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Abstract. Topic Detection and Tracking (TDT) is a research initiative that aims at techniques to organize news
documents in terms of news events. We propose a method that incorporates simple semantics into TDT by splitting
the term space into groups of terms that have the meaning of the same type. Such a group can be associated with
an external ontology. This ontology is used to determine the similarity of two terms in the given group. We
extract proper names, locations, temporal expressions and normal terms into distinct sub-vectors of the document
representation. Measuring the similarity of two documents is conducted by comparing a pair of their corresponding
sub-vectors at a time. We use a simple perceptron to optimize the relative emphasis of each semantic class in the
tracking and detection decisions. The results suggest that the spatial and the temporal similarity measures need to
be improved. Especially the vagueness of spatial and temporal terms needs to be addressed.
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1. Introduction

Topic detection and tracking (TDT) is a research initiative concerned with techniques to
organize news documents. In contrast to the more traditional information retrieval prob-
lems, the focus in TDT is on news events: in breaking the text into cohesive stories, spotting
something previously unreported, tracing the development of the event, and grouping to-
gether news that discuss the same event. The problem area has also been called event-based
information organization (Allan 2002a). The user of this kind of system could be, for ex-
ample, an information worker, a specialist or a reporter who needs to keep up with several
sources of news: radio and television broadcasts and on-line Internet news. The user might
wish to follow the course of events regarding forest fires in Portugal, the development of
the presidential elections in Lithuania, or just be informed if anything new takes place in
Africa or in the metal industry, for example.

Focusing on news events influences the nature of the retrieval problems. A TDT system
runs on-line and has absolutely no knowledge of the coming events in advance. This makes
the application of machine learning methods difficult. Often, an event involves only a few
documents that appear within a short period of time, and because the events evolve, the
essential vocabulary describing an event may change considerably in short time. Detecting
when a story discusses a news event for the first time has been a particularly difficult task.
Spotting something ‘new’ requires a highly effective representation of ‘old’, i.e., what has
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already been seen. The results by Allan et al. (2000) suggest that it is highly unlikely that
a technology based on a full-text similarity will yield such a representation.

We present an approach for TDT that employs semantic classes, i.e., groups consisting
terms that have similar kind of meaning: locations, proper names, temporal expressions and
general terms. This split in term-space enables us to use class-wise similarity measures. By
mapping the terms of a given class onto an ontology, we are able to establish a semantical
similarity between the terms instead of using just a binary string matching. Especially with
intensional data, such as temporal expressions, this kind of mapping is needed in order to
have any means of comparison.

The comparison of two documents is carried out class-wise: the names in the one doc-
ument are compared to the names in other, the locations in one against the locations in
the other, and so on. As a result, we have vector of similarity values that we turn into
a single yes/no decision by a weighted sum. The weights are optimized with a linear
perceptron.

This paper is organized as follows. Section 2 gives a concise view of topic detection and
tracking by presenting event and topic definitions, problems inherent to TDT and the previ-
ous work. In Section 3 we bring forward a document representation using semantic classes,
and present methods for comparing documents class-wise, and particularly comparing the
spatial and the temporal information. Section 4 describes the TDT algorithms that utilize
perceptrons. Section 5 illustrates our experiments with the TDT2 corpus and Section 6 is a
conclusion.

2. Topic detection and tracking

The news-stream in topic detection and tracking is a compilation of on-line news and
transcribed radio and TV broadcasts from one or more sources and possibly in one or more
languages. The topic detection and tracking is considered to comprise five tasks (Allan
2002a): (1) topic tracking monitors news stream for stories discussing given target topic,
(2) first story detection (FSD, also new event detection) makes binary judgment on each
document whether it discusses a new, previously unreported topic or not, (3) topic detection
(also cluster detection or just detection) forms topic-based clusters of documents, (4) link
detection determines whether two given documents are about the same topic, and (5) story
segmentation finds the boundaries for cohesive text fragments.

Some of these tasks have been approached with traditional information retrieval tech-
niques. For example, the topic tracking can be understood as an information filtering task
in which the system is given a small number of sample documents and is expected to
spot all further documents discussing the topic of the samples. The topic detection in-
volves text clustering. The story segmentation shares its rationale and motivation with
text and discourse segmentation. Nevertheless, the setting of TDT presents unusual prob-
lems that complicate the use of traditional techniques. The topics are unknown in be-
forehand. The systems run on-line and can make very few assumptions on the incoming
data. The topics often involve only a small number of documents that are encountered in
a burst, and the essential vocabulary describing a topic may change drastically in a short
time.
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In Section 2.1 we first present the definition of an event and a topic. Then, in Section 2.2
we make an effort in formalizing some of the problems in TDT. The previous approaches
that have tried to overcome these problems are presented in Section 2.3.

2.1. Topic definition

There are events taking place in the world, and some of them are acknowledged in the news.
Naturally, a TDT system does not perceive the events themselves, but rather makes an ef-
fort in deducing them from the news-stream. News are written by humans and published
and distributed by agencies and companies. Although the concept of event may seem intu-
itively clear and self-explanatory, formulating a sound definition is difficult. Predating TDT
research, numerous historians and researchers of political science have wrestled with the
definitions (see e.g., Falk 1989, Gerner et al. 1994). What seems to be somewhat agreed upon
is that an event is some form of activity carried out by some agent or agents somewhere at
some time. In topic detection and tracking, an event is defined as follows (Allan et al. 1998a):

Definition 1. An event is a unique thing that happens at some specific time and place.

This definition is intuitively quite sound. There are, however, events of different scales,
and this definition seems to neglect events which either have a long-lasting nature (Intifada,
Kosovo-Macedonia, struggle in Columbia), escalate to several directions (September 11,
war in Iraq), or are not tightly spatio-temporally constrained (global warming, SARS- and
BSE-epidemics). Some of these problematic events would classify as activities (Papka
1999), but when encountering a piece of news, we do not know a priori whether it is a short
term event or long term activity, just a simple incident or the start for a complex chain of
actions.

