from CFU N and its value
was updated to 0, as it had no more operations left. Operation 3 was
removed from CFU 1 and its value was likewise updated to 16, taking into

Automatic Design of Application Specific Instruction Set Extensions 439

Greedily select CFU 2 — the one Update the values of each CFU
with the best value/cost that depended on ops that are
now attributed to CFU 2

CFU Value Cost Ops CFU Value Cost Ops CFU Value Cost Ops
Number Number Number

1 20 4 34869 1 20 4 343869 1 16 4 4,869
2 6 1 137 2 6 1 13,7 \ 2 6 1 13,7
N 8 5 17 N 8 5 1,7 N 0 5

Add CFU 2 to the final list, remove
CFUs with no value, and repeat until

we exceed our area budget

Fig. 4. Basic greedy approach to CFU selection.

account that it can no longer use operation 3. Once all CFUs are updated,
the selection process is repeated until the area budget is exhausted. Custom
instruction replacement in the compiler happens in the same order that
CFUs are selected, so iteratively updating the values by invalidating
selected operations maintains the relative accuracy of the cycle gain
estimations.

Because the selection heuristic is greedy, it is not guaranteed to give an
optimal solution, and quite frequently it does not. For example, when the
greedy algorithm selects based only on cycle savings, performance does
poorly at the low cost budget points compared to when it selects based on
°%. The opposite is true at the high cost points, however. In an
attempt to improve the selection heuristic, a version based on the optimal
dynamic programming solution to the 0/1 knapsack problem was imple-
mented. The dynamic programming heuristic generally does better (roughly
5-10% on average) than both greedy solutions, however it suffers from a
much slower runtime, and thus it was not used in any of the studies in this
paper. Though the dynamic programming method provides better results, it
is still not necessarily optimal as its decisions are based on cycle gain esti-
mations and it has to make local decisions without knowing how one
selection will affect later selections.

Dealing with wildcards and subsumed subgraphs adds another chal-
lenge to the selection process. The main issue is whether to count all the
subsumed subgraphs and wildcards when determining the estimated value
of a CFU. If so, then in addition to updating the estimated value of other
CFUs based on the operations in the candidate subgraphs, it is also neces-
sary to update them based on all the operations in their subsumed or wild-
card candidate subgraphs. This creates a huge computational overhead for
every CFU selection. In the case of subsumed subgraphs, this often means
frequently attributing operations to small subsumed portions of a large
CFU, when much more performance could have been gained by attributing

440 Clark, Zhong, Tang, and Mahlke

them to a separate CFU. For example, if the gray shaded CFU in Fig. 2
was selected then it would be possible to execute 13-16 together on the gray
CFU, as 13-16 is subsumed. However if a CFU for 13-16-22 could have
been chosen later, that would have helped performance more, but this
option has been precluded because operations 13-16 have already been
claimed by the large gray CFU. The case just described occurs quite
frequently, so subsumed subgraphs and wildcard candidates are not
included in our performance estimations. Instead CFUs are selected as if
they had no subsumed subgraphs or wildcards, and then the costs of the
subsumed subgraphs and wildcards are updated to reflect the fact that they
can now be selected for very little cost overhead.

Another issue to consider is the possibility that implementing a
subsumed subgraph as a separate CFU is more desirable than implement-
ing it on existing, subsuming hardware. As an example consider the large
gray CFU from Fig. 2. If “XOR-<<” were to be run on custom hardware,
it could be done for a minimal area overhead on the large, gray CFU;
however, there would be a latency penalty of going through three more
operations (there are no early exits from operations 7 or 8). It may be that
creating a special “XOR-<<"" unit is the better solution. Subsumed CFUs
are not removed from the selection pool, so that the option to include both
is available.

3. EXPERIMENTAL RESULTS

The system proposed was constructed as part of the Trimaran research
infrastructure.” The DFG exploration engine was implemented as a stand-
alone module, and the compiler backend was modified to facilitate sub-
graph matching and replacement. As mentioned previously, the cycle time
and area estimates in the hardware library were calculated using Synopsis
design tools and a 0.18u standard cell library.

