
Array Organization in Parallel Memories

Mayez Al-Mouhamed ∗

Abstract

The bandwidth mismatch between processor and main memory is one major limiting
problem. Although streamed computations have predictable access patterns their refer-
ences have little temporal locality and are generally too long to cache. A memory and
compiler co-optimization aimed at reducing low-level memory accesses using software
and hardware locality optimizations is presented. We propose a scalable and predictable
parallel memory based on a compiler synthesis of storage schemes for multi-dimensional
arrays that are accessed by an arbitrary but known set of data access patterns. Using
algebra of non-singular Boolean matrices, we present analysis of conflict-free access to
(1) parallel memories, and (2) alignment networks. Finding a multi-pattern storage
scheme is one NP-complete problem. An effective compiler heuristic is proposed for
finding a the storage matrix that minimizes overall memory access time. This applies
to arbitrary linear patterns and arbitrary alignment networks. It is shown that the
proposed storage scheme finds an optimal storage scheme for parallel (1) FFT, and (2)
bitonic sorting. The proposed storage scheme outperforms statically optimized storages
in the case of power-of-2 multi-stride access. The case of non power-of-2 strides is also
addressed. The performance and scalability of the proposed parallel memory and its
predictable access time are presented using numerical and multimedia algorithms. It is
shown that a memory utilization above 83% is achieved by our storage scheme for 64
memories which largely outperforms previous proposals. Our approach provides a tool
for matching the storage pattern with the data access patterns needed for embedded
systems running streamed computations with predictable data access patterns.

Keywords: access patterns, embedded systems, compiler optimization, par-

allel memory, streamed computations.

1 Introduction

Effective utilization of bandwidth in hierarchical memory systems aims at exploiting compile
time knowledge of a program to reduce unnecessary data transfer between processor and main
memory. Compiler optimization that attempts maximizing temporal and spatial localities and
minimizing mapping conflicts produced encouraging results [22]. To reduce memory conflicts
in multiprocessors, compiler directed compaction-based data partitioning [27] improved per-
formance from 13% to 40% for a class of synchronous dataflow computations. The compiler [6]
knowledge of the access patterns of parallel applications is used to create compiler directed
page coloring to direct run-time virtual memory page mapping. Here the compiler explicitly

∗Computer Engineering Department, College of Computer Science and Engineering, King Fahd University
of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (mayez@ccse.kfupm.edu.sa)

1



attempts predicting the access patterns of parallelized applications. A 50% improvement over
a standard page mapping policy was achieved. Compile-time can also improve scalar access
in parallel memories where scheduling of a very low number of data transfers proved that a
very high percentage of memory access conflicts can be avoided.
While media processing is becoming the dominating force in desktop computing a sub-

stantial fraction of processor resource is used to hide the latency of an unpredictable hier-
archical memory system [16]. The integration of high-speed logic and memory on a single
chip provided large sequential and random memory bandwidth while making the delivered
performance highly predictable. There is pressing need for innovative memory architectures
and organization to reduce bandwidth imbalance between processor and main memory. The
TERA MTA high-performance computer [4] uses multi-threaded execution pipelines to toler-
ate a 100-clock latency between the logic and the memory. The bandwidth mismatch between
the processor and the main memory is expected to be more acute in the future. It is predicted
that processor-memory latency will be 104-105 clocks in the Petaflops HTMT Computer [29]
even with the use of exotic memory and optical network technologies.
For many synchronous dataflow multimedia computing a scalable and predictable parallel

memory can be achieved if the data structure is allocated to separate memories whenever the
compiler finds that data may be accessed in parallel, i.e. fine-grain data parallelism.
In high performance parallel memories, network contention and serialization of memory

accesses are responsible for significant performance degradation [23, 24, 31, 32]. Memory
interleaving causes non-uniform memory access, especially in the case of sequential addresses
which differ by a constant amount, or stride, that is not relatively-prime to the number of
memories. To reduce memory and network conflicts, q prime-number of memories [17] may
be used, which generally outperform interleaving at the cost of some additional computa-
tion at the address translation level. The dynamic behavior of memory references has been
extensively studied for both lock-step memories and shared-memory systems [28].
Static storage schemes are optimized to some fixed data patterns. Conflict-free access [5]

to rows, columns, and diagonals of arrays have been proposed on the basis of row-rotation.
Budnik and Kuck [5] proposed storage schemes based on row-rotation which have been stat-
ically implemented for conflict-free access to arbitrary rows and columns of arrays. Linial
and Tarsi [19] studied the characterization of a shuffle-exchange network based on balanced
matrices. Some approaches have proposed augmenting the topology of multistage networks
to allow static conflict-free access to a set of non-linear data patterns [18].
To avoid run-time overheads due to row-rotation storage, Sohi [28] proposed bit-wise

Boolean address transformations for vector processors in order to determine the memory
number where a given array element should be stored. The scheme can be efficiently used
for power-of-2 strides but other strides can also be accessed by using a few buffers at the
memory inputs and outputs [12]. The buffers reduce the effects of transient degradation
in pipelined memories. Deb [7] showed that storing an array with different linear schemes
enables conflict-free access of nonlinear data patterns.
Boppana [3] proposed a storage scheme for conflict-free access to the row, column, main-

diagonal, and square blocks. Norton [25] synthesized a transformation matrix that allows
conflict-free access of the Baseline network for a number of power-of-2 strides. While all these
approaches are useful, they either treat: 1) only the parallel memory characterization or,
2) both memory and network aspects but, consider only a reference set of static patterns.
Unfortunately, the performance of static storages may vary widely depending on the accessed
stride and its origin.

2



Our approach is a compiler technique that explicitly attempts predicting the data ac-
cess patterns of compiler parallelized and restructured loops and compute a suitable storage
scheme for effective access at run time. At run-time, the data structure is allocated to separate
memories to favor parallel access of any instance of the predicted data patterns. However,
the randomized routing methods or some static storages can still be used where access pat-
terns cannot be found by the compiler or when computing a storage on-line is likely to take
too much time. Many synchronous dataflow computations may benefit from this approach
like multimedia compression/decompression algorithms, numerical algorithms, DSP functions,
low-level vision processing, robotics, etc.
In this work, we find the necessary and sufficient conditions for accessing parallel memories

without network and memory conflicts for a given set of power-of-two data patterns. Since
finding a storage scheme that minimizes the memory access time for a given set of data access
patterns is NP-complete we propose a systematic compiler heuristic. It is shown that our
approach can easily be used by a compiler for synthesizing storage schemes for FFT, bitonic
sorting, stride access, and a synthetic set of data patterns. Scalability of the proposed parallel
memory is investigated by using a simulated memory model with a compiler directed storage
scheme.
This paper is organized as follows. Section 2 presents a review of compiler techniques

for data access analysis and presents our strategy to memory and compiler co-optimization.
Section 3 presents some background on parallel memory and alignment networks. In Section 4,
the characterization of parallel memory and network conflict-free access is presented. Section
5 presents our approach for finding a combined storage scheme for arbitrary but given sets of
data patterns and summarizes the NP-completeness aspects. Section 6 presents a heuristic
approach for finding multi-pattern storage schemes. In section 7, we present applications to
FFT, bitonic sorting, arbitrary stride access, and application of parallel memory in hierarchical
memory systems. In section 8 we evaluate performance of the proposed approach for the case
of some numerical and multimedia algorithms. In section 9 we conclude.

2 Memory and compiler co-optimization

Two methods [33] are generally used for reducing latency of the memory: (1) latency tolerance,
and (2) latency avoidance. Latency tolerance aims at overlapping computations with commu-
nications like in prefetching. We are concerned with latency avoidance approach which aimed
at reducing low-level memory accesses using software and hardware locality optimizations. In
SMP this reduces the number of accesses, memory contention, and network contention.
Unfortunately the access pattern of sparse or irregular data cannot be determined at

compiler time. However, memory and compiler co-optimization have always been used to
improve the efficiency of the memory based on analysis of the data and I/O locality. A la-
tency avoidance compiler optimization [33] inserts application dependent tasks. At run time
compiler tasks restructure parallel loops by shrinking and partitioning the memory-access
space to minimize sharing among partitions and maximize partition reuse. Architecture and
compiler co-optimization [24] provide a tool for reconfiguring and controlling memory hierar-
chy by a compiler that inserts hints based on classification of access features like reusability,
consecutive access, stride, and regularity.
To improve bus utilization a memory controller can be used to re-map irregular or sparse

memory accesses into dense accesses in the cache memory. For this a compiler optimiza-

3



tion [13] uses dependence and locality analysis (temporal and spacial) for finding cost models
that determine when to use the controller based on reducing cache misses and cost of re-
mapping.
Efficient shared-memory programming model in distributed-memory multicomputers have

excessive overhead of run-time consistency maintenance. Regular access patterns can be
precisely analyzed [8] and results in superior performance. To avoid broadcasting data in the
case of irregular access patterns an “inspector-executer” precomputes the accessed data when
executing a loop. For this a compiler strategy [8] analyzes shared-memory access patterns
and transforms the code by inserting calls to the run-time system directing it to implement
bulk data transfer.
To improve I/O performance the compiler analyzes I/O access patterns of individual

applications and determines suitable file storage patterns and I/O strategies. Specifically,
the compiler [14] identifies cases where array storage and access patterns do not match. In
this case the compiler-directed collective I/O reads the data as stored and then redistribute
the data among the processors to meet the access patterns. A compiler access pattern analysis
strategy is proposed [15] for detecting and isolating definite cache hits in a given application.
The compiler substitutes these cache references with energy-efficient loads that access only
data instead of both data and tags.
Hierarchical memory has long been used to close up the gap between fast processors and

slow memory, but as the gap increases the effectiveness of this approach is diminishing even
if it is still a valid solution for general-purpose computing. Specifically vector computing in
streamed applications is generally too long to cache and mostly used once without temporal
locality. Memory systems can be made more efficient by exploiting the above access features
and potential for parallel memories.
For many high performance computing applications the memory cannot supply operands

at the right processor speed which may result in quite disappointing performance [30]. Mem-
ory bandwidth is a major limiting factor in streamed computations like scientific vector pro-
cessing or multimedia compression and decompression, encryption, signal and image process-
ing, and graphics processing, DNA sequence matching. These applications have predictable
access patterns [23, 24]. To improve performance of DRAM memory a stream memory con-
troller is proposed to combine compile-time detection of stream access with execution-time
selection of the access order and issue. Evaluation shows that performance improved by a
factor of 13 over traditional access methods.
The performance of Internet and Multimedia computations are increasingly limited by

their data accessing capabilities. A configurable parallel memory (CPM) [32] having a (1)
a hardwired address computation unit, (2) a set of parallel memories, (3) a crossbar-based
permutation unit that shuffles the request and requested data in the right order. The CPM is
intended to be part of a multimedia application specific embedded system. Evaluation shows
that CPM has significant advantages over traditional DRAMs.