A topic is considered a set of documents that relate strongly to each other via a seminal
event, an event that triggers the topic. For example, the first story reporting a victim of a
deadly virus produces a new topic, and any further stories on the development and spreading
of the virus, the issued quarantines, the quest for a remedy, the economical effects, for
example, are part of this topic. The de facto definition of topic along which the ‘official’
TDT2 and TDT3 corpora are produced is as follows (Cieri et al. 2002):

Definition 2. A topic is an event or an activity, along with all related events and activities.

The terms ‘event’ and ‘topic’ have been used interchangeably in TDT for historical
reasons, which makes the distinction slightly difficult. Initially, the focus was confined on
identifying news events, and later the scope was broadened to involve topics as defined
above. However, the topics are defined in terms of events.

2.2. Problems in event-based information retrieval

The different TDT tasks can all be considered to be some sort of detection: given an input
and a hypothesis about the data, a TDT system makes a decision, whether that hypothesis
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holds (Fiscus and Doddington 2002). In information retrieval there are plenty of detection
tasks, but in TDT the tasks are intimately related to time. The nature of TDT detection tasks
is probably best portrayed by comparing them to another tasks of information retrieval, text
categorization, for example.

Automatic text categorization is usually carried out using some machine learning system
(see e.g., Sebastiani 2002, Yang and Liu 1999). Such a system is taught to recognize the
difference between two or more predefined classes or categories by providing a number
of pre-labeled samples to learn from. As to classes and word frequencies, this training
material is assumed to lend itself to the same underlying distribution as the material that
is to be categorized. More formally, the documents D = {d1, d2, . . . , d|D|} and their labels
C = {c1, c2, . . . , c|C |} are seen to be governed by an unknown distribution. This distribution
is expressed as a function ȟ that assigns to each document-label pair {〈di , c j 〉 ∈ D×C | 1 ≤
i ≤ |D|, 1 ≤ j ≤ |C |} a boolean value indicating their relevance, i.e.,

ȟ : D × C → {−1, 1}.

The task of classification is to come up with a hypothesis

h : D × C → {−1, 1}

that represents ȟ, practically, with the ‘highest’ accuracy. This accuracy is evaluated with a
pre-labeled testing material that contains the same classes C as the training material.

Now, with TDT the problem is different. Let us assume that the documents and events
yield to an unknown distribution represented by the function

ǧ : D × E → {−1, 1}

that assigns each document di ∈ D a boolean value indicating whether it discusses event
e j ∈ E or not. The problem is that domain of E = {e1, e2, . . . , e|E |} is time-dependent. This
means that the hypothesis

g : D × E → {−1, 1}

cannot be evaluated similarly to text categorization, because the test set does not contain
the same events as the testing set. In fact, we have no a priori knowledge of the domain E .
What we are left with is a pair-wise similarity of documents. By examining the pair-wise
comparisons in the training set, we can formulate a hypothesis

k : D × D → {−1, 1}

that assigns the pair 〈di , d j 〉 ∈ D × D a boolean value 1, if the documents discuss the same
event, −1 otherwise. Any two documents about the same event are (ideally) similar in a
similar way. This somewhat trivial observation has some implications worth mentioning.

Firstly, the detection and tracking are based on pair-wise comparisons of documents,
which requires exhaustive computation. An event can be represented by a centroid vector
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or by some compilation of on-topic documents, but the number of one-document events
is very high, as unlabeled documents are considered singleton events. The detection and
tracking algorithms have to take these into account and make sure, they do not miss anything
relevant.

Secondly, the system’s knowledge of events E relies on the first-story detection. FSD
has been characterized as ‘queryless retrieval’ as we do not know what to look for exactly.
‘New’ is something unexpected that is sufficiently different from the old. Hence, one has
to run tracking with just one document in order to determine its novelty, and if none of the
old documents match to the new one, the document is considered a first-story. Allan et al.
(2000) showed that the performance of this kind of tracking-based FSD is highly unlikely
to attain a reasonably effective level, if tracking relies on full-text similarity.

In addition, as the events evolve the vocabulary of the relevant documents can change
quite considerably over time. For instance, there is no mentioning of Timothy McVeigh
until the 61st document reporting the Oklahoma City bombing, but then he was arrested,
convicted and later executed (Allan et al. 1998c). This change in the vocabulary complicates
the construction of event representation as it would have to address this degradation. The
event evolution is one of the major challenges of TDT.

2.3. Related work

There have been many attempts to overcome the problems discussed in the previous section.
The methods applied in TDT cover a good portion of the prevailing techniques information
extraction, retrieval and filtering, text clustering and text categorization and natural language
processing. Fundamentally, a TDT system runs on-line and does not have any knowledge
of the unseen documents, which makes it a case for clustering. There has been, however,
research on retrospective topic detection and tracking, where the system is shown all of the
data at once (Allan et al. 1998a, Yang et al. 1999), but the focus is mainly on the on-line
setting.

Allan et al. (1998c) considered each incoming document a query that was made on
the previous documents. If the returned answer was not similar enough, the story was
considered a first-story. The terms were weighted with a modification of TFIDF and by
its surprisingness. A term was seen as surprising if it had not occurred recently. The need
for exhaustive pair-wise comparisons of documents was avoided by the use of an inverted
index. Motivated by this computational efficiency, we employ the inverted index as well.

Yang et al. (1999) employed a group-average and a single-pass clustering in topic de-
tection. Typically, the group-average clustering (GAC) iterates over the data, starting from
one-document singletons and at each step merging the closest clusters until given number of
clusters is found or the clusters are too distant to be merged. The computational complexity
of GAC is typically quadratic to the number of documents. The efficiency was increased
by dividing the clusters into evenly-sized buckets (Cutting et al. 1992) and applying GAC
locally to a bucket before removing bucket boundaries. The single-pass approach constructs
clusters in one go. A document is associated with an event, if the similarity exceeds a pre-set
threshold. This approach was accompanied by a time penalty: events tend to be temporally
proximate and thus older documents are less likely to discuss the same event.
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In topic tracking Yang et al. (1999, 2000) have favored k-nearest neighbor, kNN, with
some modifications. The advantage of kNN over many other classifiers is that being instance-
based it makes fewer assumptions on the data. The centroid (or centroids) representing a
topic can easily be changed, unlike in Rocchio, for instance. However, Rocchio has been
combined with topic-type categories that on one hand reduced the number of computation
as the search-space was confined to the topic-type and on the other hand enabled a topic-
type-based term-weighting Yang et al. (2002b). Yang et al. (2002a) have also experimented
a multi-strategy approach that combines Rocchio, kNN and language modeling into a TDT
system with some success.

