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Abstract 

The goal of this paper is to compare the similarities and differences between 

Bayesian and belief function reasoning. Our main conclusion is that although 

there are obvious differences in semantics, representations, the rules for 

combining and marginalizing representations, there are many similarities. We 

claim that the two calculi have roughly the same expressive power. Each calculus 

has its own semantics that allow us to construct models suited for these semantics. 

Once we have a model in either calculus, one can transform it to the other by 

means of a suitable transformation. 
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1. Introduction 

Bayesian probability theory and the Dempster-Shafer (D-S) theory of belief functions are two 

distinct calculi for modeling and reasoning with knowledge about propositions in uncertain 

domains. Bayesian networks and Dempster-Shafer belief networks both provide graphical and 

numerical representations of uncertainty. While these calculi have important differences, their 

underlying structures have many significant similarities. In this paper, we investigate the 

similarities and the differences between the two calculi. 

 A Bayesian network is a probability model consisting of a directed acyclic graph 

representing conditional independence assumptions in the joint distribution [Spiegelhalter et al. 
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1993]. A D-S belief network graphically describes knowledge and the relationships among 

variables using the so-called Dempster-Shafer theory of belief functions. Numerically, a 

Bayesian network consists of a factorization of a joint probability distribution into a set of 

conditional distributions, one for each variable in the network. A D-S belief network assigns D-S 

belief functions or basic probability assignments (bpa’s) to subsets of the variables in the domain 

of each relation. Likelihood functions can be used to update a Bayesian network, while 

additional evidence entered as bpa’s is used to update the D-S belief network. 

 The graphical representations in each type of network use variables and their respective 

state spaces. The relationships between these variables encode qualitative conditional 

independence assumptions of the uncertain domain. Bayesian and D-S networks model similar 

sets of conditional independence assumptions. 

 Similarities of Bayesian and D-S belief networks and their underlying calculi have been 

noted previously. The theory of belief functions captures Bayesian probability models as a 

special case, so any Bayesian network model can be replicated exactly in a D-S belief network 

model [Zarley et al. 1988]. Similarly, any D-S belief network model can be approximated by a 

corresponding Bayesian network model [Shafer 1986]. 

 Shafer and Srivastava [1990] argue that the belief-function calculus is a generalization of 

the Bayesian probability calculus and show that any Bayesian model of uncertainty is also a 

belief function model. They make a case for using the belief function calculus in the context of 

auditing due to its greater flexibility, but emphasize that using belief functions does not eliminate 

the possibility of later using the advantages of propagation associated with Bayesian reasoning. 

According to their conclusions, belief functions allow non-statistical evidence to be modeled in a 

way that legitimately represents the underlying knowledge base. 

 Our basic thesis is that Bayesian and D-S reasoning have “roughly” the same expressive 

power. We say roughly since we do not have an exact metric to measure the expressiveness of an 

uncertainty calculus. The two calculi have different semantics. However, given a model in one 

calculus, it is possible to transform the model to the other and achieve the same qualitative 
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results. Confirming this thesis will allow these two calculi to be further integrated in decision-

making applications. In a related paper [Cobb and Shenoy 2003], we examine methods for 

transforming a belief function model to an equivalent probability model. 

 The remainder of this paper is organized as follows. Section 2 describes the 

representation, semantics and process of making inferences in a Bayesian network. In Section 3, 

D-S belief network representations of uncertainty and their semantics are reviewed. Section 4 

compares and contrasts important facets of Bayesian and D-S belief networks. Finally, Section 5 

contains a summary and some conclusions. 

 

2. Bayesian Networks 

 Representation. Bayesian networks model knowledge about propositions in uncertain 

domains using graphical and numerical representations [Spiegelhalter et al. 1993]. At the 

qualitative level, a Bayesian network is a directed acyclic graph where nodes represent variables 

and the graph represents conditional independence relations among the variables, in a sense to be 

described shortly. At the numerical level, a Bayesian network consists of a factorization of a 

joint probability distribution into a set of conditional distributions, one for each variable in the 

network. Additional knowledge in the form of likelihood functions can be used to update the 

joint probability distribution. 