For this evaluation, two simplifying assumptions were made. First, no
memory instructions were included in CFUs. Having custom instructions
that access memory creates CFUs with non-deterministic latency as well as
requires consideration of cache ports during DFG exploration. Memory
disambiguation within a custom instruction must also be factored when
doing pattern replacement in the compiler. The second assumption was
that custom instructions were both not allowed to contain branches or
cross control flow boundaries. These restrictions were put in place so that
custom instructions can remain stateless and atomic. Both assumptions are
due to limitations in the DFG explorer and compiler, and do not reflect
inherent limitations of the approach.

Automatic Design of Application Specific Instruction Set Extensions 441

Fourteen benchmarks were run through the CFU generation system
and fifteen sets of CFUs for each benchmark were created. Each set corre-
sponds to an area budget allotted to the CFUs (one adder, two adders,
etc.). The Fourteen benchmarks can be divided into four categories:
encryption, network, audio, and image. The encryption category contains
three benchmarks from the MiBench® benchmark suite, the network
category consists of three benchmarks from NetBench,® and the audio and
image categories are from MediaBench.®

The baseline machine for the experiments is a four-wide VLIW
machine that can issue one integer, one floating-point, one memory, and
one branch instruction each cycle. The instruction set and latencies of each
instruction are similar to those of the ARM-7.%V In all of our studies, the
CFUs require an integer issue slot to execute, thus an integer operation
and a CFU cannot execute in the same cycle. This was done so that any
speedups observed are due to custom instructions and not from adding
parallelism to the machine. A 300 MHz system clock was assumed for
timing constraints, and CFUs that require more than one clock cycle to
execute are pipelined so as not to affect cycle time. Cost of the CFUs
is measured in die area with respect to a 32 bit ripple-carry adder.
A maximum of five input and three output ports was placed as an external
limit on all CFUs.

Performance verses Area. Figure 5 compares the performance gain
in each of the four benchmark categories as the total cost of CFUs is
varied from one to sixteen adders. Each line in the graphs represents the
speedup of an application with CFUs as compared to the baseline machine
with no CFUs. One of the interesting trends in these graphs is that speed-
ups seen in benchmarks vary greatly. Encryption benchmarks tend to
benefit quite a bit from CFUs, with rijndael, blowfish, and sha showing
speedups of 1.87, 1.62, and 1.33, respectively, at the higher cost points. On
the contrary, several applications in the audio and image sections show
very little speedup (e.g., mpeg2dec and g721encode). Investigation into this
revealed that these benchmarks had a significant number of branches and
memory operations, which hindered the combinable operations available
for the DFG explorer. Conversely, the encryption benchmarks contained
large subgraphs dominated by simple arithmetic and logical operations
which are ideally suited for custom hardware.

To further illustrate this point, a limit study was performed to deter-
mine the performance improvement attainable for each benchmark given
infinite register file ports, an infinite area budget, and the simplifying
assumptions mentioned at the beginning of this section. When compared
against the cost point of 15 adders in Fig. 5, our system realizes speedups

Clark, Zhong, Tang, and Mahlke

442

‘SIOppe G 0} | WOIJ SALIBA 1SOO PIPPE [€)0) SB SUOTIONISUI W0)sno Juisn £q PoASIYO. Ures S0UBULIOJIS]

¢ 81

{s10ppV} 350D (s4eppV}isod
o v 48 o 8 9 4 4 o I 2t o g 9 z 0
o'y ool
oL
SoL
ozt
oeL
oL
2 03PZ B m_
H
oL 8 660p mpgm 3
5 Bodlo g 5
SEL
o5t
oipnepme g
ompEome._pe— 091
3PAOBPWSE et oL
8p0oUsL 746 i
2p0OBPLZL Ot oLy
ozl szL
ojpny abewy)
(s1eppy) 150D (s1appy) 1500
o [2 o] 9 v z 9 n a [8 9 z °
0oL 'L
p——— | oL ot
ozt
ozt
[
~— »> * - *~—o—¢ o
or't
Lyl SO mtpm m
i 2 o5t §
sueuod g 051 5
20 09t
01
ort
73}
8L
o ———————¢ 0t
—¥ ¥ —————yy
05 oz
yoausgeN uvondAiug

Automatic Design of Application Specific Instruction Set Extensions 443

very close to the ideal case. This is particularly true with the audio and
image benchmarks which show very little speedup.