Since the analysis of the performance of first-story detection by Allan et al. (2000), there
has been more work on utilizing information external to the system or produced by natural
language processing techniques. Carthy (2002), for instance, used WordNet (Miller 1995)
in building lexical chains, i.e., sequences of related words in the text, which were then
used in combination with keywords in topic tracking. Intuitively, it would seem that proper
names and other named entities (NE) would benefit the differentiating of events. Both
Allan et al. (1999) and Yang et al. (2002b) extracted seven types of NE’s for the purposes
of FSD: locations, names of individuals and organizations, time and date references, and
sums of money and percentages. Pons et al. (2002) used temporal references in building
a hierarchy of topics and events. Makkonen et al. (2002) split the term space into four
classes of semantically similar words, names, locations, temporal expression and general
terms, and conducted the comparisons of documents class-wise. Later, this comparison
was augmented with two class-based ontologies: time-axis and geographical taxonomy
(Makkonen et al. 2003). We develop this approach further by applying the techniques on
English and introducing a proper optimization for the weights of the semantic classes.

3. Enhanced document representation

It has been difficult to detect two distinct train accidents and bombings, for instance, as
different events (Allan et al. 1998a). The terms occurring in the two documents are so similar
that a term space and a weighting-scheme in use fail to represent the required distinction.
Allan et al. (1998b) suspect that only a small number of terms is adequate to make the
distinction between different news events. The problem is, of course, to know which ones.
Intuitively speaking, when news report two different train accidents, intuitively it would
seem that the location and the time, possibly some names of people, are the terms that
make up the difference. Papka observes that when increasing the weights of noun phrases
and dates, the classification accuracy improves and when decreasing them, the accuracy
declines (Papka 1999).

Our approach is based on this observation. We extract four types of terms: locations,
temporal expressions, names and general terms. The exploitation of named entities is by no
means a novel technique (see e.g., Allan et al. 1999, Yang et al. 2002b), but since we store
the terms in distinct vectors and conduct the comparison of two documents vector-wise, we
are able to assign each term-type a similarity measure. Because all the temporal expressions,
for example, have a relation to all other temporal expressions via this dedicated similarity
measure, we are in fact introducing simple semantics.
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prime ministerpalestinian

Ramallah

Yasser Arafat

Wednesday

Mahmoud Abbas

West Bank

appoint

Event vector

TERMS

NAMES

LOCATIONS

TEMPORALS

Figure 1. An example of an event vector. “RAMALLAH, West Bank—Palestinian leader Yasser Arafat appointed
his longtime deputy Mahmoud Abbas as prime minister Wednesday, . . .” (AP: Wednesday, March 19, 2003).

3.1. Event vector

A news document reporting an event states at the very barest what happened, where it
happened, when it happened, and who was involved. The automatic extraction of these facts
for natural language understanding can be troublesome and time-consuming. Many of the
previous detection and tracking approaches have to encapsulated all the content in a single
vector. To be able to differentiate topics of the same type while maintaining robustness, we
assign each of the questions a semantic class, i.e., groups of semantically related words,
as we have previously reported (Makkonen et al. 2002). The semantic class of LOCATIONS

contains all the places mentioned in the document, and thus gives an idea, where the event
took place. Similarly, TEMPORALS, i.e., the temporal expressions denote a point or an interval
of time, and bind the text onto the time-axis. NAMES are proper noun phrases that represent
the people or organizations involved in the news story. What happened is represented by
‘normal’ words which we call TERMS.

The representation of the document using semantic classes is illustrated in figure 1. This
event vector comprises four sub-vectors that reside in distinct spaces due to the semanti-
cal dissimilarity. If two documents coincide as to temporal expressions and locations, for
example, it would serve as an evidence for them to discuss the same event. Of course, the
on-line news stream reports events as they are fresh, and thus the temporal similarity would
be quite high for the news published on the same day.

3.2. Comparing event vectors

By dividing the term space into semantic classes we are able to compare the documents
class-wise. This means that we examine the corresponding sub-vectors of two event repre-
sentations at a time: LOCATIONS in the one document against the LOCATIONS in the other,
NAMES in the first document against NAMES in the other and so on. Within each class we can
choose the measure of similarity independent of another class. For example, the similarity
of two LOCATION terms can be based on a geographical proximity and thus the terms London
and Thames would be highly relevant. Similarly, the utterances “next week” and “the last
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week of March 2003” differ on the surface, but when evaluated with respect to the utterance
time they could denote the same temporal interval.

Thus, instead of having just a binary similarity based on a string matching, we can map the
terms onto an ontology, where their relation can be more fine-grained than match–mismatch.
The result of class-wise comparisons is a vector v = (v1, v2, v3, v4) ∈ R

4 comprising the
class-based similarities.

In the following, we present the class-wise similarity functions: the common TERMS

and NAMES in Section 3.2.1, TEMPORALS and LOCATIONS in Sections 3.2.2 and 3.2.3,
respectively.

3.2.1. General similarity. Naturally, all terms are not equally informative. In determin-
ing the of TERMS and NAMES we use the term-frequency inverted document frequency,
TFIDF (Salton and Buckley 1988). Let T = {t1, t2, . . . , tn} denote the terms and D =
{d1, d2, . . . , dm} documents. Thus, the weight is determined by a function w : T × D → R

such that

w(t, d) = f (t, d) · log

( |D|
g(t)

)
, (1)

where function f : T × D → N represents the number of occurrences of term t in
document d, |D| is the total number of documents, and function g : T → N is the number
of documents in which term t occurs, i.e., the document frequency of term t .