 Each variable in the network has a set of mutually exclusive and exhaustive possible 

values that comprise its state space. If there is a directed arc from variable X to variable Y, we 

say X is a parent of Y and Y is a child of X. Based on expert knowledge or empirical 

observations, a set of conditional probability distributions is specified for each variable, one for 

each configuration of states of the variable’s parents. 
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 Semantics. Figure 2.1 shows a Bayesian network for a hypothetical anti-air threat 

identification problem. The graph representing probabilistic relationships among the nodes 

reveals the conditional independence relations assumed in the network. Each variable in the 

network has a set of parents. The parents of each node are listed in Table 2.1 for each variable in 

the network of Figure 2.1. 

Figure 2.1. A Bayesian Network for the Anti-Air Threat Identification Problem 

Radar Warning Receiver (RWR)

Visibility (V)

Threat Effective? (TE)ML_Indicator (ML) EO_Sensor (EO)

Emitter (E) Threat_Mode (TM)

Range (R)Threat_ID (T)

Guidance (G)

 

 Consider an ordering of the variables such that the variables at the tail of directed arcs 

precede variables at the heads of the directed arcs. Since the directed graph is acyclic, such an 

ordering always exists. One such ordering in the example network of Figure 2.1 is T R E TM G V 

ML EO RWR TE. Each variable in a Bayesian network is implicitly assumed to be conditionally 

independent of its predecessors in the ordering, given its parents. Table 2.2 summarizes a 

minimal set of conditional independence relations assumed in the Bayesian network of Figure 

2.1. In summary, missing arcs from a variable to its successors in the ordering imply conditional 

independence assumptions in the joint probability distribution represented by the Bayesian 

network. 
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Table 2.1. Network Ordering Relationships for Threat ID Bayesian Network 

Variable Description # States Parents 
T Threat ID 7 {Ø} 
R Range 7 {Ø} 
E Emitter 7 {T} 

TM Threat Mode 7 {T, R} 
G Guidance 2 {T} 
V Visibility 3 {Ø} 

ML Missile Launch Indicator 2 {TM} 
EO Electro-Optical Sensor 3 {TM, G} 

RWR Radar Warning Receiver 2 {TM, G} 
TE Threat Effectiveness 2 {G, V} 

 

Table 2.2. One Set of Conditional Independence Assumptions for the Threat ID Bayes Net 

R ⊥ T 
E ⊥ R | T 
TM ⊥ E | {T, R} 
G ⊥ {R, E, TM} | T 
V ⊥ {T, R, E, TM, G} 
ML ⊥ {T, R, E, G, V} | TM 
EO ⊥ {T, R, E, V, ML} | {TM, G} 
RWR ⊥ {T, R, E, V} | {TM, G} 
TE ⊥ {T, R, E, TM, ML, EO, RWR} | {G, V} 

 

 As an illustration, if the true state of the Threat ID (T) is known, information about the 

true state of Range (R), Threat Mode (TM), or Emitter (E) gives no additional information 

regarding the probability distribution of the Guidance (G) variable; therefore, G is conditionally 

independent of R, E and TM given T. Similarly, Threat Effectiveness (TE) is conditionally 

independent of all variables in the network except its parents: Guidance (G) and Visibility (V). If 

there is more than one sequence of variables that is consistent with the directed arcs, then the set 

of conditional independence relations associated with each sequence can be shown to be 
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equivalent using the properties of conditional independence relations [Dawid 1979, Pearl 1988, 

Lauritzen et al. 1990]. While the lack of an arc between two nodes represents a conditional 

independence assumption, the presence of an arc does not necessarily imply dependence. 