The exceptions to this are djpeg and cjpeg, where very large CFUs are
necessary to achieve the speedup limit. For example, given infinite resources,
the system created a CFU for djpeg requiring 24 register file read ports and
having an area greater than 8 multipliers. All discrepancies between the
theoretical and realized speedups in other applications can be explained
similarly. With no limits, the system would create a CFU for blowfish
using 80+ register read ports, 40+ register write ports, and containing
almost 200 primitive operations. All of this data supports the conclusion
that the DFG exploration heuristic makes reasonable decisions when
selecting candidates. At the same time, the data provides strong motivation
to loosen the current restrictions on our system in order to achieve better
speedups in future work.

Another very noticeable trend in some graphs in Fig. 5 (gsmdecode
and djpeg in particular) is that at some cost points there is a large dip in
speedup. This is due directly to performance estimations and the greedy
selection heuristic. For the gsmdecode benchmark, a speedup of approxi-
mately 1.4 is attained at cost point 7, by using several small and generally
useful CFUs. At cost point 8 the heuristic chose one very large CFU, which
was estimated to be more useful than the small ones, and the compiler was
not able to make use of the large one as well as the smaller ones. Once the
cost budget rises for gsmdecode, the greedy selection begins to include the
small CFUs used at point 7 along with the large one used at point 8, thus
the speedups improve at points 13 and above beyond what was possible at
point 7.

Effect of Communication Cost. Another experiment was performed
to determine how speedups would be affected if there was communication
overhead between the CFUs and the rest of the core. This information is
useful because it is typically easier to implement custom instructions in a
design flow using a generic coprocessor interface, as opposed to imple-
menting them directly in the core. If they are implemented as a coprocessor,
there will likely be some overhead in transferring values from the register
file to the coprocessor and from the coprocessor back to the register file. If
sufficient instruction level parallelism exists in the applications then this
delay is not a problem because the compiler can schedule around the
communication latency. Likewise, if the custom instruction is very large,
then the delay is spread across many cycles, which will not hurt speedup
very much.

The results of this study are in the Table I. The columns show speed-
ups when varying communication latency using the set of CFUs developed

444 Clark, Zhong, Tang, and Mahlke

Table I. Speedups Given Various Communication Delays and an
Area Budget of 15 Adders

Benchmark No Delay 1 Cycle 2 Cycle 3 Cycle
bfish 1.62 1.39 1.11 1.05
cjpeg 1.07 1.00 1.00 1.00

cre 1.83 1.57 1.38 1.00
djpeg 1.20 1.08 1.01 1.00
g721dec 1.13 1.09 1.07 1.06
g72lenc 1.12 1.10 1.08 1.07
gsmdec 1.44 1.41 1.33 1.27
ipchains 1.12 1.01 1.00 1.00
mpeg2dec 1.09 1.02 1.01 1.00
rawc 1.21 1.15 1.00 1.00
rawd 1.77 1.34 1.15 1.00
rijndael 1.87 1.86 1.18 1.00
sha 1.33 1.23 1.20 1.00
url 1.30 1.00 1.00 1.00

for cost point 15. A communication latency of 1 cycle means that it takes 1
cycle to transfer values to the coprocessor and 1 cycle to transfer values
back to the core, totaling a 2 cycle delay. Note how moving from 0 cycles
of delay to just 1 cycle causes a major drop in speedup for most applica-
tions. This is not due solely to a lack of instruction level parallelism, but
also because many frequently used CFUs are only two or three primitives
long. Once a communication delay is introduced, it often no longer makes
sense to use these small CFUs. Like the limit study, this data points to the
necessity to ease system restrictions in order to create larger CFUs for a
coprocessor. Larger CFUs are able to amortize the cost of the communica-
tion, which is essential as applications have limited instruction level paral-
lelism available to hide delay.