The similarity σ of two sub-vectors Xk and Yk of semantic class k is based on the cosine
of the two,

σ (Xk, Yk) =
∑|k|

i=1 w(ti , Xk) · w(ti , Yk)√∑|k|
i=1 w(ti , Xk)2 ·

√∑|k|
i=1 w(ti , Yk)2

, (2)

where |k| is the number of terms in the semantic class of k.

3.2.2. Temporal similarity. There are three problems one has to deal with before temporal
expressions can be used automatically in the TDT tasks: recognition, formalization and
comparison. First, the expressions have to be extracted from the text. Second, the expressions
need a formal interpretation, an interval on a linearly ordered global time-line, for example.
In addition to the expression, one often needs some context information, such as the utterance
time and the tense of the relevant verb, to map the natural language expression on to the time-
line. And finally, there has to be a suitable method of employing the formalized expressions.

In recognizing temporal expressions, we employ functional dependency parsing (see, e.g.,
Järvinen and Tapanainen 1997) and finite-state automata. Once an expression is recognized,
the terms it contains are converted to operations that move the utterance time back or forth on
the time with respect to the utterance time. We define these operations on top of a calendar
(Goralwalla et al. 2001) that defines a global time-line, granularities of time units and
conversion functions between the granularities. The granularity Year would consist of 365
units of days, with the exception of leap years. The granularity March would equal to every
twelfth element of granularity Month. A Month contains from 28 to 31 Days, and so on.
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May 19, 2003
Monday

May 26, 2003
Monday

timeline T

last Wednesday

during last week

three days ago

today

Figure 2. An example of mapping four temporal expressions uttered on May 27, 2003.

For example, in figure 2 there are four temporal utterances mapped onto a timeline.
The expression “during last week” first shifts the utterance time (Tuesday May 27, 2003) to
the beginning of the previous element of granularity Week and then spans the duration from
the Monday to the next Sunday. Similarly, the expression “last Wednesday” finds the pre-
vious element of granularity Wednesday. However, if the expression was “on Wednesday”,
the mapping would require the verb tense. Otherwise, it is not clear, which Wednesday is
the expression refers to. In sentences like “The meeting was scheduled for Wednesday” the
ambiguity cannot be resolved with just the verb tense.

Many of the expressions can be formalized in a straight-forward manner. We are, however,
able to deal with more complex expressions, such as ‘The strike started on the 15th of May
1919. It lasted until the end of June, although there was still turmoil in late January next
year”. Further details can be found in Makkonen and Ahonen-Myka (2003).

The temporal similarity of two documents is a result of a pair-wise comparison of the
expressions: each start-end pair of one document is compared to each of the start-end pairs
of the other. Krippendorff (1995) has carried out various investigations with intervals and
motivated by his work we propose a cross-tabulation illustrated in figure 3. The diagonal
represents the synchronous points between the time-axis of document A and time-axis
of document B. The shaded areas correspond to the intersections between the intervals
A = {A1, A2, A3} and B = {B1, B2, B3, B4}.

If the two sets contain the same intervals, they cover each other completely. In such case,
all of the intervals would be shaded completely along the diagonal in figure 3. In case there
are the intervals are not equal, the larger intervals provide weaker coverage than shorter
ones. For example, consider comparing a day and a year versus a day and a weekend. We
base the temporal similarity on how well the two sets of intervals cover each other. The
more the intervals overlap with respect to their lengths, the higher the similarity.

Let T stand for a global time-line. An interval x ⊆ T on this time-line is defined simply
as a pair of a start and an end points, xs, xe ∈ T such that x = [xs, xe]. To determine the
similarity of two intervals, we measure the portion of overlap with respect to the lengths
of the intervals. The similarity of two temporal intervals x ⊆ T and y ⊆ T is defined by a
function

µt (x, y) = 2 �([xs, xe] ∩ [ys, ye])

�(xs, xe) + �(ys, ye)
, (3)
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A3

A2

A1

B1 B2 B3 B4

t

t

Figure 3. A cross-tabulation of two sets of intervals A and B.

where � : T ×T → R, �(xs, xs) = 1 is the duration (in days) of the given interval. If the
interval x is completely covered by the interval y, then µt (x, y) = 1. If they are distinct,
then µt (x, y) = 0. In the example of figure 3, the intersections A3 ∩ B4 and A2 ∩ B3 would
result in a higher µt -value than any of the intersections A1 ∩ B1, A1 ∩ B3, and A1 ∩ B2,
because the sizes of the intersections A3 ∩ B4 and A2 ∩ B3 are closer to the sums |A3|+ |B4|
and |A2| + |B3|.

In measuring the temporal similarity of two documents, we calculate µt (xi , y j ) for each
pair of intervals of TEMPORAL sub-vectors X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}.
The results are stored in a cover matrix illustrated in figure 4. From these pair-wise simi-
larities we select the maxima for each interval xi denoted by max(xi , Y ). The similarity of
two TEMPORAL sub-vectors X and Y is the average of these maxima. Hence, the temporal
similarity σt (X, Y ) of the two sets of intervals determined by a function

σt (X, Y ) =
∑n

i=1 max(µt (xi , Y )) + ∑m
j=1 max(µt (X, Y j ))

m + n
(4)

Figure 4. A cover matrix of TEMPORAL sub-vectors X and Y .



SIMPLE SEMANTICS IN TOPIC DETECTION AND TRACKING 357

Table 1. An example of a 5-level ontology.

Location Type Level 1 Level 2 Level 3 Level 4 Level 5

Delft City Europe W. Europe Netherlands Zuid-Holland Delft
Europe Continent Europe – – – –

Haag City Europe W. Europe Netherlands Zuid-Holland Haag

Main River Europe W. Europe Germany Rhine Main

Netherlands Country Europe W. Europe Netherlands – –

North Sea Sea Atlantic North Sea – – –

Rhine River Europe W. Europe Switzerland, North Sea Rhine

Germany,

France,

Netherlands

The values of µt (x, y) vary between 0 and 1, and naturally the average of their maxima
vary in the same range.