 Conditional probability functions in a Bayesian network can be combined to produce the 

joint distribution of all variables by applying the multiplicative law of probability. The 

calculation of the joint distribution in the Bayesian network of Figure 2.1 can be accomplished as 

follows (where ⊗ denotes pointwise multiplication of functions): 
P(T , R, E,TM ,G,V , ML,EO, RWR,TE) =

P(T )⊗ P(R | T ) ⊗ P(E | T , R)⊗ P(TM | T , R,E) ⊗ P(G | T ,R, E,TM }⊗ P(V | T ,R,E,TM ,G)⊗
P(ML | T , R, E,TM ,G,V )⊗ P(EO | T , R, E,TM ,G,V, ML) ⊗
P(RWR | T , R,E,TM ,G,V ,ML, EO) ⊗ P(TE | T ,R,E,TM ,G,V, ML, RWR)

 

However, by taking advantage of the conditional independence assumptions (listed in Table 2.2), 

the calculation can be reduced to: 

P(T , R, E,TM ,G,V , ML,EO, RWR,TE) =
P(T )⊗ P(R)⊗ P(E | T ) ⊗ P(TM | T , R)⊗ P(G | T ) ⊗ P(V) ⊗ P(ML | TM )⊗
P(EO | TM ,G) ⊗ P(RWR | TM ,G) ⊗ P(TE | G,V )

 

 In order to define combination of probability functions, we first need a notation for the 

projection of states of a set of variables to a smaller set of variables. Here projection simply 

means dropping extra coordinates; if (w, x, y, z) is a state of {W, X, Y, Z}, for example, then the 

projection of (w, x, y, z) to {W, X} is simply (w, x), which is a state of {W, X}. If s and t are sets 

of variables, s ⊆ t, and x is a state of t, then x↓s denotes the projection of x to s. 

 Combination in a Bayesian network involves “pointwise” multiplication of probability 

functions. Suppose Ps is a probability function for s and Pt is a probability function for t. Then 

Ps⊗Pt is a probability function for s ∪ t defined as follows: 

 (Ps⊗Pt)(x) = K–1Ps(x
↓s) Pt(x

↓t) (2.1) 

for each x ∈ Ωs∪t, where K =∑{Ps(x
↓s)Pt(x

↓t) | x ∈ Ωs∪t} is a normalization constant. The un-

normalized combination will be denoted by ⊗´, i.e., 
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 (Ps⊗´Pt)(x) = Ps(x
↓s)Pt(x

↓t) (2.2) 

 Marginalization in a Bayesian network involves addition over the state space of the 

variables being eliminated. Suppose Ps is a probability function for s, and suppose A ∈ s. The 

marginal of Ps for s\{A}, denoted by Ps
↓s\{A}, is a probability function for s\{A} defined as 

follows: 

 Ps
↓s\{A}(x) = Σ{Ps(x, a) | a ∈ ΩA} for all x ∈ Ωs\{A}. (2.3) 

Here, the symbol ‘\’ denotes set-theoretic subtraction, i.e., s\r denote the set of all elements of s 

that are not in r. 

 Inference. The conditional probability functions (or conditionals, in short) specified in 

the construction of a Bayesian network can be used to calculate the prior joint distribution of the 

variables in the model. Inference in a Bayesian network involves updating the prior joint 

distribution with observations of actual states of certain variables or likelihoods of occurrence of 

variables based on new information. Once the likelihoods or variables are instantiated into the 

network, combination of probabilities proceeds as pointwise multiplication of likelihoods and 

conditionals. This combination results in an un-normalized posterior joint distribution. The 

process of computing posterior marginal probabilities given observations or likelihoods is 

referred to as evidence propagation. 