2.1 Compiler optimization

We are concerned with a compiler technique for finding the access patterns of regular streamed
computations [31, 32]. Streamed computations have predictable access patterns [23, 24].
Generally, iterative parallel loop consists of an outer sequential loops and inner parallel loops.
The outer loop enforces synchronization at each outer loop iteration. The iteration of inner
loops can generally execute in any order (LID). For example the solution of partial differential

4



M0
M1

M63

L
O
A
D

S
T
O
R
E

DATA  L/S
PATHS &
BUFFERS

L
O
G
I
C

    ADDRESS
TRANSLATION
         UNIT
        (ATU)

    PARALLEL
     MEMORY
    ADDRESS
 GENERATION

STORAGE SCHEME
          REGISTER

ALIGNMENT
      STATE

A
L
I
G
N
M
E
N
T

     DATA
ALIGNMENT
 NETWORK

NETWORK
     UNIT
     (NU)

     SELF
 ROUTING
       OF
  MEMORY
REQUESTS

PREFECTCHING
         UNIT
(Short code for
pattern instance
address and  ID)

PARALLEL
MEMORIES

ADDRESS
    PATH

FORMAT OF MEMORY REQUEST

OFFSET   R/W   M MU

(AU)

Figure 1: Pipelined memory: address translation, network unit, memory, and alignment

equations through relaxation. The collection of array offsets is referred to as the stencil.
Consider the statement

a(i, j) = F (a(i− 1, j), a(i, j − 1), a(i, j + 1), a(i+ 1, j))) (1)

The associated stencil is {(0, 0), a(−1, 0), a(0,−1), a(0, 1), a(1, 0)}. Now assume 2n pro-
cessors executing successive innermost iterations in parallel in a lock-step fashion. If the
innermost loop updates the first array dimension, we may load a sub-column data pattern
corresponding to each element of the stencil. For example the stencil element (−1, 0) leads to
load the pattern {(0, 1), (1, 1), (2, 1), . . . , (2n−1, 1)} which represents a set of 2n data elements.
A spacial locality of reference called data access pattern can be identified for this loop. For
example, the values in the first dimension of the pattern {(0, 1), (1, 1), (2, 1), . . . , (2n−1, 1)} =
{(x, constant) : 0 ≤ x ≤ 2n − 1} takes all possible combinations of n-bit while the value in
the other dimension is a constant. This means that the basis for the access pattern is the set
of first canonical vectors fn−1, . . ., f0. This defines a sub-column access pattern with basis
{fn−1, . . . , f0}. For each parallel access index x = xn−1fn−1 + . . . + x0f0 takes all possible
binary combinations, where multiplications are “and” and additions are modulo 2. Since
(xn−1, . . . , x0) takes all possible 2

n binary combinations we may cause the data elements of
the access pattern be stored in distinct 2n memories if we can find a one-to-one mapping from
(xn−1, . . . , x0) into storages.
Similar analysis on the use of the same array in other loops allows finding a set of access

patterns and their bases. The pattern basis is the logic representation of the access pattern.
The knowledge of pattern bases enables using our proposed method for finding an optimized
storage scheme. Given an array, the task of the compiler is to estimate the usage (weight) of
each access pattern in the loops and build its corresponding weighted conflict graph represen-
tation. This optimization problem can be solved by coloring the above graph and finding the
storage scheme for a given array. The storage scheme is a linear or non-linear mapping from
the array addresses onto the storages. The storage scheme causes the array data be uniformly
distributed over all the memories for each of its data access patterns.

5



2.2 Parallel memory optimization

The parallel memory consists of (1) an address translation unit, (2) a set of parallel memories,
and (3) a network unit used for data alignment. The parallel memory engine is shown on
Figure 1. The pre-fetching unit generates requests for accessing a given data pattern and its
location in the array. Using XOR operations, the product of the storage scheme (a rectangular
binary matrix) by an array address gives the storage number where to find the corresponding
array element. The address translation unit (ATU) uses the storage scheme and pattern
parameters in generating the parallel memory request. A request consists of a vector of
memory numbers (M), controls, and memory offsets.
The network unit (NU) is assumed to be a MIN made of 2×2 SEs. Due to data skew, self-

routing [1] of the requests within the NU allows forwarding each request to its corresponding
memory. If two requests conflict within an SE one request is correctly routed and the other
is discarded and a negative feedback is returned, using a reverse path, to the input buffer
from where the request was issued. Such an input buffer re-submits its previously discarded
message in the next cycle. Following each network cycle the routed requests submit their
R/W control and offset to the memory unit (MU) and an access occurs. Due to the data
skew, we should align the outputs of parallel memories with the logic units, i.e. the ith logic
unit receives the ith data element in the data pattern instance. The data alignment unit
(AU) uses the state of previously established NU paths to align the data from the memories
to the logic unit. The switching state is sent from NU to AU and used to create reverse paths
over which the requested data is sent (aligned) to the logic units.
In summary the parallel memory serves request for data streams according to a given set

of data patterns (sub-row, sub-column, block, etc.). For this it retrieves a cached storage
scheme for a specific array, generates memory offsets, route the requests to memories, retrieve
data, align the data, and forward to the logic unit.

3 Parallel memory access - Background

Consider a computer that consists of 2n processing elements (PEs) which are interconnected
to 2n memories by using 2n input/output multistage interconnection network (MIN).
An access pattern is a parallel access to a set of 2n array elements (data pattern) lying

in a row, column, square or rectangular block, a power-of-2 stride, etc. Considering a 2D
array structure, a data pattern is formally a set of 2n elements identified by the following
array addresses {(br, bc) + (kr × 2

rs, kc × 2
cs)}, where (br, bc) is a pattern instance identifier

or pattern origin, kr and kc are used to index the row and column elements with the range
0 ≤ kr ≤ 2

r − 1, 0 ≤ kc ≤ 2
c − 1, and 2n = 2r+c, and 2rs and 2cs are the row and column

strides, respectively.
Assume a 2-dimensional array A = {a(i, j) : 0 ≤ i, j ≤ 15}. Consider 8 parallel memories

and an access pattern of 8 array elements defined by 2r = 2 rows each has 2c = 4 columns
with strides of 2rs = 1 and 2cs = 2 along the row and column, respectively. The first
instance of this pattern is the set {(0, 0) + (kr × 2

0, kc × 2
1) : 0 ≤ kr ≤ 1, 0 ≤ kr ≤ 3} =

((0, 0), (0, 2), (0, 4), (0, 6), (1, 0), (1, 2), (1, 4), (1, 6)). Different instances of the same pattern
can be defined as {(br, bc) + (kr × 2

0, kc × 2
1) : 0 ≤ kr ≤ 1, 0 ≤ kc ≤ 3} through assigning

values to the pattern origin (br, bc) such as br = 0, 2, 4, . . . , 14 and bc = 0, 8.
We may define other relevant data patterns for the same array. The objective of designing

parallel memory systems is to store the array into the parallel memories so that the array

6



elements of any instance of a given data pattern be uniformly distributed over all the memories.
A conflict free parallel memory enables any pattern instance be retrieved from the memories
in parallel in one single access, i.e. one-to-one mapping from storages to elements of any
pattern instance. The elements at output of memories need to be aligned (storage is skewed)
to the PEs through the MIN. A conflict free MIN can align any instance of a given data
pattern without internal conflicts. Data alignment in MIN means that first element is self-
routed to PE0, second element to PE1, etc. Self-routing in MIN of elements of a given data
pattern allows the ordered set of elements to be forwarded to the ordered set of requesting
PEs. Therefore, we need a storage scheme that is conflict free with respect to both parallel
memory (external conflicts) and network (internal conflicts). Given a set of data patterns our
objective is to find a storage scheme that is optimized with respect to memory and network
conflicts.
The memory utilization is maximum when all the 2n array elements of a given data

pattern instance are fetched in parallel, each element is from a distinct memory. Assume a
1-dimensional array A = {a(i) : 0 ≤ i ≤ 2k − 1}, where k ≥ n. This array is to be accessed
by using a storage scheme defined by d(i) = Mi, where binary of i is i = (ik−1, . . . , i0)
that represents the address of a(i), M is some n × m Boolean matrix, and d(i) is an n-bit
value that represents the memory number where array element a(i) should be stored, and
m is the number of distinct vectors in all the pattern bases. The binary of i is restricted
to i = (im−1, . . . , i0) in mapping elements to storages defined by d(i) = Mi, where m ≤ k.
In other words, element a(i) is stored into memory Md(i). Addition and multiplication of
Boolean matrices (d(i) = Mi) are modulo 2. The binary of i is i = vm−1im−1 + . . . + v0i0,
where vm−1, . . . , v0 are m canonical vectors of Z

m
2 that are v0 = (0, . . . , 0, 1), v1 = (0, . . . , 1, 0),

and vm−1 = (1, . . . , 0).
Suppose we know a priori the memory access patterns of a program and let’s consider the

following mapping of elements to memories by using a storage matrix M :

d(i) =







d2
d1
d0





 =







c3 c2 c1 c0
1 1 0 0
0 1 1 0
0 0 1 1





.











i3
i2
i1
i0











(2)

where cj denotes the jth column of M and i is restricted to its 4 least-significant bits, i.e.
i = (i3, i2, i1, i0). Mapping of 64 array elements to 8 memories (n = 3 and k = 6) is shown in
the tables of Figure 2 which maps the 64 array elements to 8 memories by using the storage
scheme defined in Eq. 2. The array elements that fall into column Mi (0 ≤ i ≤ 7) are stored
into memory Mi. This scheme allows accessing four data patterns P0, P1, P2, and P3. We
will see that these patterns are useful for parallel sorting. The first instance of pattern P0
consists of accessing an 8-element row specified by the indices {0, 1, 2, . . . , 7} and the second
instance is {8, 9, . . . , 15}. Accessing these two instances enables the PEi to load elements
i and i + 8, for 0 ≤ i ≤ 7. In Figure 2-(a) we marked the first and second instances of
P0 by putting their elements in squares and circles, respectively. The same notation is also
used in Figure 2-(b), (c), and (d) for the first and second instances of pattern P1, P2, and
P3, respectively. Each pattern instance is a locality of data elements that can be translated
within the array which leads to access different instances of that pattern. Ideally the elements
of each instance of a given pattern are accessible in parallel, each element is stored into a
distinct memory. Pattern P1 allows accessing two groups of 4-element with a stride of 4 such

7



i5 i4 i3

000
001
010
011
100
101
110
111

 1
14
17
30
33
46
49
62

 2
13
18
29
34
45
50
60

 4
11
20
27
36
43
52
59

 5
10
21
26
37
42
53
58

 0
15
16
31
32
47
48
63

 6
9
22
25
38
41
54
57

 7
8
23
24
39
40
55
56

 3
12
19
28
35
44
51
61

m1m3m4m6 m2m5m7 m0

a - Mapping of  64-array to 8 memories
     and sorting 1 box of 16 using pattern P0