3.2.3. Spatial similarity. When reporting floods in Siberia, the news might use geograph-
ical terms such as Russia, Lena, Vilyuy, Lensk and Yakutsk. Clearly, these terms have
nothing in common on the surface; their relevance cannot be understood without a geo-
graphical ontology. Thus, each term would have to be mapped onto a structure, where the
meaning of a term is its relation to other terms.

We employ a 5-level hierarchy in our knowledge of the world as portrayed in Table 1. The
levels involved depend on the type of the location. As to land, the levels are continent, region,
country, administrative region (e.g., province, state, commune, municipality, municipio,
gemeente, kommun), and city. In addition to administrative region, level 4 can also be
mountains, seas, lakes and (larger) rivers that include or connect to mountain peaks and
(smaller) rivers.

Figure 5 shows a simplified hierarchy containing a number of places. Each node in the
tree stands for a location. In case we want to measure the similarity of two such locations

FRANCE GERMANY NETHERLANDS

OCEANIA EUROPEASIA

PARIS LYON

CHINA JAPAN

Figure 5. A simplified ontology tree.
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x and y, we divide the length of the common path x ∩ y with the sum of the paths to the
elements

µs(x, y) = λ(x ∩ y)

λ(x) + λ(y)
, (5)

where λ(x) is the length of the path from the root of the ontology to the element x . We
assign µs(x, x) = 1. Comparing France and Germany in the simplified ontology of figure 5
yields 1/(2 + 2) = 1/4. Similarly, China and Paris yield 0/(2 + 3) = 0. Paris and France
have similarity of 2/(2 + 3) = 2/5.

All the spatial references of one document are to be compared with all the spatial ref-
erences of another. For this, we employ the cover matrix presented in Section 3.2.2. For
each term in one sub-vector we calculate the maximum similarity among the terms of the
other. The spatial similarity σs(X, Y ) of two LOCATIONS vectors X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , ym} is the average of these maxima, i.e.,

σs(X, Y ) =
∑n

i=1 max(xi , Y ) + ∑m
j=1 max(X, y j )

m + n
. (6)

4. Topic detection and tracking algorithms

The class-wise comparison of two event vectors results in a vector v = (v1, v2, v3, v4) ∈ R
4.

The question remains, how to go about turning this vector into a decision, whether two
documents discuss the same topic or not. In our previous work, in addition to the traditional
similarity coefficients, we presented a heuristic weighted sum that also turned out to give
the best results (Makkonen et al. 2003).

4.1. Weighted sum

The similarity of two event vectors X and Y is based on a weighted sum δ(X, Y) of the
class-wise similarities

δ(X, Y) =
4∑

i=1

wi · σi (Xi , Yi ) = 〈w · v〉, (7)

in which wi ∈ R is the weight for the semantic class i , σi is the similarity measure of
semantic class i , Xi and Yi are the sub-vectors of the semantic class i , and 〈w · v〉 is the
inner-product of the weight vector and the class-wise similarity vector. The of approach
of Makkonen et al. (2003) was heuristic for two reasons: Firstly, the weights representing
the relative emphasis of the semantic classes were a result of trial-and-error, instead of
proper optimization. Secondly, we rewarded for the co-occurrence of non-zero values in
similarities of TERMS, LOCATIONS and NAMES and punished for the lack of the similarity of
TERMS. In the following we address both of these inadequacies.
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One way to transform the vector v into a decision is to divide the space of class-wise
similarities into two sub-spaces by a hyperplane. A positive distance indicates that the
documents are about the same topic, and negative distance that they are not. The hyperplane
is defined by a linear equation

ψ(v) = 〈w · v〉 + b = 0, (8)

where w ∈ R
4 is orthogonal to the hyperplane and b ∈ R is the bias. One very simple

solution for finding w and b would be a Rosenblatt’s perceptron (see e.g. Mitchell 1997).
Provided with both positive and negative examples the perceptron iterates several times
over the data, and adjusts the weight vector each time it makes a misclassification until no
mistakes are made. If the data is linearly separable, the perceptron is guaranteed to converge
to the optimal set of weights.

One of the problems we have had was that the data is not linearly separable and it was
very difficult to build a reliable classifier with four dimensional vectors. To circumvent this
and to address the second heuristic aspect we had earlier, we define a function φ : R

4 → R
15

that expands the vector v with the powerset of its dimensions. In other words, the initial
vector v = (v1, v2, v3, v4) is expanded into

v′ = (v1, v2, v3, v4, v1v2, v1v3, . . . , v1v2v3, v1v2v4, . . . , v1v2v3v4).

Now, the linear equation of the hyperplane is expressed as

ψ(v) = 〈w′ · φ(v)〉 + b = 0, (9)

where w′ ∈ R
15 is a 15-dimensional weight vector. The φ-mapping increased the learnability

of the data considerably, although it is still not linear. We used the delta rule in adjusting the
weights which ensures the asymptotical converge towards the optimal weight vector. The
powerset expansion can lead to redundant dimensions, but the perceptron would attribute
them with weights close to 0.

4.2. Topic tracking

According to the topic tracking task definition, each topic is trained and tracked indepen-
dently of the others, and at encountering a new document the system has to make just one
binary decision: is this document discussing the topic or not (Allan 2002b). The given topic
is defined in terms of sample documents, usually from one to four. We do not update the
document representation.

A straight-forward topic tracking algorithm is shown in Table 2. In the beginning, we
construct the event vector for the given topic from the sample documents. Then, we go
through the incoming documents one-by-one, build the event vector and compare it class-
wise against the topic vector. The judgment on rows 8–10 is based on the inner product
between the class-wise similarities and the pre-calculated weight vector w.
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Table 2. A simple topic tracking algorithm with weighted sum.

1 topic ← buildVector();

2 for each new document d

3 doc ← buildVector(d);

4 v ← (); answer ← ();

5 for each semantic class c

6 v[c]← simc(docc, topicc);

7 end;

8 if (〈w · φ(v)〉 + b ≥ 0)

9 then decision ← ‘YES’;

10 else decision ← ‘NO’;

11 fi;

12 end;

4.3. First story detection

The first-story detection makes a decision whether the incoming document discusses a new
topic or not, i.e., when to start a new topic cluster. Unlike topic tracking, first-story detection
considers all the previous data before making its judgment.