 In the example of Figure 2.1, given the number of states in the state space of the 

variables, the joint distribution will have 74 · 24 · 32 = 345,744 states. Determining the marginal 

probability of each variable from the joint distribution is conceptually simple, but 

computationally expensive. Fortunately, methods for calculating the marginal probabilities of 

variables of interest using local computation—without explicitly computing the joint 

distribution—are available [Pearl 1986, Lauritzen and Spiegelhalter 1988, Jensen et al. 1990, 

Shenoy and Shafer 1990]. Software is readily available for automating the process of inference 

in Bayesian networks; the examples presented here use Netica [www.norsys.com] to calculate 

the prior and posterior marginal distributions. 

http://www.norsys.com/
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 The network from Figure 2.1 is shown again in Figure 2.2 with the prior marginal 

probabilities calculated based on the assigned conditional distributions. 

Figure 2.2. Numerical Representation of the Threat ID Bayesian Network 

Radar Warning Receiver ...
A
IA

55.1
44.9

Visibility (V)
Hi
Me
Lo

33.3
33.3
33.3

Threat Effective? (TE)
Y
N

86.7
13.3

EO_Sensor (EO)
EO1
EO2
IA

6.12
6.12
87.8

Emitter (E)
PATHAND
STRAIGHTF...
LANDROLL
GUNDISH
ZSU FC
A23 FC
A35 FC

14.3
14.3
28.6
7.14
7.14
14.3
14.3

Threat_ID (T)
SA4
SA6
SA8
SA9
ZSU234
A3F232
A3F352

14.3
14.3
14.3
14.3
14.3
14.3
14.3

Guidance (G)
R
EO

85.7
14.3

Range (R)
R 10KPL
R 5 10K
R 4 5K
R 3 4K
R 2 3K
R 1 20K
R 0 1K

14.3
14.3
14.3
14.3
14.3
14.3
14.3

Threat_Mode (TM)
IA
Surv
Acq
TTr
ML
MG
Fire

32.7
14.3
14.3
9.69
9.69
9.69
9.69

ML_Indicator (ML)
A
IA

29.1
70.9

 

 Suppose the following information becomes available: 

(1) The true state of Threat Effectiveness (TE) = Y. 

(2) Intelligence reports the presence of threats SA-4, SA-6, ZSU-23/4, A3F-23/2 and 

A3F-35/2 with low confidence (3:2 odds)1 

L(T) SA-4 SA-6 SA-8 SA-9 ZSU-
23/4 

A3F-
23/2 

A3F-
35/2 

 3 3 2 2 3 3 3 
 

                                                 
1 We have in mind an intelligence source with reliability 1/3 who tells us that the enemy only has threats SA-4, SA-
6, ZSU-23/4, A3F-23/2 and A3F-35/2. Thus, using the language of belief function, we can model this as a basic 
probability assignment: m({SA-4, SA-6, ZSU-23/4, A3F-23/2 and A3F-35/2}) = 1/3, m(ΩT) = 2/3. If we convert 
this bpa to a probability function using the plausibility transformation method [Cobb and Shenoy 2003, see also the 
discussion in Section 4 of this paper], we get the un-normalized function as shown, i.e., if e denotes the evidence, 
then, e.g., P(e|SA-4)/P(e|SA-8) = 3/2, etc. Notice that since Bayesian combination operation defined in (2.1) 
involves normalization, we have the flexibility of expressing a likelihood vector in relative magnitudes. Thus the 
likelihood vector (1, 1, 2/3. 2/3. 1, 1, 1) is equivalent to the likelihood vector (3, 3, 2, 2, 3, 3, 3) since the relative 
magnitudes are the same. 
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(3) Visibility is bright but hazy (1:2:0 for Hi:Me:Lo) 

L(V) Hi Me Lo 
 1 2 0 

 

Adding this information as likelihoods in the Bayesian network yields the marginal probabilities 

of the posterior distribution, as shown in Figure 2.3. 