Guide Function Parameters. A final set of experiments we present
deals with the various categories of the guide function. In Fig. 6, CFUs are
generated for one randomly selected benchmark from each of the four
categories. Four of the lines on each chart show the results when only one
of the four proposed guide function categories is used. The fifth line shows
the results presented earlier using all four categories and are displayed for
comparison.

The are two main points to take away from Fig. 6. The first point
is that the categories which individually generate good candidates vary

445

Automatic Design of Application Specific Instruction Set Extensions

‘uorjouny opms 2y} ur 10J0eJ ouo A[uo SuIsn SYIBWYOUIQ J0J SHNSY ‘9 "SI

(s10ppy} 350D (sseppy) 3800
9L [2 ok 8) v 2 0 L9l [2 oL 8 ¢
L
Vi
7L
el
@
g
v
S
g
L]
sl
[gl IV
ANEORUD —igm ANEONI) i
LIV oY g
[~ o fousier
Ol Ol
L
olpnepmey Badlg
(sseppy)1s0D (s10ppy) 1503
o vl 2 [) 9 v z o v 2L o 8 T

zL
£l
[
€
2
g
£
g1
oL
Aueor - o IN——
1B i
1280, ANEONL) g
201/ g con
fouejer 21 £oUOIE g
Ol—— Olmilt
61

bk

ysymolg

zh

LD

dnpasdg

446 Clark, Zhong, Tang, and Mahlke

greatly by application. For example, using only latency as the guide func-
tion creates very poor candidates for blowfish and djpeg, but it does well
for crc and rawdaudio. Using only I/O in the guide function produces the
best candidates at cost points 8-12 for djpeg, but does not do an effective
job for the other benchmarks. This leads to the second point to take from
this figure: using all of the categories in conjunction generally produces
better results than any one of them individually. At the majority of cost
points on each of these graphs, using all of the categories simultaneously
results in higher speedups. Since different categories prove more effective in
different applications, using all of them together provides a better guide
than any of them in isolation.

4. RELATED WORK

A large body of research has gone into the design of application spe-
cific instruction set extensions. Work in Refs. 612 all showed some of the
gains possible with instruction set customization. While these works show
the potential utility of instruction set customization, they do not provide
methods to automate the process of instruction candidate discovery. Many
other systems have been proposed to tackle this problem and are discussed
in more depth below.

Early work™® in this area side-stepped the candidate discovery problem
altogether by predefining a set of candidates. This strategy requires a
designer to enumerate a superset of useful candidates to select from, and
utilizes design automation in the selection phase. Work by Bennett pro-
poses iterative combination of primitives which occur in subsequent lines of
code to reduce static code size. Statistics are gathered on the frequency of
operations occurring near each other and the highest ranking combination
is chosen as a new instruction. This technique is irrespective of the dataflow
graph and is primarily used as a code size reduction technique.

Bennett’s work is similar to candidate discovery algorithms in
Refs. 15-19, in that all of these approaches propose iterative combination
of primitives. Iterative solutions typically combine two nodes, replace all
such occurrences in the DFG, and repeat until some constraints are met.
These solutions have the benefit of very good run times (typically O(N?))
when compared to more thorough strategies, but they risk being stuck in a
local maxima. Each edge is combined in a locally optimal manner, remi-
niscent of greedy heuristics.