The first-story detection algorithm is described in Table 3. Initially, the set of found topics
is empty. Naturally, the first document in the system is also a first-story. For each incoming
document, we try to find the closest match from the previous documents. If the closest match
is similar enough, i.e., if the decision function yields a value large enough, the documents
are considered to discuss the same topic. If the similarity is below a threshold, the document
is considered to be a first-story.

5. Experiments

5.1. Corpus and ontology

One of the participants in the TDT programme has been the Linguistic Data Consortium.
It has been responsible for the construction and maintenance of several corpora designed
for the purposes of evaluating TDT systems. We run our experiments on TDT2 corpus that
spans from January 4 to June 30, 1998 consisting of over 60,000 documents. The news
are from six sources of three different types: two on-line newspapers (the New York Times
News Service and the Associated Press Worldstream News Service), two TV broadcasts
(CNN “Headline News” and ABC “World News Tonight”) and two radio broadcasts (Public
Radio International’s “The World” and the Voice of America). Table 4 presents the number
of documents and the average size of a document per source. We do not include the three
Asian sources in Mandarin Chinese in the experiments.

The corpus is text, and roughly two thirds of it is transcribed from speech to text by
automatic speech recognition (ASR), and that the broadcasts are considerably shorter than
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Table 3. A first-story detection algorithm.

1 topics ← (); decision ← ()

2 for each new document d

3 doc ← buildVector(d);

4 max ← 0; max topic ← ();

5 for each topic

6 for each semantic class c

7 v[c] ← simc(docc, topicc);

8 end;

9 if (〈w · φ(v)〉 + b ≥ max)

10 max ← 〈w · φ(v)〉 + b;

11 max topic ← topic;

12 end;

13 end;

14 if (max < θ )

15 then decision[d] ← ‘first-story’;

17 else decision[d] ← max topic;

18 fi;

16 add(topics, doc);

19 end;

Table 4. Information on TDT2 corpus. The total size is 64,527 documents.

Source Type # documents Avg # words/doc

New York Times (NYT) Newswire 11,795 850.363

Associated Press (APW) Newswire 12,760 346.623

CNN Television 21,588 70.001

ABC Television 3,179 108.732

Public Radio Intl (PRI) Radio 4,390 224.320

Voice of America (VOA) Radio 10,815 101.876

the newswire documents. The ASR is prone to spelling mistakes, especially on non-English
names.

There are about 10,000 documents with topic labels of 100 events distributed over the
length of the corpus, 35 of which are in the training set comprised by the first two months.
The validation set contains 25 and the testing set 34 events. A more detailed anatomy of
TDT2 can be found in Cieri et al. (2002).1

Our ontology is a combination of the data from Statistics Finland (Tilastokeskus), World
Factbook (CIA 2003), and a list of geographic feature names (NIMA). The amount of
different kinds of geographic names can be seen in Table 5.
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Table 5. Ontology statistics.

Type Type

Continents 6 Mtn. peaks 269

Regions 32 Mountains 145

Countries 285 Rivers 390

Adm. districts 3350 Lakes 282

Cities 49826 Oceans/seas 77

Deserts 31 Islands 305

5.2. Term extraction in TDT2

Most of our term extraction relies on the Connexor Functional Dependency Grammar
parser for English (EN-FDG)2 that is capable of syntactical, morphological and dependency
functional parsing. As TERMS we pass subjects, objects, attributive nominals, prepositional
complements and main verbs. If a term is recognized as NAME or a LOCATION, it is not passed
as a TERM. Although the prepositions, particles and other functional words were filtered by
the selection criteria, we applied a stoplist to filter the very common and content-poor verbs
(e.g., see, believe, think, and so on).

The recognition of NAMES and LOCATIONS was based on Connexor’s Term Extractor (EN-
BRACKETS). However, the majority of the data is automatically recognized speech and
some portion of it lacks capital letters that are crucial for the efficient term extraction. We
were able to fill in some of the upper-case letters with a set of simple syntax-based automata
and a gazetteer, a list of names of people, organizations and geographical locations. This
operation increased the average of LOCATIONS from 0.000 to 2.485 and the average of
NAMES from 2.470 to 3.253 in the CNN material.

Table 6 presents the expectation of the number of elements of semantic classes in a docu-
ment originating from different sources. Clearly, the on-line news of NYT and APW contain
most terms in all semantic classes. The ratio of LOCATIONS and NAMES is very high in the the
radio broadcasts compared to the rest. This may be due to the habit of reporters introducing
themselves and the name of the station and its whereabouts at every turn. The frequencies
of terms in CNN material are decreased by numerous empty or very short documents that
contain only brief references of what are the topics in during the next half an hour.

Table 6. The average number of occurrences of a semantic class per source.

Semantic class NYT APW CNN ABC PRI VOA Avg

LOCATIONS 13.726 11.016 2.485 3.780 7.345 6.368 7.910

NAMES 35.802 14.654 3.253 5.656 6.332 7.850 14.109

TERMS 191.077 87.932 31.139 51.011 74.505 54.178 86.581

TEMPORALS 9.018 5.495 1.558 2.616 2.463 2.301 4.348
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Table 7. Contingency table for TDT system responses (Fiscus and Doddington 2002).

Corpus annotation

Target Non-target

System Yes (target) correct(+) false alarm

Response No (non-target) miss correct(−)

5.3. Evaluation

Traditionally in IR, the effectiveness of a system is assessed in terms of correct judgments
with respect to number of judgments made (precision) and the number of all possible correct
judgments (recall). The tasks of TDT are fundamentally detection tasks and therefore,
instead of using precision and recall, the evaluation is based on error-rates, the number of
false-alarms and misses (Fiscus and Doddington 2002). The matrix for system responses
for TDT is shown in Table 7.