Figure 2.3. Bayesian Network after Calculation of the Marginals of the Posterior Distribution 

Radar Warning Receiver ...
A
IA

56.4
43.6

Visibility (V)
Hi
Me
Lo

33.3
66.7
   0

Threat Effective? (TE)
Y
N

 100
   0

EO_Sensor (EO)
EO1
EO2
IA

4.51
4.51
91.0

Emitter (E)
PATHAND
STRAIGHTF...
LANDROLL
GUNDISH
ZSU FC
A23 FC
A35 FC

15.8
15.8
21.1
7.89
7.89
15.8
15.8

Threat_ID (T)
SA4
SA6
SA8
SA9
ZSU234
A3F232
A3F352

15.8
15.8
10.5
10.5
15.8
15.8
15.8

Guidance (G)
R
EO

89.5
10.5

Range (R)
R 10KPL
R 5 10K
R 4 5K
R 3 4K
R 2 3K
R 1 20K
R 0 1K

14.3
14.3
14.3
14.3
14.3
14.3
14.3

Threat_Mode (TM)
IA
Surv
Acq
TTr
ML
MG
Fire

34.6
14.3
14.3
9.21
9.21
9.21
9.21

ML_Indicator (ML)
A
IA

27.6
72.4

 

 The posterior distribution provides updated information about the probabilities of each 

state of the Threat (T) variable. Prior to adding the new information to the network, each state of 

T had a probability of occurrence of 1/7. The posterior distribution reveals that the states {SA-8} 

and {SA-9} are slightly less likely than the other five states. 

 The type of inference where marginal probabilities for variables of interest are updated is 

referred to as sum propagation. Another type of inference—max propagation—finds the 

configuration of states of variables that has the maximum probability, i.e., a mode of the joint 

distribution. 
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 Bayesian networks use conditional probability functions as their numerical inputs. 

Dempster-Shafer (D-S) belief networks are graphical representations that use D-S belief 

functions or basic probability assignments as their numerical inputs. These are described in the 

next section. 

 

3. Dempster-Shafer Belief Networks 

 Representation. Dempster-Shafer (D-S) belief networks are an alternative to Bayesian 

networks for modeling knowledge about propositions in uncertain domains graphically and 

numerically. At the qualitative level, a D-S belief network provides a graphical description of the 

knowledge base by modeling variables and their relations. At the numerical level, a D-S belief 

network assigns a D-S belief function or bpa to subsets of the variables in the domain of each 

relation. Additional knowledge entered as evidence is used to update the D-S belief network. 

 The valuation network (VN) graph defined by Shenoy [1992] can be used to construct a 

D-S belief network. This is done for the hypothetical anti-air threat identification problem in 

Figure 3.1. The rounded rectangles represent variables and the hexagons represent valuations, 

which are functions representing knowledge about relations between the variables. Each 

valuation is connected by an edge to each variable in its domain to create a bipartite graph. 

Rectangles represent evidence. In Figure 3.1, evidence is available regarding variables R and V. 

The arcs connecting valuations to variables are typically undirected; however if a bpa m for a set 

of variables, say h∪t, is a “conditional” for some, say h, given the rest t, then this is indicated by 

making the edges between m and the variables in h directed. Suppose m is a bpa for h∪t. We say 

m is a conditional for h given t if m↓t is a vacuous bpa, i.e., m↓t(Ωt) = 1. In the D-S network 

shown in Figure 3.1, since this network models the same knowledge as described in the Bayes 

net of Figure 2.1, most of the valuations representing the knowledge of the domain are 

conditionals. Thus, e.g., the bpa mT-E is a conditional for E given T. In the valuation network 
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representation in Figure 3.1, we have chosen to omit variable TE and have represented the 

relationship between visibility and guidance directly as bpa mV-G. See Section 4 for more details 

about the bpa mV-G. 