 1
14
17
30
33
46
49
62

 2
13
18
29
34
45
50
60

 4
11
20
27
36
43
52
59

 5
10
21
26
37
42
53
58

 0
15
16
31
32
47
48
63

 6
9
22
25
38
41
54
57

 7
8
23
24
39
40
55
56

 3
12
19
28
35
44
51
61

i5 i4 i3

000
001
010
011
100
101
110
111

m1m3m4m6 m2m5m7 m0

c - Sorting 4 boxes of 4 using pattern  P2

000
001
010
011
100
101
110
111

 1
14
17
30
33
46
49
62

 2
13
18
29
34
45
50
60

 4
11
20
27
36
43
52
59

 5
10
21
26
37
42
53
58

 0
15
16
31
32
47
48
63

 6
9
22
25
38
41
54
57

 7
8
23
24
39
40
55
56

 3
12
19
28
35
44
51
61

m1m3m4m6 m2m5m7i5 i4 i3 m0

b - Sorting 2 boxes of 8 using pattern  P1

i5 i4 i3

000
001
010
011
100
101
110
111

 1
14
17
30
33
46
49
62

 2
13
18
29
34
45
50
60

 4
11
20
27
36
43
52
59

 5
10
21
26
37
42
53
58

 0
15
16
31
32
47
48
63

 6
9
22
25
38
41
54
57

 7
8
23
24
39
40
55
56

 3
12
19
28
35
44
51
61

O
F
F
S
E
T

m1m3m4m6 m2m5m7 m0

       First
instance

       2nd
instance

d - Sorting 8 boxes of 2 using pattern  P3

Figure 2: Mapping a 64-element array to 8 memories and first two pattern instances

as (0, 1, 2, 3, 8, 9, 10, 11). Pattern P2 allows accessing four groups of 2-element with a stride of
2 such as (0, 1, 4, 5, 8, 9, 12, 13). Pattern P3 allows accessing eight groups of 1-element with a
stride of 2 such as (0, 2, 4, 6, 8, 10, 12, 14).
Figure 3-(a) shows the access to first two instances of P0 which is useful for sorting elements

across two 8-elements. Figures 3-(b), (c), and (d) show the access to first and second instances
of patterns P1, P2, and P3, respectively.
Figure 4 shows the columns of array addresses that fall into of the eight memories by using

the above storage scheme, i.e. d(i) =Mi indicates that the ith array element falls into memory
Md(i). In Figure 2-(a) a 64-element array can be partitioned into 8 rows each represents one
possible instance of P0. In the example the identifier of pattern instance is (i5, i4, i3) which is
used as the memory offset. To access a given instance of pattern P0, each PEk is to access the
kth element of the pattern instance. For this PEk (0 ≤ k ≤ 7) generates the array address
(i5, i4, i3, k2, k1, k0) where k = (k2, k1, k0). and (i5, i4, i3) identifies one pattern instance out
of 8 possible instances of P0. As part of address translation PEk finds the memory where
the kth element of the pattern instance is stored by evaluating d(k) = M.(i3, k2, k1, k0)

t as
shown in Figure 4-(a). Each PEk issues its the storage number d(k) to the kth input of the
MIN which is used as a header in the process of self-routing to establish a route from PEk to
Md(k). Note that the jth output of the MIN is connected to the jth memory Mj. In this way
each PEk maps to the memory where the kth element of the pattern instance is stored as
shown in Figure 4-(b). Next each PEk sends the offset (i5, i4, i3) to Md(k) over to established
route through the MIN. The memories are simultaneously accessed and the accessed data is
returned back over the same route the requesting PE.
During an access to an instance of P0, the group of bits (i2, i1, i0) takes all possible binary

combinations and the remaining bits of i are constant. We define the basis B0 of pattern
P0 as the set of canonical vectors B0 = {v2, v1, v0} whose components identify the elements

8



1 1 1 1 0 0 0 0

12
3

1 1 1 1 0 0 0 0

7

456
PE-0

15   14   13  12    11   10     9     8      7     6     5     4      3     2     1    0

2
345

0011

67 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

PE-01234567

15   14   13  12     11  10     9     8      7    6      5     4      3     2     1    0

a - In step 0, the 8 PEs access 1 group of 8
(0-7) and its conjugate pattern (8-15) in step1.

Accessed in step 0

123

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

4567

PE-0

Accessed in step 1 Accessed in step 0Accessed in step 1

PE-0

001100110011

15   14   13  12     11  10     9     8      7      6      5     4      3     2     1     0

Accessed in step 0

step 1

b - In step 0, 8 PEs access 2 groups of 4 with
stride of 4 and its conjugate pattern in step 1.

c - In step 0, 8 PEs access 4 groups of 2 with
stride of 2 and its conjugate pattern in step 1.

15   14   13  12     11  10     9     8      7    6      5     4      3     2     1     0

Accessed in step 0

step 1

d - In step 0, 8 PEs access 8 groups of 1 with
stride of 1 and its conjugate pattern in step 1.

Figure 3: Sorting 16 items using 8 PEs and 4 data access patterns

0  0  0  0  1  1  1  1

0  0  1  1  1  1  0  0

0  1  1  0  0  1  1  0

= .

0  1  2  3  4  5  6  7

PE0 PE1 PE7

Memories M

(a) Translation of PE addresses into memory addresses (b) Alignment of PE/data

PEs                        m    Data
0                             0     a(0)
1                             1     a(1)
2                             2     a(3)
3                             3     a(2)
4                             4     a(7)
5                             5     a(6)
6                             6     a(4)
7                             7     a(5)

(Permutation)

M0 M1  M3  M2  M6  M7  M5  M4

1  1  0  0

0  1  1  0

0  0  1  1

0  0  0  0  0  0  0  0

0  0  0  0  1  1  1  1

0  0  1  1  0  0  1  1

0  1  0  1  0  1  0  1

Addresses generated
       by the PEs

Figure 4: Mapping array elements to memories (a) and required permutation (b)

of a given pattern instance. Similarly, the same idea applies to groups (i3, i1, i0), (i3, i2, i0),
and (i3, i2, i1) when accessing an arbitrary instance of P1, P2, and P3, respectively. For each
accessed pattern, the PE numbers identifies the array element within the accessed pattern
instance and the remaining address bits represent the pattern instance offset. In other words,
patterns P1, P2, and P3 have bases B1 = {v3, v1, v0}, B2 = {v3, v2, v0}, and B3 = {v3, v2, v1},
respectively.
Since array element a(i) is stored into memory md(i) defined by d(i) =Mi for all patterns.

The union of all pattern bases is {v0, . . . , v3} which indicates that the storage matrix M is
3× 4. In general the storage matrix M is an n× p matrix, where p is the number of distinct
canonical vectors in the union of all pattern bases.

9



4 Analysis of parallel memory organization

Networks are one of the fundamental factors in the design of multiprocessor systems which
connect processors to parallel memories or provide data links among the processors. Conflicts
within the network are responsible for performance degradation because serializing accesses
leads to an increase in processor idle time. The efficiency of processor-memory networks
requires: 1) that processors’ requests be uniformly distributed over the memories and, 2) that
network must align the accessed/retrieved data with respect to the processors.
We study a class of dynamic, full access, unique path, multistage networks that use 2× 2

switching elements (SEs), and N = 2n inputs and outputs for each of the n stages. Inter-stage
interconnection represents some permutation. There are 2n−1 switches in each stage. Each
switch has two states, straight and exchange and, therefore, can perform (NN)1/2 permutations
each corresponding to one state of the n2n−1 switches. Such networks are called blocking
because they cannot perform all possible (2n)! permutations of the inputs.
A network can perform a given permutation π if there exists a setting of the switches in

the network such that the ith input is connected to the π(i)th output, where π is defined over
the integers {0, . . . , 2n − 1}. A crossbar switch can achieve all possible permutations but its
drawback is the cost of the (2n)2 switches required.
Self-routing a source s = sn−1 . . . s0 to destination d = dn−1 . . . d0 consists of finding a path

of switching elements that connect s to d. Each SE (straight or exchange) receives two incident
sources s and s′, with destinations d and d′, on its upper and lower inputs, respectively. In
the ith stage, the routing bit (di) directs the message to either the upper (di = 0) or lower
output (di = 1). Each network uses a specific destination bit for self-routing at a specific
stage. A collision occurs at the switch when both incident messages require exiting the switch
at the same output.
In an n-stage Omega network (Ωn), the yth output link Oy of each stage is connected to

the xth input link Ix of the next stage such that y = σ(x), where x = xn−1xn−2 . . . x0 and σ()
is the perfect shuffle permutation defined by σ(xn−1xn−2 . . . x0) = xn−2 . . . x0xn−1. This finds
the position of a message at the output of the ith stage:

posi(s, d) = sn−i−1 . . . s0dn−1 . . . dn−i+1dn−i (3)

We can similarly find the position of the message after the ith stage for other multistage
networks such as Baseline, Cube, Delta, etc. Note that for all unique path multistage networks
the position of a message at the output of the ith stage is a combination of bits of the source
and destination.
A network input (source) is denoted by s = (sn−1, . . . , s0) ∈ S and a network output

(destination) is denoted by d = (dn−1, . . . , d0) ∈ S, where S = {0, 1, . . . , 2n − 1}. A linear
permutation [3] is an n×n NS Boolean matrixM : S → S for which sources and destinations
are one-to-one. In particular, each destination d is the image of one single source s where
d =Ms = (dn−1, . . . , d0).
We wish to know under what condition an Ωn network can perform permutationM , where

M is an n× n Boolean matrix. From Equation 1 we find:

posi(s,Ms) = (sn−i−1, . . . , s0, dn−1, . . . , dn−i) (4)

Vector posi(s, d) is the position of the message going from s to d = Ms following the ith
stage. We shall abbreviate posi(s, d) to posi(s) which can be written as a matrix product

10



posi(s) = M̃ [i]s, where M̃ [i] defines the permutation of the inputs s to the outputs posi(s) of
the ith stage. Using Equation 4 we have:

posi(s) =





































sn−i−1
...
...
s0
dn−1
...
...

dn−i





































=



































0 · · · 0 1 · · · 0
. · · · . 0 · · · .
. · · · . . · · · .
. · · · . . · · · 0
0 · · · 0 0 · · · 1
an−1,n−1 · · · an−1,n−i an−1,n−i−1 · · · an−1,0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
an−i,n−1 · · · an−i,n−i an−i,n−i−1 · · · an−i,0



































.





































sn−1
...
...

sn−i

sn−i−1
...
...
s0





































(5)
where the (n− i)× i matrix in the upper-left corner is formed by 0s, the (n− i)× (n− i)

matrix in the upper-right corner is the identity, the i× (n− i) matrix in the lower-right corner
will be denoted by B[i], and the i× i matrix in the lower-left corner will be denoted by M [i]:

M [i] =











an−1,n−1 · · · an−1,n−i

· · · · · · · · ·
· · · · · · · · ·
an−i,n−1 · · · an−i,n−i











(6)

The permutation matrix M that gives the position posn(s) = d = Ms of the message at
the output of the nth stage is defined as follows:

M =































an−1,n−1 · · · an−1,n−i an−1,n−i−1 · · · an−1,0
...

...
...

...
...

...
...

...
...

...
...

...
an−i,n−1 · · · an−i,n−i an−i,n−i−1 · · · an−i,0

an−i−1,n−1 · · · an−i−1,n−i an−i−1,n−i−1 · · · an−i−1,0
...

...
...

...
...

...
a0,n−1 · · · a0,n−i a0,n−i−1 · · · a0,0































(7)

Note thatM [i] is the i×i sub-matrix in the upper-left corner ofM . It can be easily shown
that all inputs of the ith stage map one-to-one to all outputs of the same stage if and only if
M [i] is NS [18, 25]. The reason is that M̃ [i] is NS if and only if M [i] is NS. In other terms
two messages issued at distinct sources exit the ith stage at distinct output links if M [i] is
NS. We now characterize the linear permutations M which the Omega network can perform.
An n× n permutation matrix M is said to be strongly-non-singular (SNS) when sub-matrix
M [i] is NS for arbitrary i, where 0 ≤ i ≤ n− 1.
The set of sources S maps one-to-one to all the outputs of every stage i because M [i] is

NS, where 1 ≤ i ≤ n. In other words, if all messages exit all stages at distinct outputs, then
all sub-matrices of M, starting from the upper-left corner, are NS. Therefore, Ωn can achieve
permutation M without conflict whenever M is SNS for Ωn.
The above results can be generalized [2] to other multistage networks such as Baseline,

Cube, Delta, etc. The reason is that for each of these networks the position of a message
at the output of some stage admits a formulation that is similar to Equation 3 which gives

11



similar results to Equations 5, 6, and 7. Therefore, an arbitrary, dynamic, full access, unique
path, multistage network (Γ) can achieve an arbitrary linear permutation defined by an n×n
Boolean matrix M if and only if M is SNS for Γ.
The location of sub-matricesM [i], withinM , can be different for each type of network [2].