We also report the precision p, recall r and F1 measures:

p = #correct(+)

#correct(+) + #false alarm

r = #correct(+)

#correct(+) + #miss

F1 = 2 · p · r

p + r

In order to enable cross-system comparisons, the error-rates are combined into one a
single detection cost by the following formula:

Cdet = (Cmiss · Pmiss · Ptarget + Cfa · Pfa · (1 − Ptarget)) (10)

where Cmiss and Cfa are the costs of a miss and a false-alarm, Pmiss and Pfa are the probabilities
of a miss and false-alarm which are determined in the evaluation, and Ptarget is the prior
target probability that represents the portion of labeled documents with respect to all the
documents in the corpus. Following a convention in the TDT evaluations (see e.g. Yang et
al. 2002b), we assign Cmiss = 1.0, Cfa = 0.1 and Ptarget = 0.2.

The scores of Cdet are often normalized onto a more meaningful range by dividing the
score by the cost of answering YES or NO consistently. Thus, we get the normalized
detection cost

(Cdet)norm = (Cmiss · Pmiss · Ptarget + Cfa · Pfa · (1 − Ptarget))

min(Cmiss · Ptarget, Cfa · Ptarget))
. (11)

A cost (Cdet)norm of zero would mean that the system is infallible, but the score of one would
mean that it is doing no better than saying YES or NO to all documents.
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5.4. Results

We trained the perceptron with 2000 positive and 2000 negative samples and evaluated it
with a set of the same size. The data was not linearly separable, and in the training set
there were a little over a hundred documents that could not be classified correctly despite
increasing the epochs and adjusting the learning rate. We also tested nonlinear models with
Radial Basis Function of SVMlight (Joachims 2002) with a number of cost models (stressing
the high recall/low miss-rate) and data samples, but none of the classifiers was substantially
better than the linear perceptron.

Our baseline is a simple cosine classifier with TFIDF term weights (see Eqs. (1) and (2)).
The features were selected on the basis of the part-of-speech; we chose verbs, nouns, and
adjectives that were not in a stop-list. The IDF-weights were calculated from the training
and validation sets of the TDT2 corpus. Neither tracking nor first story detection deferred
their decision and in all the tracking experiments the number of samples defining the topic
Nt = 1.

The topic tracking micro-average (story-weighted) results are presented in Table 8. In
the ‘best’ column (Cdet)norm means that the row was obtained by minimizing the normalized
detection cost. Similarly, the row with F1 was the result of the best F1-measure.

The baseline results are highly similar to those of Schultz and Liberman (2002), who
had a similar kind of monolingual tracking approach based on TFIDF-weighted cosine.
They found that the simple tracking method performed equally well or better than the more
sophisticated methods. Here, the semantical augmentation degraded the results.

An obvious reason is that the similarity measures of TEMPORALS and LOCATIONS increase
the similarity too much with distantly relevant terms, as neither of them has a vagueness
function that would account for the inherent indefiniteness of the term. The matching terms
‘Asia’ yield the same similarity value as the terms ‘Washington’, although the former
covers approximately one third of the land mass of Earth and contains about half of the
population. On the other hand, as the name of the capital ‘Washington’ occurs often in
the context of international or national politics in the form “Washington says so-and-so”,
for example.

Similarly, two temporal expressions denoting the year 1997, for example, overlap each
other completely and would thus give a similarity value of one, just as two matching definate
dates would. Then again, in the corpus year 1979 refers typically to either Pol Pot or to
Iranian revolution. Things in distant past are not associated with exact dates very often. It
is not straight-forward to establish a vagueness function that would take both the duration

Table 8. The micro-average results of topic tracking.

Method Best Cdet (Cdet)norm Pmiss Pfa p r F1

Cosine (Cdet)norm 0.0058 0.0720 0.0100 0.0470 0.2361 0.7900 0.2927

Cosine F1 0.0524 0.6553 0.2582 0.0097 0.5297 0.7418 0.5481

Weighted sum (Cdet)norm 0.0471 0.5214 0.1818 0.0668 0.1646 0.8181 0.2741

Weighted sum F1 0.0849 1.0621 0.4242 0.0015 0.8636 0.5758 0.6910
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Table 9. The micro-average results of first story detection.

Method Best Cdet (Cdet)norm Pmiss Pfa p r F1

Cosine (Cdet)norm 0.0033 0.0414 0.0000 0.0414 0.4583 1.0000 0.6386

Cosine F1 0.0381 0.4768 0.1818 0.0223 0.5625 0.8181 0.6667

Weighted sum (Cdet)norm 0.0036 0.0446 0.0000 0.0446 0.4400 1.0000 0.6111

Weighted sum F1 0.0558 0.6977 0.2727 0.0159 0.6154 0.7272 0.6667

and the distance into account. In addition, it is difficult to determine, what interval “three
years ago” really refers to.

The micro-averaged results of first story detection are shown in Table 9. Unlike in tracking,
the detection methods go through all the previous documents before making a decision. This
has benefitted the weighted sum more that the baseline. It seems that by choosing the most
similar document from the previous ones and making a decision based on that, both methods
were able to decrease the misses down to zero. Of course, the tasks are not the same, but in
the tracking results, it is particularly the number of misses that degrade the weighted sum
performance.

Allan et al. (2000) see the “reasonable” performance as missing less than 10% of the first
stories while generating only 0.05% false alarms (Allan et al. 2002). Although both of the
first-story detection approaches meet the first criterion, the number of false alarms is still
too high.

Although the performance of the semantic class approach in tracking is low and con-
siderably worse than the baseline, there is a slight consolation in that the F1-measures of
the semantic class approach are actually better than what we had earlier (Makkonen et al.
2003) in spite of that the TDT2 corpus is ten times larger and far more heterogeneous than
the Finnish single-source collection. Clearly, the proper optimization and the expansion of
the class-wise similarity vector were beneficial.

What is there to be done to improve the performance? Firstly, the spatial and temporal
similarities need to be re-thought. Better similarity functions would have an impact on
the learnability of the similarity vectors and thus on the perceptron weights and thus on
the results. As discussed above, the vagueness should be taken into account, but it is not
at all clear, in what way the geographical or the semantical features and corpus-based
statistical measures should be combined. We are thinking of representing temporal intervals
as probability distributions, which would account for vagueness in expressions such as
“three years ago”. Also, the recognition of TEMPORALS, LOCATIONS and NAMES should be
improved.