 Semantics. D-S belief networks are constructed with the fundamental assumption that 

combining all bpa’s yields the correct joint bpa. Let mi be a D-S bpa for valuation node i in a  

D-S belief network. Then m = ⊕{mi | i = 1, …, n} is the joint bpa which is obtained by 

combining all bpa’s in a D-S belief network. In the example of Figure 3.1: 

m = m ⊕ m ⊕ m ⊕ m ⊕ m ⊕ m ⊕ m ⊕ mT ⊕ mV  T −TM −R T−E T −G V −G TM −ML G−M −EO TM −G −RWR

Assuming the joint bpa can be determined in this way equates to assuming a set of 

conditional independence relations in the joint bpa [Shenoy 1994]. These conditional 

independence assumptions are encoded in the structure of the valuation network graph, as 

opposed to the numerical details of the bpa’s. Variable X is a neighbor of variable Y if there 

exists a non-vacuous bpa whose domain includes {X, Y}. Suppose r, s, and t are three disjoint 

subsets of variables. Then r and s are conditionally independent given t if every path from a 

variable in r to a variable in s contains a variable in t. For example, consider three disjoint 

subsets of variables in the network of Figure 3.1: r = {T, R, E}, s = {V}, and t = {G}. All paths 

from a node in r to a node in s includes variable G. Therefore, r and s are conditionally 

independent given t. Notice that each variable, given its neighbors, is independent of all 

remaining variables. Table 3.1 all such conditional independence assumptions in the network of 

Figure 3.1. 
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Figure 3.1. A Dempster-Shafer Belief Network for the Anti-Air Threat Identification Problem 

Threat Mode (TM) Guidance (G)Emitter (E) Visibility (V)

Threat ID (T) Range (R)

ML EO RWR

T-E

T-TM-R

T-G

V-G

TM-ML TM-G-EO TM-G-RWR

Intel. Rpt.

Visib. Rpt.

 

 The conditional independence condition implicit in a D-S belief network ignores the 

presence of conditional bpa’s. Shenoy [1994b] describes how the presence of conditionals can be 

used to detect additional independence conditions. If one takes into account these additional 

conditions then conditional independence assumptions in the D-S belief network of Figure 3.1 

are exactly the same as those in the Bayesian network of Figure 2.1. 

 D-S belief network models are created using two-part construction. First, the structure of 

the belief network is formed using one of two methods. An expert’s causal knowledge can be 

used to assess conditional independence relations by determining “direct causes”; this method is 
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similar to that used in constructing a Bayesian network. Alternatively, conditional independence 

relations can be directly assessed using the no double-counting interpretation. 

Table 3.1. Conditional Independence Assumptions for the Threat ID D-S Belief Network 

Variable Neighbors Conditional Independence Assumption 
T R, E, TM, G T ⊥ {V, ML, EO, RWR} | {R, E, TM, G} 

TM T, G, R, ML, EO, RWR TM ⊥ {E, V} | {T, G, R, ML, EO, RWR} 
G T, TM, EO, RWR, V G ⊥ {E, R, ML} | {T, TM, EO, RWR, V} 
E T E ⊥ {R, TM, G, V, ML, EO, RWR} | T 
R T, TM R ⊥ {E, G, V, ML, EO, RWR} | {T, TM} 
V G V ⊥ {T, TM, G, R, ML, EO, RWR} | G 

RWR TM, G RWR ⊥ {T, E, R, V, ML, EO} | {TM, G} 
EO TM, G EO ⊥ {T, E, R, V, ML, RWR} | {TM, G} 
ML TM ML ⊥ {T, R, G, V, ML, EO, RWR} | TM 

 

 To illustrate the no double-counting interpretation of conditional independence, consider 

two variables Threat (T) and Emitter (E) in the D-S belief network described previously with the 

joint distribution PT, E. Probability theory defines the factorization of the joint distribution as: 

PT, E = PT⊗PE|T where PT = PT, E
↓Τ and PE|T = PT, E/PT. Thus, it is okay to combine PT and PE|T 

since it will always give the correct joint function PT, E. In the illustration, PT encodes 

information about T, but PE|T encodes nothing about T because PE|T has the property that PE|T
↓T 

is vacuous. Thus, there is no double counting of information about T in the combination of PT 

and PE|T. 