For an Omega network, sub-matrices M [1], M [2], . . . , M [n] are square matrices that start
at the upper-left corner of M and move along the diagonal down to the lower-right corner.
Then Ωn can achieve the identity permutation (M = In). For a Baseline network, the same
sub-matrices start at the upper-right corner of M and expand along the anti-diagonal up to
the upper right corner of the matrix.
Generally, to each n× n permutation matrix M and each n× 1 constant vector x we can

define a complement-permutation (CP) [3, 20] which is of the form d̃ =Ms⊕x, where s and d̃
represent the n×1 source and destination vectors, respectively. The permutation d =Ms can
then be seen as a special case of CP. A network can achieve permutation d = Ms whenever
M is SNS for that network. It has been established [3, 20, 2] that a necessary and sufficient
condition for an Ω network to achieve an arbitrary CP defined by d̃ = Ms ⊕ x exists if and
only if M is SNS for Ω.
Depending on the location of SNS sub-matrices within M , there exist specific SNS ma-

trices [2] for each type of single path network for which the above necessary and sufficient
condition is satisfied. Therefore, the above results are true for an arbitrary single path multi-
stage network. Moreover, the set of all CPs (d̃ =Ms⊕x) associated with all SNS matricesM
and all values of x are distinct [2]. The number of permutations d̃ =Ms⊕x that an arbitrary
n-stage multistage network can perform is Tn = 2

n2

, where M is an n× n SNS matrix and x
is an n× 1 arbitrary vector (see the appendix for a proof).
It can be shown [2] that the problem of finding an a memory and network conflict-free

storage scheme for a given set of data access patterns is tractable for n = 2, but NP-complete
for n > 2. The above problem is NP-hard for n=3. This problem corresponds to 2n−1-coloring
which is an NP-complete problem for n ≥ 3.

5 Multi-pattern access using SNS storages

Recall the storage scheme that was defined by Eq. 2 in Section 3. When accessing P0, function
d(i) =Mi can be decomposed into the following sum:

d(i) =







c3 c2 c1 c0
1 1 0 0
0 1 1 0
0 0 1 1





.











i3
i2
i1
i0











=







c2 c1 c0
1 0 0
1 1 0
0 1 1





.







i2
i1
i0





⊕







c3
1
0
0





.i3 =Mp1
.







i2
i1
i0





⊕ x

(8)
where MP1

is the left-hand matrix of the sum and the right-hand term is constant (x)
when accessing P1. MP1

is said to beM restricted to pattern P1. Equation 8 is a complement-
permutation whenever MP1

is strongly-non-singular. The processors numbers (s0, s1, . . . , s7)
are identified with the values taken by (i2, i1, i0), (i3, i2, i1) and (i4, i3, i2) during an access to
some instance of P1, P2, and P3, respectively. Figure 4 shows the mapping of data elements
to memories by MP0

. The ith element of an instance of P0 is mapped to a unique memory
MP0

i because MP0
is NS (Figure 4-a). To align each PEi with memory MP0

i, where the

12



ith element is stored, the network should be able to achieve the permutation (Figure 4-b).
The above permutation is conflict-free for Ω3 because MP0

is SNS for Ω3. The permutation
matrices associated with P1, P2, and P3 are:

MP1
=







c3 c2 c1
1 0 0
0 1 0
0 1 1





 MP2
=







c4 c3 c2
1 1 0
0 1 0
0 0 1





 MP3
=







c4 c3 c2
1 1 0
0 1 1
0 0 1





 (9)

Since (i2, i1, i0) takes all possible binary values when accessing P1, the product MP1
i also

takes all possible binary values if and only if MP1
is non-singular. This causes the array

elements that belong to any instance of P1 to be distributed in a skewed form over the
memories because no two elements of a given instance are associated with the same memory.
Mapping the array elements of each data pattern to the prescribed PEs requires realigning
the elements within the network. The complement-permutation shown in Equation 8, for
accessing P1, guarantees proper alignment (conflict-free) over an Ω3 because the permutations
MP1

, MP2
, and MP3

have been chosen to be strongly-non-singular for Ω3. This shows that
the storage scheme defined by M guarantees conflict free access to the network (realignment)
and the memories in accessing any instance of patterns P1, P2, and P3.
A multi-pattern storage scheme that uses SNS matrices for each power-of-2 data pattern

can be synthesized according to the following steps:

• Restrict vector i to its components over the vectors of the union of all pattern bases.
In the case of multi-dimensional arrays, block patterns of arbitrary power-of-2 size and
power-of-2 strides can also be defined by restricting and intermixing the changing indices
of different dimensions. In other words, accessing patterns in multi-dimensional arrays
is the same as accessing multi-stride data patterns in 1-D arrays.

• Synthesize the restricted matrices MP1
, . . . ,MPq

of M to each data pattern so that each
matrix MPi

is SNS for the given network.

Suppose M is a storage scheme for a given array which is to be accessed by a set P =
{P1 . . . Pt} of data patterns. Ideally, each instance of each pattern should be: 1) distributed
over distinct memories and, 2) accessed by a given network without conflicts. Note that sub-
matrix MPi

must be SNS for each pattern Pi with respect to the network in order to map all
elements of any instance of Pi into distinct network outputs (also memories). Then [2] M is
conflict-free and network-contention-free for an arbitrary multistage network if and only if all
MPi

, for 1 ≤ i ≤ t, are SNS for the network.
The performance of a storage scheme M depends on the rank of each of its sub-matrices

associated to its data patterns. The rank of a restricted matrix MP to pattern P gives the
number of clocks needed to access each instance of P , where MP is n × n. In general, if
rank(MP ) = k ≤ n, then 2n−kf(P ) cycles will be required for f(P ) accesses to instances of
P . The number of access cycles C(M) for the combined storage scheme M is the sum of the
access cycles of all of its q patterns P1, . . . , Pq. If each pattern P is accessed f(P ) times, then
C(M) is:

C(M) =
q
∑

i=1

f(Pi)2
n−rank(MPi

) (10)

13



Therefore, the knowledge of the storage scheme allows computing the number of cycles
needed for accessing a given instance of each of its data patterns, i.e. predictable access time
for the set of data patterns.

6 Heuristic approach

We present an efficient algorithm for finding a linear storage scheme for a given pattern set,
if one exists. We derive a practical algorithm for finding approximate linear schemes in which
some patterns may not be accessed conflict-free.
The idea is to construct the n×p storage matrixM one row at a time, from top to bottom

in the case of an Ω network. Note thatM restricted to pattern Pi is an n×n which we denote
by MPi

. For pattern Pi, we denote by MPi
[j] the upper left j × j sub-matrix of MPi

. We
assume that, for each pattern Pi, the matrix MPi

[j] is SNS and attempt to construct the row
Mj+1,∗ so that each MPi

[j+1] is SNS. We the idea of the proof of Theorem 1 (see Appendix),
in the construction.
We illustrate the algorithm by an example with n = 3. Suppose we are given patterns

P1, P2, P3, and P4 with bases P̃1 = {v2, v1, v0} P̃2 = {v3, v2, v1} P̃3 = {v5, v4, v3}, and
P̃4 = {v4, v3, v1}.
Now we construct the upper two rows ofM . For eachMPi

, we wish to ensure that the 2×2
sub-matrix in its upper-left corner is SNS. We can accomplish this by constructing a matrix
for the reduced pattern set P̃ ′1 = {v2, v1}, P̃

′
2 = {v3, v2}, P̃

′
3 = {v5, v4}, and P̃

′
4 = {v4, v3}.

Note that P̃ ′i is just P̃i with the lowest ordered vector removed. The vectors appearing
first in some pattern basis P̃ ′i are X = {v5, v4, v3, v2}. The vectors appearing only second
in some pattern are Y = {v1}. Finally, v0 does not appear first or second and thus can be

assigned any value. Since v0 does not appear in any P̃ ′, we arbitrarily assign it
(

1
1

)

. Let’s
denote by H-2 the above algorithm to assign the upper two rows of M .
The upper two rows of M have been determined. We let x5 . . . x0 be the values in the

lowest row:

M =







v5 v4 v3 v2 v1 v0
1 1 1 1 0 1
1 0 1 0 1 1
x5 x4 x3 x2 x1 x0





 MP1
=







v2 v1 v0
1 0 1
0 1 1
x2 x1 x0





 (11)

We must now ensure that each 3 × 3 matrix that corresponds to some pattern is NS. We
must assign x2, x1, and x0 in such a way that the matrix MP1

is NS. The first step is to get
the identity matrix in the upper right 2 × 2 sub-matrix of MP1

using only row operations.
This is satisfied for MP1

. Using the notation of Theorem 1 (Appendix), we have b0 = x1,
b1 = x2, c = x0, a0 = 1, and a1 = 1. Matrix MP1

is NS if and only if b2x2 ⊕ b1x1x0 = 1,
where (b2, b1, x0 = 1) is the right 3 × 1 column of MP1

. In other words, matrix MP1
will be

non-singular, and thus strongly-non-singular, if and only if x2 ⊕ x1 ⊕ x0 = 1.
Now consider MP2

:

MP2
=







v3 v2 v1
1 1 0
1 0 1
x3 x2 x1





 (12)

14



We need to get the identity matrix in the upper-left 2 × 2 sub-matrix, using only row
operations. If column operations are used, then the values of the x’s will be affected. We
achieve this by adding row 1 to row 2 and, next, we add row 2 to row 1. Note that we do
not want to change the original matrix, and so we denote this reduced matrix M̃P2

. We now
have the matrix in the format specified by Theorem 1:

M̃P2
=







v3 v2 v1
1 0 1
0 1 1
x3 x2 x1





 (13)

For MP2
to be non-singular, we must have x3 ⊕ x2 ⊕ x1 = 1. The remaining conditions for

MP3
and MP4

are x5 ⊕ x3 = 1 and x4 ⊕ x3 ⊕ x1 = 1, respectively.
One solution for this system of simultaneous equations is:

x0 = 0, x1 = 1, x2 = 0, x3 = 0, x4 = 0, x5 = 1 (14)

So the final matrix is:

M =







v5 v4 v3 v2 v1 v0
1 1 1 1 0 1
1 0 1 0 1 1
1 0 0 0 1 0





 (15)

The remaining conditions for MP2
, MP3

, and MP4
are x3 ⊕ x2 ⊕ x1 = 1, x5 ⊕ x3 = 1,

and x4 ⊕ x3 ⊕ x1 = 1, respectively. One solution for this system of simultaneous equations is
x0 = 0, x1 = 1, x2 = 0, x3 = 0, x4 = 0, and x5 = 1, which gives a solution for M for which all
pattern sub-matrices are SNS for Ω3. The permutations corresponding to MPi

, where 1 ≤ 4,
are all SNS matrices which indicates that they: (1) map into distinct storages, and (2) their
permutations can be achieved in an Ω3 network without conflict.
The general algorithm (H-n) is as follows:

1. Determine the upper two rows of the matrix using algorithm H-2.

2. Create each remaining row, working from top to bottom.
For i in 2 to n− 1 loop:

(a) For each pattern Pj:

i. Obtain a matrix M̃Pj
by reducing the matrix MPj

so that it has the identity
matrix (Omega network) in its upper-left corner, using only row operations
which do not affect the matrix M .

ii. Use the ith column of this matrix to determine the equation associated with
this pattern. Let the basis of Pj be v`n−1

. . . v`0 , and yk = (M̃Pj
)n−k−1,`i

. Then
the equation is:

x`i
⊕ Σi−1

k=0x`k
yk = 1 (16)

(b) Solve the system of simultaneous equations. Assign entry Mn−i−1,k the value xk.