Holmer proposed a more global technique® that was extended by
Ref. 21. This technique discovered candidates by performing an initial
grouping of nodes based on the schedule time in the DFG, and then itera-
tively breaking and recombining these groups using a simulated annealing

Automatic Design of Application Specific Instruction Set Extensions 447

algorithm. Work by Bose,®? is similar to this, except that it operated on a
syntax tree, instead of a DFG, and used many more candidate transforma-
tions than breaking and combining. Another major difference is that
Holmer guided use of the transformations using simulated annealing,
attempting to maximize the worth of the instruction set, where Bose per-
formed transformations with the expected goal of improvement. The
application of these two algorithms was mainly targeted toward design
entire instruction sets as opposed to just ISA extensions, and to reduce
static code size.

Choi® generated initial candidates in a similar manner to Holmer.
This work advocated combining instructions that could be executed in
parallel and then combining those parallel sets to create custom instruc-
tions that were both wide and deep. In order to cut down on the number of
potential candidates explored, Choi used an artificial limit on how deep the
combined instructions can be. The main contribution of this work is a new
formulation of the candidate discovery problem: they discovered candida-
tes using a modification of the subset-sum problem, and they attempted to
find the minimal set of instruction extensions to meet a certain perfor-
mance requirement (as opposed to simply discovering the optimal instruc-
tion extensions for a given cost). The main weaknesses of this work are the
artificial limit on custom instruction length and the initial phase of com-
bining parallel instructions performed when it is not clear that parallel
combination is best.

Other work proposes dealing with intractability by limiting the size of
the problem. The algorithm proposed in Ref. 24 searches a full binary tree
where each step decides whether or not to include a node of the DFG into
a candidate. Ways to prune the tree are proposed, helping to avoid the
worst case O(2") runtime, but the size of the DFG must still be relatively
constrained in order for the algorithm to complete in a timely manner.

Some researches have proposed heuristic ways to limit the search space
without artificially constraining it. In Ref. 25, the least used half of all
candidates are removed after each iteration of candidate discovery. While
this technique will catch all important candidates in hot portions of the
code, it potentially misses useful candidates that are moderately used in
many portions of the application. Work by Sun® performs a similar
pruning, but uses a more complex priority function to rank the candidates,
taking into account the number of inputs and outputs, as well as dynamic
occurrences. In Sun’s work, candidates that do not meet a certain percent-
age of the best discovered candidate so far are removed.

The use of a guide function to restrict growth as proposed in this
paper is most similar to the work by Sun.®® They used a priority function
to prune candidates which do not reach a certain percentage of the best

448 Clark, Zhong, Tang, and Mahlke

priority discovered so far. The candidates that are not pruned are grown in
every direction. The guide function proposed in this paper prunes direc-
tions of search, not candidates. If the guide function finds no directions
worthy of growing a candidate, it is equivalent to that candidate being
pruned. The guide function used in this work also takes more factors into
account when pruning.

5. CONCLUSION

Application specific instruction set extensions are an efficient way to
meet the growing performance and power demands of embedded applica-
tions. Designing these extensions has traditionally been very user intensive,
as an architect must determine what would make a good extension and
manually insert these extensions into the code. In this paper we have pre-
sented a system that automates the process of instruction discovery. Using
an efficient dataflow graph exploration heuristic we are able to discover
and automatically select custom function units to meet the demands of an
application. Our system has demonstrated significant speedups for several
applications (as much as 1.87 for rijndael) while utilizing very little die
area.

ACKNOWLEDGMENTS

We thank Krisztian Flautner, Mike Chu, and Kevin Fan for their
comments and suggestions. This research was supported in part by the
DARPA/MARCO C2S2 Research Center, ARM Limited, and equipment
donated by Intel Corporation.

REFERENCES

1. D. Seal, ARM Architecture Reference Manual, Addison-Wesley (2000).

2. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
MiBench: A Free, Commercially Representative Embedded Benchmark Suite, IEEE 4th
Annual Workshop on Workload Characterization (Dec. 2001).

3. C. Lee, M. Potkonjak, and W. Mangione-Smith, MediaBench: A Tool for Evaluating and
Synthesizing Multimedia and Communications Systems, MICRO (Dec. 1997).