Secondly, there is work to be done on term selection techniques and term weighting.
Currently, the feature selection uses only syntactical characteristics and a stop-list. By
building a posteriori approaches that are shown all the data and the labels, we plan to
examine what kind of terms undermine or reinforce the tasks and can they be detected
automatically. In the same way, we plan to investigate the temporal and spatial cohesion of
an event: how many and what kind of terms appear as the event evolves? Are the new terms
semantically relevant to the old.
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6. Conclusions

We presented an approach on a topic detection and tracking approach that employs semantic
classes in event representation. We split the term space into four semantic classes: places,
names, temporal expressions and general terms. This makes it possible to compare two
documents class-wise, and assigning each class a dedicated similarity measure that can
utilize an external ontology. We have built a geographical and temporal ontologies the use
of which relies on extensive use of natural language processing techniques.

We built an optimizer for the weights of the semantic classes. A simple perceptron was
trained with samples of pair-wise comparisons of documents to distinguish, when two
documents discuss the same event and when they do not.

The results showed the efficiency of cosine based similarity with TFIDF term weights,
which has been a difficult baseline to surpass. The semantical augmentation seemed to
degrade the performance, especially in topic tracking. We suspect that this is at least partially
due to the inadequate spatial and temporal similarity functions. In the future, we will work
on similarity functions for spatial and temporal terms that would take vagueness into account
and would reduce the noise. We will also work on term selection and term weighting.

Notes

1. There is plenty of information available at the LDC’s WWW site http://www.ldc.upenn.edu/Projects/TDT2/.
2. http://www.connexor.com.
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Goralwalla IA, Leontiev Y, Özsu MT, Szafron D and Combi C (2001) Temporal Granularity: Completing the

Puzzle. Journal of Intelligent Information Systems, 16(1):41–63.
Järvinen T and Tapanainen P (1997) A dependency parser for english. Technical Report TR-1, Department of

General Linguistics, University of Helsinki.
Joachims T (2002) Learning to Classify Text Using Support Vector Machines. Kluwer Academic Publishers,

Boston.
Krippendorff K (1995) On the reliability of unitizing continuous data. In: Marsden PV, Ed., Sociological Method-

ology. Blackwell, Cambridge, MA, pp. 47–76.
Lavrenko V, Allan J, DeGuzman E, LaFlamme D, Pollard V and Thomas S (2002) Relevance models for topic

detection and tracking. In: Proceedings of Human Language Technology Conference. San Diego, CA, pp. 104–
110.

Leek T, Schwartz R and Sista S (2002) Probabilistic approaches to topic detection and tracking. In: Allan (2002b),
pp. 67–84.

Makkonen J and Ahonen-Myka H (2003) Utilizing temporal information in topic detection and tracking. In: Koch
T and Solveig IT, Eds., Proceedings of the 7th European Conference on Digital Libraries (ECDL). Springer-
Verlag, pp. 393–404.

Makkonen J, Ahonen-Myka H and Salmenkivi M (2002) Applying semantic classes in event detection and tracking.
In: Sangal R and Bendre SM, Eds., Proceedings of International Conference on Natural Language Processing
(ICON). Mumbai, India, pp. 175–183.

Makkonen J, Ahonen-Myka H and Salmenkivi M (2003) Topic detection and tracking with spatio-temporal
evidence. In: Sebastiani F, Ed., Proceedings of the 25th European Conference on Information Retrieval Research
(ECIR). Springer-Verlag, Heidelberg, pp. 251–265.

Miller GA (1995) WordNet: A lexical database for English. Communications of ACM, 38(11):39–41.
Mitchell TM (1997) Machine Learning. McGraw-Hill.
NIMA, National Imagery and Mapping Agency, Geographic Feature names. http://www.nima.mil/gns/html/

index.html (visited September 19th, 2003).
Papka R (1999) On-line new event detection, clustering and tracking. PhD Thesis, Department of Computer

Science, University of Massachusetts.
Pons A, Berlanga R and Rumz-Shulcloper J (2002) Temporal-semantic clustering of newspaper articles for event

detection. In: Proceedings of Pattern Recognition in Information Systems (PRIS2002). Ciudad Real, Spain,
pp. 104–113.

Salton G and Buckley C (1988) Term-weighting approaches in automatic text retrieval. Information Processing
and Management, 24(5):513–523.

Schultz JM and Liberman MY (2002) Towards a “Universal Dictionary” for multi-language information retrieval
applications. In: Allan (2002b), pp. 225–242.

Sebastiani F (2002) Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1–47.
Swan R and Allan J (1999) Extracting significant time varying features from text. In: Proceedings of the Eighth

International Conference on Information and Knowledge Management (CIKM-99). ACM Press, pp. 38–45.
Tilastokeskus (Statistics Finland) http://www.stat.fi (visited September 19th, 2003).
Yamron JP, Gillick L, van Mulbregt P and Knecht S (2002) Statistical models of topical content. In: Allan (2002b),

pp. 115–134.
Yang Y, Ault T, Pierce T and Lattimer C (2000) Improving text categorization methods for event detection.

In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM Press, pp. 65–72.



368 MAKKONEN, AHONEN-MYKA AND SALMENKIVI

Yang Y, Carbonell J, Brown R, Lafferty J, Pierce T and Ault T (2002a) Multi-strategy learning for TDT. In: Allan
(2002b), pp. 85–114.

Yang Y, Carbonell J, Brown R, Pierce T, Archibald BT and Liu X (1999) Learning approaches for detecting
and tracking news events. IEEE Intelligent Systems Special Issue on Applications of Intelligent Information
Retrieval, 14(4):32–43.

Yang Y and Liu X (1999) A re-examination of text categorization methods. In: Proceedings of the 22nd Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press,
pp. 42–49.

Yang Y, Zhang J, Carbonell J and Jin C (2002b) Topic-conditioned novelty detection. In: Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, pp. 688–693.