In this algorithm, we do not need to perform row reduction from the original matrix
in Step i. If we have available the result of the previous iteration, we can row-reduce this
partially reduced matrix, and reduce the time complexity of this step from O(n3) to O(n2).

15



vp-1      . . .  vln-1               
. . .   vln-i-1

   . . .   vl0
      . . .       v0

x l n - 1
   . . .        x ln - i

y l n - 1
.
.

.

y l n - i

x l n - i -1

   i x i
identity
 matrix

i+1

i+1

p

n

current pattern sub-matrix  (n x n)

Storage
 matrix
( n x p )

Figure 5: Progressive building of the (i + 1) × (i + 1) pattern sub-matrix after reducing the
i× i previous sub-matrix

Note that in Step 1, there may be several different ways H-2 could color the conflict graph
which affects the ability of this algorithm to find a solution in Step 2. In Step (2-b), the
set of equations may not have a unique solution. The selection of a solution may affect the
ability of the algorithm to find a solution for a later row. Since there are potentially several
alternatives at Steps 1 and (2-b), one possibility is to use backtracking to search exhaustively
for a solution. It is also possible to use heuristics to guide the selection at these steps, with
or without backtracking.
We analyze the time complexity of algorithm H-n, in the case where no backtracking is

allowed. Algorithm H-n makes an initial call to algorithm H-2, and then runs in n−2 phases.
Let t be the number of patterns. Each phase constructs t equations. Constructing each
equation requires O(n2) time, if we use the partially reduced matrix from the previous phase.
The total construction time is O(tn2). Solving the resulting set of simultaneous equations can
be done in O(tp2) time, since we have t equations in p unknowns. Since n ≤ p, the total time
required for a phase is O(tp2). The total complexity of algorithm H-n is therefore O(ntp2),
where t, 2n, and p, are the number of patterns, the number of memories, and the number of
distinct vectors of the pattern bases, respectively.

7 Applications

In this section we present applications of the proposed scheme to the design of embedded
memory systems for: (1) parallel FFT using arbitrary MINs, (2) parallel bitonic sorting,
(3) multiple non power-of-2 stride access, and (4) improving cache data re-use using parallel
memories.

7.1 Application to FFT

Assume 2n memories interconnected to 2n PEs by using an 2n × 2n Ω network. Assume
an n × n matrix MΩ that is SNS for Ω and consider the storage scheme j = MΩi which
maps array element a(i) to memory mj without memory conflicts or network conflicts (see
Section 4). A complement permutation CPx from the PEs onto the memories defined by

16



0
1
2
3
4
5
6

8
9

10

7

11
12
13
14
15

i’3i2i1i0 i3i’2i1i0 i3i2i’1i0 i3i2i1i’0

FFT
  m P3(i)=I4i+c3 P2(i)=I4i+c2 P1(i)=I4i+c1 P0(i)=I4i+c0

Figure 6: Permutations required for FFT over Ω4

J =MΩk + PΩ maps each PEk onto memory mJ , where PΩ is a given n× 1 constant vector.
As stated in Section 4, the permutation MΩk + PΩ is achievable on Ω because matrix MΩ is
SNS for Ω. Since a(i) belongs to mj whenever j =MΩi then PEk is mapped to array element
a(k +M−1

Ω PΩ) by permutation CPx.
Consider a distinct 2n × 2n MIN denoted by Γ and let l = MΓq be the storage scheme

that maps array element a(q) to memories ml, where MΓ is SNS for Γ. In the following we
show how CPx can be made achievable for Γ. Consider the permutation from the PEs onto
the memories defined by L =MΓk +MΓM

−1
Ω PΩ which maps PEk to memory mL. As a(q) is

stored into memory l =MΓq, then PEk accessesmL which contains array element a(M
−1
Γ L) =

a(k +M−1
Ω PΩ). Thus Γ can achieve the same CPx permutation that was previously defined

over Ω provided that a(q) is stored into memory l = MΓq and PEk uses the permutation
MΓk+MΓM

−1
Ω PΩ. In other words, a CP defined for one MIN can also be equally achieved for

other MINs by using the above scheme that converts achievable CPs for one MIN to equivalent
CPs for another MIN.
In the following we consider one implementation of a 16-point FFT over N = 16 memo-

ries/PEs. The permutation needed for FFT are defined by k + 2u modulo N . Each of the
k + 2u modulo N permutation is a CP defined by I4k + bu, where b3 = (1000), b2 = (0100),
b1 = (0010), and b0 = (0001) and I4 is the 4× 4 identity matrix. Assume data a(i) is stored
into memory mj such that j = MΩi, where 0 ≤ i, j ≤ 15. This is shown on Figure 6. To
access element k + bu the permutation to be performed by PEk must be Pu(k) = MΩk + cu,
where cu =MΩbu and 0 ≤ u ≤ 3. One possible implementation of the storage matrix MΩ and
the corresponding values of constant vectors cus are the following:

MΩ =











1 1 0 1
0 1 0 0
0 0 1 1
0 0 0 1











c3 =











1
0
0
0











c2 =











1
1
0
0











c1 =











0
0
1
0











c0 =











0
0
1
1











(17)

The scheme of Figure 6 is valid only for Ω4 because I4 is SNS for Ω4. A 16-input Baseline
network is defined by B4 = E1σ

−1
4 E2σ

−1
3 E3σ

−1
2 E4, where Ei is the ith stage. This implies

that the position of a message, issued at s = s3s2s1s0, is pos1 = s3s2s1d3, pos2 = d3s3s2d2,
pos3 = d3d2s3d1, and pos4 = d3d2d1d0 at the output of the stages. We note that I is not
SNS for B4. With the idea of algorithm H-n we can build boolean matrices that are SNS
for arbitrary MINs so that posi = Mis (see Sections 4 and 6). To guarantee conflict-free

17



1   0   0   0
0   1   0   0
0    0  1   0
x    x   x   x

M1=

x   x   x   x
y   y   y   y
z   z   z   z
w  w   w  w

M4=

x   x   x   x
y   y   y   y
1  0   0   0
z   z   z   z

M3=

x    x   x   x
1   0   0   0
0   1   0   0
y   y   y   y

M2=

Figure 7: Non-singular matrices for B4

M.i+v3 M.i+v2 M.i+v0
0
1
2
3
4
5
6

8
9

10

7

11
12
13
14
15

m
0

  8
12
4

14
6
2

15
7
3

10

11
1
9

13
5

FFT M.i+v1M.i
0
1
2
3
4
5
6
7

  8
  9
10
11
12
13
14
15

0
1
2
3
4
5
6
7

  8
  9
10
11
12
13
14
15

0
1
2
3
4
5
6
7

  8
  9
10
11
12
13
14
15

0
1
2
3
4
5
6
7

  8
  9
10
11
12
13
14
15

PEi access

   FFT(i)

PEi access

  FFT(i+8)

PEi access

  FFT(i+4)

PEi access

  FFT(i+2)

PEi access

  FFT(i+1)

PEi PEi PEi PEi
0
1
2
3
4
5
6
7

  8
  9
10
11
12
13
14
15

PEi

Figure 8: Permutations required for FFT over B4

access to the network and the memories we need Mi to be an SNS matrix for the target
network. The square sub-matrices within the frames shown in Figure 7 are to be chosen as
NS. Matrix M = M4 is SNS for B4 if and only if all the framed sub-matrices are NS. Thus
the permutations needed for B4 are of the form Hu(k) = Mk + vu, where M is SNS for B4
and vu is some constant vector. To achieve permutations on the B4 which are identical to
the above defined permutations for Ω4, PEk only needs to use the permutations Hu(k) =
MB4

k +MB4
M−1
Ω PΩ, where MB4

is any 4× 4 Boolean matrix that is SNS for B4. This finds
vu = MB4

M−1
Ω cu for each cu instance of PΩ. In other words, PEk is to use the permutations

Hu(k) =MB4
(k +M−1

Ω cu) =MB4
(k + bu). where bu =M−1

Ω cu.
One possible solution for achieving the four CPs Hu(k) = MB4(k + bu) = MB4k ⊕ vu, for

0 ≤ u ≤ 3, 0 ≤ k ≤ 15, and vu = MB4bu. With the idea of algorithm H-n we construct the
storage matrix MB4:

MB4 =











0 0 0 1
0 0 1 1
0 1 1 0
1 1 0 0











v3 =











0
0
0
1











v2 =











0
0
1
1











v1 =











0
1
1
0











v0 =











1
1
0
0











(18)

The permutations Hu(k) =MB4k+ vu are shown in Figure 8, where the columns denoted
by (a(i)) and (m) denote the data elements and memory-PE numbers, respectively. Each PEk

accesses data element a(k + 2u) by using the CP MB4k + vu which is also conflict-free for B4
because MB4 is SNS for B4. Data elements are mapped to distinct memories because B4 is
NS. All the CPs Hu are conflict-free for B4 because M is SNS. One may extend the above
solution to an inverse baseline IB4 by setting Hu(k) = M−1k ⊕ wk = M−1(k ⊕ vk) where
wk =M−1vk.

18



0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1
0 1

0 1
0 1

0 1
0 1

0 1
0 1

Basis

i3i2i1i0

B1=i3i2i0

B0=i3i2i1

B2=i3i1i0

0 1
0 1

0 1
0 1

0 1
0 1

0 1
0 1

0 1
0 1

0 1
0 1

0 1
0 1

0 1
0 1

B3=i2i1i0

0   1   3   2   6   7   5   4   4   5   7    6    2    3    1    0Memory

Data items

Figure 9: Permutations required for sorting 16-items over 8 memories

This example shows how one can convert linear permutations for implementing FFT from
one network to another. Since some permutations can only be achieved on some networks,
the benefit of our approach is to reallocate the data so that the needed permutations become
achievable for each multistage network. The above approach can be used to convert FFT
algorithms for one network to another by simply modifying the address generation scheme
which can be supported by hardware or simply through software emulation.