 Suppose now that PT, E is constructed by combining PT with PE. Consider PE that is 

computed from PT, E as follows: PE = PT, E
↓E. In general, PT, E ≠ PT⊗PE. Thus PT and PE are not 

independent with respect to PT, E. Notice that PE = PT, E
↓E = [PT⊗PE|T]↓E. Since PE contains 

information about T, in combining PT and PE, information about PT is double-counted and 

therefore this product will clearly not yield the correct joint distribution PT, E. There are two 

cases where PT and PE are independent with respect to PT, E. First, if PT = PT⊗PT, then PT, E = 
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PT⊗PE. In this case, although there is double counting of PT, this is of no consequence because 

PT is idempotent. Second, suppose that the values of PE|T don’t depend on T, i.e., PE|T (ei, tj) = 

PE|T (ei, tk) for all ei ∈ ΩE, and all tj, tk ∈ ΩT. In this case, it is easy to show that PE|T (ei, tj) = 

PE(ei) for all tj ∈ ΩT, and consequently, PE = PT, E
↓E = [PT⊗PE|T]↓E = [PT⊗PE]↓E. In the process 

of marginalizing PT⊗PE to E, information in PT is completely removed. Therefore PE⊗PT = 

PT, E and there is no double counting. 

The model developed in Figure 3.1 for the hypothetical anti-air threat identification 

problem will be correct if there is no double-counting of uncertain information in the joint bpa: 

m = m ⊕ m ⊕ m ⊕ m ⊕ m ⊕ m ⊕ m ⊕ mT ⊕ mV . T −TM −R T−E T −G V −G TM −ML G−M −EO TM −G −RWR

 Projection and Extension of Subsets. Before we can define combination and 

marginalization for bpa potentials, we need the concepts of projection and extension of subsets 

of a state space. 

 If r and s are sets of variables, r ⊆ s, and a is a nonempty subset of Ωs, then the 

projection of a to r, denoted by a↓r, is the subset of Ωr given by a↓r = {x↓r | x ∈ a}. 

 By extension of a subset of a state space to a subset of a larger state space, we mean a 

cylinder set extension. If r and s are sets of variables, r is a proper subset of s, and a is a 

nonempty subset of Ωr, then the extension of a to s is a×Ωs\r. Let a↑s denote the extension of a to 

s. For example, if a is a nonempty subset of Ω{W, X}, then the extension of a to {W, X, Y, Z} is 

a×Ω{Y, Z}. 

 Dempster’s Rule of Combination. Calculation of the joint bpa in a D-S belief network 

is accomplished by combination using Dempster’s Rule [Dempster 1966]. Consider two bpa’s 

mX and mY for x and y, respectively. The combination of mX and mY, denoted by mX⊕mY, is a bpa 

for x∪y given by 

  (mX⊕mY)(c) = K–1Σ{mX(a)mY(b) | (a↑(x∪y))∩(b↑(x∪y)) = c} 

for all nonempty c ⊆ Ωx∪y, where K is a normalization constant given by 

   K = Σ{mX(a)mY(b) | (a↑(x∪y))∩(b↑(x∪y)) ≠ ∅}. 

The un-normalized joint bpa for x∪y is given by 
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 (mX⊕′mY)(c) = Σ{mX(a)mY(b) | (a↑(x∪y))∩(b↑(x∪y)) = c} 

for all nonempty c ⊆ Ωx∪y. 

 Clearly, if the normalization constant is equal to zero, the combination is not defined, so 

the two bpa’s are termed not combinable. If the bpa’s mX and mY are based on independent 

bodies of evidence, then mX⊕mY represents the result of pooling these bodies of evidence. Shafer 

[1976] shows that Dempster’s Rule is commutative and associative, so the bpa’s representing the 

evidence in the network of Figure 3.1, for instance, could be combined in any order to yield the 

joint bpa. 