4. Trimaran, An Infrastructure for Research in ILP, http: /www.trimaran.org.

5. G. Memik, W. H. Mangione-Smith, and W. Hu, Netbench: A Benchmarking Suite for
Network Processors, ICCAD, pp. 39-43 (2001).

6. P. M. Athanas and H. S. Silverman, Processor Reconfiguration Through Instruction Set
Metamorphosis, IEEE Computer, Vol. 11, No. 18 (1993).

7. R. Razdan and M. D. Smith, A High-Performance Microarchitecture with Hardware-
Programmable Function Units, MICRO, pp. 172-180 (Nov. 30-Dec. 2 1994).

Automatic Design of Application Specific Instruction Set Extensions 449

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

M. J. Wirthlin and B. L. Hutchings, DISC: The Dynamic Instruction Set Computer, Field
Programmable Gate Arrays for Fast Board Development and Reconfigurable Computing,
pp- 92-103 (1995).

. J. R. Hauser and J. Wawrzynek, GARP: A MIPS Processor with a Reconfigurable

Coprocessor, Symposium on FPGAs for Custom Computing Machines (Apr. 1997).

K. V. Palem, S. Talla, and P. W. Devaney, Adaptive Explicitly Parallel Instruction Com-
puting, Proc. Australasian Computer Architecture Conference, pp. 61-74 (1999).

M. Gschwind, Instruction Set Selection for ASIP Design, ACM Seventh International
Workshop on Hardware/Software Co-Design (May 1999).

L. Wu, C. Weaver, and T. Austin, Cryptomaniac: A Fast Flexible Architecture for Secure
Communication, ISCA, pp. 110-119 (June 2001).

A. Alomary, T. Nakata, Y. Honma, and J. Sato, PEAS-I. A Hardware/Software
Co-Design System for ASIPs, EDAC (1993).

J. P. Bennett, A Methodology for Automated Design of Computer Instruction Sets, Ph.D.
thesis, University of Cambridge (1988).

D. S. Rao and F. J. Kurdahi, On Clustering for Maximal Regularity Extraction, JEEE
Transactions on Computer Aided Design, Vol. 12 (Aug. 1993).

J. V. Praet, G. Goosens, D. Lanner, H. D. Man, and H. Synthesis, Instruction Set Defi-
nition and Instruction Selection for ASIP (1994).

M. Baleani et al., HW/SW Partitioning and Code Generation of Embedded Control
Applications on a Reconfigurable Architecture Platform, 9¢h Intl. Workshop on Hardware/
Software Codesign, pp. 61-66 (May 2002).

P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh, Instruction Generation and
Regularity Extraction for Reconfigurable Processors, CASES, pp. 262-269 (2002).

R. Kastner et al., Instruction Generation for Hybrid Reconfigurable Systems, ACM
TODAES, Vol. 7 (Apr. 2002).

B. Holmer, Automatic Design of Computer Instruction Sets, Ph.D. thesis, University of
California, Berkeley (1993).

I. Huang and A. M. Despain, Synthesis of Application Specific Instruction Sets, /EEE
Transactions on Computer-Aided Design, Vol. 14 (June 1995).

P. Bose and E. S. Davidson, Design of Instruction Set Architctures for Support of High-
Level Languages, ISCA (June 5-7, 1984).

H. Choi et al, Synthesis of Application Specific Instructions for Embedded DSP
Software, IEEE Transactions on Computers, Vol. 48, pp. 603-614 (June 1999).

K. Atasu, L. Pozzi, and P. Ienne, Automatic Application-Specific Instruction-Set Exten-
sions under Microarchitectural Constraints, 40th DAC (June 2003).

M. Arnold, Instruction Set Extensions for Embedded Processors, Ph.D. thesis, Delft
University of Technology (2001).

F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, Synthesis of Custom Processors Based
on Extensible Platforms, ICCAD (Nov. 2002).

	1. INTRODUCTION
	2. DATAFLOW GRAPH EXPLORATION
	3. EXPERIMENTAL RESULTS
	4. RELATED WORK
	5. CONCLUSION
	6. ACKNOWLEDGMENTS