7.2 Sorting

In the following we show how data patterns can be synthesized for sorting a 16-point array
by using 8 memory/PE pairs and an Ω3 network. Bitonic sorting can be implemented on the
basis of the four access groups shown in Figure 9. For each group, every processor is to read
a pair of items from memory, sort them, and store the sorted items back into memory. Each
pair of items (0-1) involved in one group are connected by an edge in Figure 9. The problem
is to find the mapping of data elements to memories and the implied access patterns.
Two accesses are needed for each group: 1) the left-hand items which are all accessed in

step 0 and, 2) the right-hand items which are all accessed in step 1. This finds the bases of the
access pattern for each group. The bases are B0 = {v3v2v1}, B1 = {v3v2v0}, B2 = {v3v1v0},
and B3 = {v2v1v0} and correspond to access patterns (P0, P1, P2, P4) of the four groups which
are shown in Figure 3 and 9. For an Ω3 network, the leading NS matrices are located at the
upper left edge of the storage matrix. With the idea of algorithm H-2 we may assign

(

11
01

)

as the upper left corner of the storage matrix. We may use algorithm H-n to complete the
previous sub-matrix and find a solution for which each of the restricted sub-matrices (MPj

)
is SNS:

M =







v3 v2 v1 v0
1 1 0 0
0 1 1 0
0 0 1 1





 (19)

Each data element a(i), for 0 ≤ i ≤ 15 is stored into memory Mi at a selected offset
off = i3 which is constant for each access of an instance of P3 because B3 = {v2v1v0}.
This is shown in Table 2. The distribution of 64 elements into parallel memory is shown on
Figure 2. The selected offset causes the offsets of all distinct array elements that fall into
same memory to be distinct because MP3

is SNS. The array address generated by the PE for

19



Items/Patterns Each PEk fetches
items 0 of P0 a(k2k1k00)
items 1 of P0 a(k2k1k01)
items 0 of P1 a(k2k10k0)
items 1 of P1 a(k2k11k0)
items 0 of P2 a(k20k1k0)
items 1 of P2 a(k21k1k0)
items 0 of P3 a(0k2k1k0)
items 1 of P3 a(1k2k1k0)

Table 1: Address generation for each pattern access

Mem m0 m1 m2 m3 m4 m5 m6 m7

a(i) 0 1 3 2 7 6 4 5
15 14 12 13 8 9 11 10

P0 0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0

P1 0 0 1 1 1 1 0 0
1 1 0 0 0 0 1 1

P2 0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0

P3 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

Table 2: Storage scheme and access patterns

each pattern is shown in Table 1.
Table 2 shows the storage of the data elements by M and the first (marked by 0) and

second (marked by 1) access to each pattern Pj. The first and second entry of the data a(i)
is addressed within each memory by its offset (0 or 1). The elements of each pattern Pj map
to distinct memories because MPj

is NS. The elements of each Pj can be aligned to the PEs
without conflict because each MPj

is SNS for Ω3.
This approach can easily be adapted to sorting arbitrary power-of-2 numbers of data

elements and arbitrary power-of-2 numbers of memories. The advantage of our storage scheme
is the ability to synthesize the needed memory conflict-free mapping and conflict-free network
access in one compact address transformation (M), a task that our algorithm can perform
for arbitrary multistage network.

7.3 Optimizing for arbitrary stride access

In the following we examine finding storage schemes for accessing arbitrary strides. We first
show that algorithm H-n can always find a combined storage scheme which is conflict-free for
arbitrary groups of power-of-2 strides.
Let bk = {ik, ik+1, . . . , ik+n−1} be the basis of stride 2

k pattern with 2n memory modules.
Similarly, the basis of stride 2k+1 is bk+1 = {ik+1, ik+2, . . . , ik+n}. The bases bk and bk+1 share
n − 1 vectors that are ik+1, . . . , ik+n−1, which implies that the vectors of bk and bk+1 are n-
colorable. This indicates that H-n can find optimum combined address transformations for
arbitrary groups of power-of-2 strides. Conflict-free access to arbitrary strides is harder to
achieve in the general case. However, the use of specific linear storage schemes that minimize
the degree of serialization in accessing arbitrary stride provide useful throughput for many
multimedia SIMD engines.

20



1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140

M
ax

 C
on

fli
ct

s

Stride

Sohi

Figure 10: Sohi’s maximum conflicts

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100 120 140

M
ax

 C
on

fli
ct

s

Stride

Norton

Figure 11: Norton’s maximum conflicts

Harper [12] and Sohi [28] showed that high memory throughput can be achieved when
a few buffers are used at the memory inputs and outputs. The buffers reduce the effects
of transient degradation in pipelined memories due to memory conflicts in the case of non
power-of-2 stride access. In this case, Sohi selected a storage matrix that allows a higher
throughput than those obtained by using interleaving or row-rotation. Norton [25] proposed
a specific scheme for the IBM-RP3 parallel memory. The linear storage schemes selected by
Sohi and Norton for 8 memories are:

Msohi =

(

1 1 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 1 1 0 0 1 0
1 1 0 1 0 0 1 1 1 0 0 1

)

Mnorton =

(

1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1

)

(20)

Sohi’s matrix has an equal number of ones in each row and any group of 3 successive
columns form a NS matrix. The latter condition allows conflict-free access to power-of-two
strides but can also be used for arbitrary strides. Sohi’s matrix is a particular case of CPs
that can be found by using algorithm H-n. We present a scheme denoted by Mc which is:

21



1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140

M
ax

 C
on

fli
ct

s

Stride

Cond-Exch

Figure 12: Maximum conflicts for a synthesized scheme

Mc =

(

1 1 1 0 0 1 0 0 1 1 1 1
0 1 0 0 1 0 1 1 1 0 1 0
1 0 0 0 1 1 1 0 0 1 0 0

)

(21)

The scheme can be easily generalized because the basis matrix (3× 3) that appears in the
right hand side is SNS [9]. The remainder of Mc is obtained by row rotating the basis matrix.
To compare these schemes we used the degree of conflict which is the maximum number

of cycles required to access a given stride with a random origin address. The stride address is
a, a+ s, a+2s, . . . , a+(2n− 1)s, where a is the origin, s is the stride, and 2n is the number of
memories. The origin was set randomly for each run and the results averaged over 100 runs.
Figures 11, 12, and 13 show the plots of the degree of conflict versus the stride (1 ≤ s ≤ 128)
for Msohi, Mnorton, and Mc, respectively. All these schemes are fundamentally equivalent.
Norton’s scheme has many peaks which reach a degree of conflict of 5. Sohi’s scheme has less
fluctuation than the others. Mc achieves the lowest peak conflict.

7.4 Improving cache data re-use using parallel memories

In hierarchical memory systems the DRAM can deliver one single locality of reference (row-
major or column-major) that is cached as such regardless of the regularity of code access
(if any). This is suitable for irregular access patterns which cannot be predicted before the
run-time.
Streamed computations have predictable access patterns [23, 24]. To improve performance

of DRAM we propose a parallel DRAM memory in a framework that combines compile-time
detection of data access patterns with proper integration of parallel memory and cache. The
aim is to improve cache data re-use by caching relevant data locality references such as
stride access over one or more array dimensions. A similar approach was proposed for re-
mapping [13] of irregular or sparse memory accesses into dense accesses in the cache memory.
In the following we present our approach which is illustrated by an example.
Consider a set of 8 memories and an 8 × 16 data array. Assume the following four data

patterns {T1, T2, T3, T4} defined by their bases B(T1) = {g2, g1, g0}, B(T2) = {f2, f1, f0}, and
B(T3) = {f0, g1, g0}, and B(T4) = {g3, g2, g1}, where the fs and gs are the canonical vectors
in the row and column array dimensions, respectively. The union of all base vectors is then

22



Pattern T2Pattern T3

Pattern T1

Pattern T4

     0   1    2    3   4    5    6    7    8    9  10  11  12 13  14  15
0   0   1    2    3   4    5    6    7    1    0   3    2    5    4    7   6
1   5   4    7    6   1    0    3    2    4    5   6    7    0    1    2   3
2   2   3   0    1    6    7    4    5    3    2   1    0    7    6    5   4
3   7   6   5    4    3    2    1    0    6    7   4    5    2    3    0   1
4   4   5   6    7    0    1    2    3    5    4   7    6   1     0    3   2
5   1   0   3    2    5    4    7    6    0    1   2    3   4     5    6   7
6   6   7   4    5    2    3    0    1    7    6   5    4   3     2    1   0
7   3   2   1    0    7    6    5    4    2    3   0    1   6     7    4   5

Column  j

R
o
w

 i

M(i,j)

Instance of

Instance of

Instance ofInstance of

Figure 13: Mapping of 128 elemets (i, j) to 8 memories

Pattern T1

Pattern T3

Pattern T2

 M0       M1      M2      M3      M4       M5      M6      M7
 0,0       0,1      0,2      0,3      0,4       0,5      0,6      0,7
 0,9       0,8     0,11    0,10    0,13     0,12    0,15   0,14
 1,5       1,4      1,7      1,6      1,1       1,0      1,3     1,2
1,12     1,13    1,14    1,15     1,8       1,9     1,10   1,11
 2,2       2,3       2,0      2,1      2,6       2,7      2,4     2,5
1,11      2,10     2,9      2,8     2,15    2,14    2,13   2,12
 3,7        3,6      3,5      3,4      3,3       3,2      3,1     3,0
3,14      3,15    3,12   3,13     3,10    3,11      3,8     3,9
 4,4        4,5      4,6      4,7      4,0       4,1      4,2     4,3
4,13      4,12    4,15   4,14      4,9       4,8     4,11   4,10
 5,1        5,0      5,3      5,2      5,5       5,4      5,7     5,6
 5,8        5,9     5,10    5,11    5,12    5,13     5,14   5,15
 6,6        6,7      6,4      6,5      6,2       6,3      6,0     6,1
6,15      6,14    6,13    6,12    6,11    6,10      6,9     6,8
 7,3        7,2      7,1      7,0      7,7       7,6      7,5     7,4
7,10      7,11     7,8      7,9     7,14    7,15     7,12   7,13

Pattern T4

Offset
within
each
memory
(i2i1i0j3)

Instance of

Instance of

Instance of

Instance of

Figure 14: Mapping of 128 elements onto 8 memories and their offsets

B = ∪1≤k≤4B(Tk) = {f2, f1, f0, g3, g2, g1, g0}. Array element (i, j) = (i2, i1, i0, j3, j2, j1j0) will
be stored into memory Mk such that k =M.(i, j). Suppose we choose M as follows:

M.(i, j) =





f2 f1 f0 g3 g2 g1 g0

1 0 1 0 1 0 0
0 1 0 0 0 1 0
0 0 1 1 0 0 1



.





















i2
i1
i0
j3
j2
j1
j0





















(22)

Figure 14 shows the mapping of each array address (i, j) into the memory module number
MM.(i,j) where array element A(i, j) is stored, Here M is selected so that all four patterns
can be accessed without conflicts because all corresponding pattern matrices are SNS. Four
shown frame corresponds to one pattern instance and each frame contains eight distinct
memory numbers. One may decide to set the offset in each memory according to a specific
data pattern distribution, such as T1 if MT1

has full rank. Therefore all array elements that

23



  Matrix Multiply
    XOR array
 offset generation

Output Bus

Input Bus

Memory
 offsets

Memory
 selects

Data Cache

sio offset

   Page line =
Pattern instance

Pattern
 cache

pattern
 origin

C
N
T
R

Miss

Pattern matrix
    loading

CPU Data Bus

  Virtual
Address

M2M1 MN

Address
 buffers

  Data
 buffers

Page TAG

Page / Segment
Translation table

offset
  sio

   Real
Address XOR

 bits
Sel

Figure 15: Translation of VA into real address, selection of storage matrix, generation of
memory offsets, and packing of a pattern instance data in cache page.

belong to any instance of T1 will be accessed with the same offset from all memories. The
offset is formed by all address bits except those that are in the basis of T1, i.e. the offset is
(i2, i1, i0, j3). Note that other choices are also possible.
In Figure 15 all array elements are mapped to distinct offset locations. For each instance

of T1, the array elements fall into the same offset within all memories. However, this is not the
case of other patterns. Consider the instance of T3 that is shown in Figure 14-(a) for which

the address of each element address satisfies (i, j) =
(

i2i1i0j3j2j1j0
1 0 − 0 0 − −

)

. The offset is (i2i1i0j3)

which overlaps with the pattern basis B(T3) = {i0, j1, j0} in component i0. This means that

four elements of each instance of T3 will be found at offset
(

i2i1i0j3
1 0 0 0

)

and the other four will

be found at offset
(

i2i1i0j3
1 0 1 0

)

. This does not pose any problem because all offsets are distinct
within each memory.
The storage scheme M.(i, j) = k indicates that array element addressed as (i, j) will be

output from memory Mk. Due to data skew, we need to permute the data in the right order
before returning the data elements as a page to cache. For this output of Mk must be set in
a cache page at offset (i0, j1, j0). This way the processor will refer to elements by their offset
(sio in Figure 16) in the page.
The schematic of the proposed multi-pattern caching is shown on Figure 16. A processor

virtual address is translated into real address by a TLB. Similar to paging, the real address
(page address in main memory) must include identifier of array, pattern, pattern instance,
and data element offset within the pattern instance. If the corresponding page line is present
(hit), then the cache the offset to retrieve the corresponding data element. For example a
page of 8 array elements corresponding to a row data pattern with a stride of 2 would contains
(a(i, 0), . . . , a(i, 14)). If this page is referenced with an offset of 3 the cache returns A(i, 6).
If there is a miss, then the cache activate a parallel memory controller (see block Matrix
Multiply) which uses a pattern identifier from the address to fetch the corresponding storage
matrix. Using XOR matrix operations the controller determines the memories to be selected
and their offsets for fetching the identified instance of the accessed pattern. It activates the
memories and forward their offsets. The data elements at output of each parallel memory are
accessed in parallel but stored into a cache line in sequence. The cache receives the data in

24



PE0         PE1        PE2        PE3

x x x x x  x x x x x  x x x x x  x x x x x
x x x x x  x x x x x  x x x x x  x x x x x
x x x x x  x x x x x  x x x x x  x x x x x
x x x x x  x x x x x  x x x x x  x x x x x
x x x x x  x x x x x  x x x x x  x x x x x

a - Patterns accessed by
the binary dilation operator

b - Pattern accessed in computing
weighted median,  noise cleaning,
region growing/shrinking, gradient,
and laplacian operators.

x x x x   x x x x   x x x x   x x x x
x x x x   x x x x   x x x x   x x x x
x x x x   x x x x   x x x x   x x x x
x x x x   x x x x   x x x x   x x x x

PE0      PE1       PE2      PE3

c - Pattern accessed in comp-
uting the linear shift-invarient,
gray-level co-occurrence, and
relative maxima operators.

d - Pattern accessed by
the Prewitt edge  detector.

x   x   x   x

x
x

x
x

x

x
x

x
x

xx
x
x
x

d - Patterns accessed by
the contour direction operator.

c - Multimedia entropy coding
accesses the data in a zig-
zag non-linear  data patterns.

x x x   x x x  x x x   x x x

PE0   PE1  PE2    PE3

x x x   x x x  x x x   x x x
x x x   x x x  x x x   x x x

-
-
-
-
-
-
-
-

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

Figure 16: Typical access patterns in multimedia and image processing

the order described above and form a cache line.
A cache page contains array elements that belong to an instance of currently accessed

data pattern for which the storage scheme was optimized for. A page is a compact storage to
fit a well defined instance of a locality of reference such as a stride access or other.
For computations having predictable access patterns integrating a parallel DRAM memory

in the hierarchical memory system guarantees that the storage pattern in the cache matches
the actually accessed data patterns. This reduces bus traffic and enhances re-use of cached
data.

8 Evaluation

We evaluate the proposed multi-pattern storage scheme in the case of some multimedia data
access patterns. We also compare our approach to other contributions.

8.1 Performance under multimedia access patterns

In the parallel memory organization, the static storage schemes are intended to cause the data
elements of some typical access patterns be uniformly assigned to the memories. Some static
storages are intended for power-of-2 stride access [28, 25, 12] while other static schemes are
optimized for some typical access patterns like the row, the column, and the blocks [10, 3].
Unfortunately, the performance of static storages may varies widely depending on the accessed
stride and its origin.
Multimedia computing does not favor hierarchical memories [16] because cache misses are

responsible of unpredictable memory access time. The need for predictable access with a large
memory bandwidth is one key feature ensure Quality-of-Service for dynamic media and other
hard real-time environments. Figure 17 shows some typical data access patterns that can be
used in image [11] and multimedia [21] processing such as real-time motion estimation and
discrete cosine transform (DCT/IDCT). In multimedia, the parallel memory [31] is investi-
gated for its potential of providing fine-grain data parallelism as needed for video compression
and decompression over SIMD engines such as the SSE2 multimedia unit of Pentium 4. For
example the binary dilation (BD) operator, shown on Figure 17-(a), reads a column of 8 (or

25



4) pixels and produces two columns of pixels. Using 8 memories the basis of the accessed
patterns is BBD = fm, fm+1, fm+2 for an M × M array of pixels, where M = 2m and the
fs are the canonical basis vectors. The computation of neighborhood operators [11] like the
weighted median operator can be implemented by assigning each logic unit a separate k × k
frame of pixels as shown in Figure 17-(b), where k can be 3, 5, 7, or 9. Thus a pattern access
with an odd stride is required. The accessed elements with stride k = 5 are shown on the same
figure. Other functions like the linear-shift invariant requires assigning k× k frame of pixels,
where k can be 4, 6, 8, or 10. This needs an even stride access as shown in Figure 17-(c).
Similarly, contour segmentation, Prewitt edge detector and entropy scan require access to the
patterns shown on Figures 17-(d), -(e), and -(f).
In the following we compare the performance of the proposed H-n storage with the classical

interleaving and three typical storage schemes for stride and block accesses. These were
proposed by Norton [25], Sohi [28], and Frailong [10]. Norton proposed a method to build
a static storage matrix that minimizes both memory access conflicts and network alignment
conflicts for a set of power-of-2 strides. Sohi’s storage is based on eliminating conflicts for
power-of-2 strides while ensuring that each bit in the memory number computes parities by
using approximately the same number of address bits. Frailong optimized his storage by
manually combining the storages of a given set of block patterns.
Our approach is based on the compiler which finds an optimized storage scheme based

on loop dependence analysis and identification of the accessed data patterns as depicted in
Section 6. For this we manually optimized the parallel execution of computations represent-
ing some well known numerical and vision algorithms. These are: (1) sorting (S) [26], (2)
LU decomposition (LU) [26], (3) matrix multiply (MM) [26], (4) cyclic reduction, FFT, and
DCT (CR/FFT/DCT) [21], (5) vision algorithm with odd stride (V-odd) [11], and (6) vision
algorithm with even stride (V-even) [11]. All used data array are N × N , where N = 1024.
S requires access to the regular data patterns shown on Figure 9. LU uses a column access
pattern, i.e. the sequence of reads has a constant stride of N that is the size of the row. MM
has a mixing of row and column access patterns. The CR/FFT/DCT are fine-grain com-
putations with a unit stride but requires linear permutations for aligning the data elements
with the logic units. V-odd and V-even are the weighted median and the linear shift invariant
operators which access the strides s = (4, 6, 8, 10) and s = (3, 5, 7, 9), respectively. Some
instance of their patterns are shown on Figures 17-(b) and -(c).
The parallel memory engine is shown on Figure 1. The setting consists of 64 memories

and PEs with the following latencies: (1) 2 clocks for the ATU, (2) 6 clocks for the NU,
(3) 30 clocks for MU, and (4) 1 clock for the passive AU. The objective function measured
through the simulation is the Parallel Memory Utilization (U) which is the ratio of average
number of busy memories over the number of available memories. The average is taken over
all the parallel load/store operations of the data pattern instance accesses needed for a given
computation.
The results of the simulation are displayed on Figure 18 which plot the average memory

utilization U . All studied storages perform very well for the unit stride if no alignment is
needed (not shown). Generally, the static schemes are not well optimized for block access
like in S, V-even, and V-odd. The memory access time of static storage schemes varies
widely depending on the accessed data patterns and can be considered as unpredictable for
practical considerations. In many cases (S, LU, MM, and CR/FFT/DCT) synthesizing a
storage scheme that meets the application requirements provided a near-optimum memory
utilization. Norton’s static scheme is excellent for quite distinct combinations of power-of-2

26



U
T
I
L
I
Z
A
T
I
O
N

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.2

0.1

0.0

MATRIX SORTINGLUVISION
 V-odd

VISION
 V-even

SOHI

NORTON

FRAILONG
H-n

INTRLV

SMM
CR/FFT/DCT

Figure 17: Utilization of 64 parallel memories

strides like those needed in CR/FFT/DCT, MM, and LU. We repeated the above experiment
for 128 memories and found that a near optimum utilization is obtained for the studied
combination of power-of-2 strides (S, LU, MM, and CR/FFT/DCT). In this case, each access
to a given pattern instance has predictable number of memory cycles as explained in Section 5.
A memory utilization above 83% is achieved for 64 memories. For non power-of-2 strides we
obtain similar results if the stride is prime to the number of memories. Non power-of-2 strides
cause a degradation of the utilization by about 15% as we increase the number of memories
from 64 to 128.
The compiler overhead in finding the program data access patterns and optimizing the

corresponding storage can be largely rewarded by many repetitive accesses. This is particu-
larly suitable for synchronous dataflow computation which are generally compiled once and
run many times on different data sets. Many of these computations can be found in DSP and
dynamic media processing where there is a sharp need for large memory bandwidth together
with predictable memory access time.

8.2 Comparison to other contributions

Minimizing memory and network contention for accessing rows, columns, diagonals, and
square blocks was proposed in [3]. In this case, the storage matrix is optimized for a given set
of reference patterns. In [25], network contention was analyzed with respect to conflict-free
access to a fixed set of vector strides.
Our proposed approach assembles the requirements of the network, the memories, and

access patterns in one single storage scheme that attempts to minimize overall access time.
This approach is presented in a general framework. It can be applied to arbitrary multistage
networks, arbitrary power-of-2 memories, and arbitrary data patterns. The compiler cost
of finding set of data access patterns is nearly equal to the cost of carrying out the data
dependence analysis. However, a randomized storage or a static storage can still be used as
a default solution to our approach in the case where the access patterns cannot be found by
the compiler. We have presented an algorithm to automate the major steps of synthesizing
the dynamic storage matrix (for each array) and indicated how this approach can be used

27



for different networks including conversion of permutations from one network to another. For
streamed computations [31, 32] which have predictable access patterns [23, 24] this approach
can be implemented as a memory and a compiler co-optimization.
Our approach allows formulating and combining linear data patterns but cannot handle

non-linear patterns, which represents the main limitation of this approach. For vector proces-
sors that inherently use pipelined bus architecture, Sohi [28] proposed a linear storage scheme
to improve access of arbitrary strides in parallel memories. These approaches deal with mem-
ory organization and buffering in order to maximize the memory throughput. The issue is
to find a linear address transformation that minimizes the degree of conflict for arbitrary
strides and arbitrary origins. The result is that memory buffering smooth out the transient
behavior of the memory, due to unresolved conflicts, and the memory throughput becomes
close to optimum. We have proposed a scheme based on SNS conditional-exchange matrices
and showed that it has a comparable performance to those proposed by Sohi and Norton but
can be easily generalized to an arbitrary data patterns and arbitrary number of memories.
Though this approach does not directly apply to non-linear data patterns, its choice of SNS
matrices enables minimizing the global degree of conflict (also access time) in the case of
arbitrary strides.

9 Conclusion

A memory and compiler co-optimization aimed at reducing low-level memory accesses using
software and hardware locality optimizations is presented. Given an arbitrary set of power-
of-2 data patterns, we have addressed the problem of storing arrays in parallel memories
so that any instance of a pattern can be: 1) accessed without conflicts through an arbitrary
multistage network and, 2) uniformly distributed over the memories following a linear address
translation.
We have presented necessary and sufficient conditions for accessing parallel memories with-

out network and memory conflicts for a given set of power-of-two data patterns. We presented
a compiler strategy for finding multi-pattern storage schemes for streamed applications for
which the data access patterns are predictable at compile-time. Our analysis indicates that
this approach is applicable to an arbitrary sets of power-of-two data patterns and arbitrary
networks. Our formulation allows the conversion of linear permutations from one network to
another which enables the finding of equivalent memory mappings for each type of network.
In the case of a combination of power-of-2 strides, our approach can be used by a compiler
for synthesizing near-optimum memory utilization together with predictable memory access
times for the cyclic reduction, FFT, DCT, bitonic sorting, LU, and matrix multiply. It out-
performs static storage schemes for non power-of-2 strides. Our approach provides a tool for
matching the storage pattern with the data access patterns needed for embedded systems
running streamed computations with predictable data access patterns.

10 Appendix

Theorem 1 The number of permutations d̃ = Ms ⊕ x that an arbitrary n-stage multistage
network can perform is Tn = 2

n2

, where M is an n×n SNS matrix and x is an n×1 arbitrary
vector.

28



Proof We first find the number Rn of n × n SNS matrices and evaluate the number of
permutations d̃ =Ms⊕ x for all values of x.
Suppose we are given an arbitrary n × n matrix M . Assume that M [i] is SNS. Then

by performing row and column operations, we can transform M so that M [i] is the identity
matrix, thus M and M [i+ 1]:

M =

























1 0 · · · 0 0 ai−1 · · ·
0 1 · · · 0 0 ai−2

...
...

...
...

0 0 1 0 a1

0 0 · · · 0 1 a0

bi−1 bi−2 · · · b1 b0 c · · ·
...

...

























M [i + 1] =



















1 0 · · · 0 0 ai−1

0 1 · · · 0 0 ai−2

...
...

...
...

0 0 1 0 a1

0 0 · · · 0 1 a0

bi−1 bi−2 · · · b1 b0 c



















(23)

We examine the matrix M [i+ 1]. We denote the entry in the lower-right corner as c, the
entries above c as a0 . . . ai−1, and the entries to the left of c as b0 . . . bi−1. We can determine
whether M [i+ 1] is NS. If all ai and bi are zero and c is one, it is easily seen that M [i+ 1] is
NS. For the general case, the fact thatM [i] is the identity makes it easy to cancel the ai’s and
bi’s using row and column operations. M [i+1] will be NS if and only if after these operations
c = 1. If aj = 1, add the column containing bj to the column containing c ofM . This changes
aj to zero and c becomes c⊕ bj. Similarly, if bj = 1 and we add the row containing aj to the
row containing c of M , this changes bj to zero and c becomes c ⊕ aj. These operations may
affect c as follows: 1) c does not change if aj = bj = 0 or aj ⊕ bj = 1 or, 2) c is flipped if
aj = bj = 1.
In the last case, both aj and bj are one. If we choose to cancel aj first, the value of bj = 1

is added to c, changing it from a one to a zero, or vice-versa. If we choose to cancel bj first,
the value of aj = 1 is added to c, and c is again changed. In all other cases, we can cancel
aj and bj without affecting c. The non-singularity of M [i + 1] will therefore depend on two
factors: the initial value of c and the number of flips. In other words, M [i+1] is non-singular
if:

a0b0 ⊕ a1b1 ⊕ . . .⊕ ai−1bi−1 ⊕ c = 1 (24)

Counting the number of ways we get 0 flips, we find that we can do so in 3i ways, because
there are three ways each a-b pair can be assigned without causing a flip. There are i3i−1

ways we can get one flip, and i(i− 1)3i−2/2 ways we can get two flips. The total number of

ways is simply
∑i

j=0

(

i
j

)

3i−j .

If there are Ri ways that M [i] can be NS, then there are

Ri ·
i
∑

j=0

(

i

j

)

3i−j = Ri · (3 + 1)
i = Ri · 4

i (25)

ways that M [i + 1] can be NS. Combining this with our value for R1 we have: R1 = 1, and
Rn+1 = Rn4

n. The number of SNS matrices is then Rn = 4(n−1)n/2 = 2(n−1)n. For each
SNS matrix M , we can find 2n distinct vectors for x. Therefore, the number of permutations
d̃ =Ms⊕ x is Tn = Rn2

n = 2n2

.

29



References

[1] M. Al-Mouhamed and M. Kaleemueddin. Evaluation of pipelined switch architecture for
ATM networks. IEEE/ACM Trans. on Networking, No 5, Vol 7:724–740, Oct 1999.

[2] M. Al-Mouhamed and S. Seiden. Minimization of memory and network contention for
accessing arbitrary data patterns in SIMD systems. University of California Irvine,
ICS-UCI Technical report 93-29, Jun 1993.

[3] R. V. Boppana and C. S. Raghavendra. Optimal self-routing of linear-complement per-
mutations in Hypercubes. Proceedings of the 5th Dist. Mem. Comput. Conf., pages
800–808, 1990.

[4] P. Briggs and J. Feo. The tera programming workshop. Inter. Conference on Parallel
Architectures and Compilation Techniques,, Paris, France, October 1998.

[5] P. Budnik and D. Kuck. The organization and use of parallel memories. IEEE Trans.
on Computers, C-20, No 12:1566–1569, Dec 1971.

[6] E. Bugnion, J. Anderson, T. Mowry, M. Rosenblum, and M. Lam. Compiler directed
page coloring for multiprocessors. Inter. Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 244–255, 1996.

[7] A. A. Deb. Multiskewing - a novel technique for optimal parallel memory access. IEEE
Trans. on Parallel and Distributed Systems, 7, No 6:595–604, Jun 1996.

[8] S. Dwarkadas, Honghui Lu, A.L. Cox, R. Rajamony, and W. Zwaenepoel. Combin-
ing compile-time and run-time support for efficient software distributed shared memory.
Proceedings of the IEEE, 97, No 3:476–486, 1999.

[9] A. Edelman, S. Heller, and S. L. Johnson. Index transformation algorithms in a linear
algebra framework. IEEE Trans. on Parallel and Distributed Systems, 5, No 12:1302–
1309, Dec 1994.

[10] J. M. Jalby W. Frailong and J. Lenfant. XOR-schemes: A flexible data organization in
parallel memories. In Proceedings of the International Conference on Parallel Processing,
pages 276–283, 1985.

[11] R. M. Haralick and L. G. Shapiro. Computer and robot vision. Addison Wesley, 1992.

[12] D. T. Harper III. Block, multistride vector, and FFT accesses in parallel memory systems.
IEEE Trans. on Parallel and Distributed Systems, 2, No 1:43–51, Jan 1991.

[13] Xianglong Huang, Zhenlin Wang, and K.S. McKinley. Compiling for the impulse memory
controller. Inter. Conf. on Parallel Architectures and Compilation Techniques, pages 141–
150, 2001.

[14] M. Kandemir. Compiler-directed collective-I/O. IEEE Trans. on Parallel and Distributed
Systems, 12, No 12:1318–1331, 2001.

[15] M. Kandemir, U. Sezer, and V. Delaluz. Improving memory energy using access pattern
classification. IEEE/ACM Computer Aided Design, pages 201 –206, 2001.

30



[16] C. E. Kozyrakis and D. A. Patterson. A new direction for computer architecture research.
IEEE Computer, Nov. 1998.

[17] D. Lawrie and C.R. Vora. The prime memory system for array accesses. IEEE Trans.
on Computers, C-31, 12:435–442, May 1982.

[18] D.-L. Lee. Scrambled storage for parallel memory systems. IEEE Symp. on Computer
Architecture, pages 232–239, 1988.

[19] N. Linial and M. Tarsi. Interpolation between bases and the shuffle-exchange network.
European Journal of Combinatorics, 10:29–39, 1989.

[20] Z. liu, J. You, and X. Li. Conflict-free routing on hypercubes. Inter. Conf. on Computers
and Information, pages 153–158, 1992.

[21] M. Mattavelli, S. Brunetton, and D. Mlynek. A parallel multimedia processor for mac-
roblock based compression standards. Proceedings of the 1997 International Conference
on Image Processing (ICIP ’97), 1997.

[22] S. McFarling. Program optimization for instruction caches. Third Inter. Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems, pages 183–191,
1989.

[23] S.A. McKee, W.A. Wulf, J.H. Aylor, R.H. Klenke, M.H. Salinas, S.I. Hong, and D.A.B.
Weikle. Dynamic access ordering for streamed computations. IEEE Trans. on Computers,
49, No 11:1255–1271, 2000.

[24] H. Nakamura, M. Kondo, T. Ohneda, M. Fujita, S. Chiba, M. Sato, and T. Boku. Archi-
tecture and compiler co-optimization for high performance computing. Inter. Workshop
on Innovative Architecture for Future Generation High-Performance Processors and Sys-
tems, pages 50–56, 2002.

[25] A. Norton and E. Melton. A class of boolean linear transformations for conflict-free
power-of-two stride access. Proceedings of the International Conference on Parallel Pro-
cessing, pages 247–254, 1987.

[26] M. Quinn. Designing efficient algorithms for parallel computers. McGraw-Hill Inter.,
Second Edition, 1988.

[27] M. Saghir, P. Chow, and C. Lee. Exploiting dual data-memory banks in digital sig-
nal processors. Inter. Conf. on Architectural Support for Programming Languages and
Operating Systems, pages 234–243, 1996.

[28] G. S. Sohi. High-bandwidth interleaved memories for vector processors–A simulation
study. IEEE Trans. on Computers, 42, No 1:34–44, Jan 1993.

[29] T. Sterling. A hybrid technology multithreaded computer architecture for petaflops
computing. MS 159-79, J.P.L., California Institute of Technology, January 1997.

[30] T. Stricker and T. Cross. Global address space, non-uniform bandwidth: a memory sys-
tem performance characterization of parallel systems. Inter. Symp. on High-Performance
Computer Architecture, pages 168–179, 1997.

31



[31] J. Tanskanen and J. Niittylahti. Parallel memnories in video encoding. Proceedings of
the Data Compression Conference, Snowbird, Utah., page 552, March 1999.

[32] J. Vanne, E. Aho, K. Kuusilinna, and T. Hamalainen. Enhanced configurable parallel
memory architecture. Euromicro Symposium on Digital System Design, pages 28–35,
2002.

[33] Yong Yan, Xiaodong Zhang, and Zhao Zhang. A memory-layout oriented run-time tech-
nique for locality optimization on smps. Proc. Inter. Conf. on Parallel Processing, pages
189–196, 1998.

32