 Marginalization. Like marginalization for probability functions, marginalization for bpa 

is obtained by addition. Suppose m is a bpa for s, and suppose A ∈ s. The marginal of m for 

s\{A}, denoted by m↓(s\{A}), is the bpa for s\{A} defined as follows: 
 m↓(s\{A})(a) = Σ{m(b) | b ⊆ Ωs such that b↓(s\{A}) = a} 

for all nonempty subsets a of Ωs\{A}. 

 To illustrate Dempster’s rule, consider mT−E, , one of the valuations in the D-S belief 

network of Figure 3.1. Define the state spaces for the variables Threat (T) and Emitter (E) as 

follows: 
ΩT Description  ΩE Description 
t1 SA-4  e1 Pathhand 
t2 SA-6  e2 Straightflush 
t3 SA-8  e3 Landroll 
t4 SA-9  e4 Gundish 
t5 ZSU-23/4  e5 ZSU-FC 
t6 A3F-23/2  e6 A23-FC 
t7 A3F-35/2  e7 A35-FC 

 
Configurations of the two variables are assigned mass in the bpa mT–E as follows: 

 mT–E({(t1,e1), (t2,e2), (t3,e3), (t4,e3), (t5,e4), (t5,e5), (t6,e6), (t7,e7)}) = 1.00 

Suppose weak evidence exists that the Threat (T) is in the subset, a = {t1, t2, t5, t6, t7}. This 

evidence about the Threat (T) is introduced into the network through another bpa: 
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 mT({t1, t2, t5, t6, t7}) = 0.3, mT(ΩT) = 0.7 

These two bpa’s are combined using Dempster’s Rule resulting in the joint bpa mT-E⊕mΤ 

described as follows: 

 (mT−E ⊕ mT )({(t1, e1 ),(t2 ,e2 ),(t5 ,e4 ),(t5 ,e5 ),(t6 ,e6 ),(t7,e7 )}) = 0.3 

 (mT−E ⊕ mT )({(t1, e1 ),(t2 ,e2 ),(t3,e3),(t4 ,e3 ),(t5,e4 ),(t5 ,e5 ),(t6 ,e6 ),(t7, e7 )}) = 0.7  

The resulting combination can be marginalized to the Threat (T) variable as follows: 

 (mT − E ⊕ mT )↓T ({t1,t2,t5, t6, t7}) = 0.3, (mT − E ⊕ mT )↓T (ΩT ) = 0.7. 

A useful way to summarize the information contained in the resulting bpa is to calculate the 

corresponding plausibility function. The plausibility function corresponding to a bpa mT is 

defined as a function Pl: 2Ωs → [0,1] such that: Pl({a}) = Σ{mT(b) | b∩a ≠ ∅}. 

 In this case, it may be useful to focus on the singleton elements of Threat (T) to determine 

which are now considered most likely. Plausibilities are calculated as follows, with the rightmost 

column representing the normalized plausibility calculated by dividing the plausibility of each 

element by the sum of all the plausibilities: 
 

ΩT Description Pl(T) “Normalized” Pl(T) 
t1 SA-4 0.3+0.7 = 1.0 0.15625 
t2 SA-6 0.3+0.7 = 1.0 0.15625 
t3 SA-8 0.7 0.10938 
t4 SA-9 0.7 0.10938 
t5 ZSU-23/4 0.3+0.7 = 1.0 0.15625 
t6 A3F-23/2 0.3+0.7 = 1.0 0.15625 
t7 A3F-35/2 0.3+0.7 = 1.0 0.15625 

 

Based on the combined evidence, the SA-8 and SA-9 states are considered slightly weaker than 

the other potential threats. 

 Bayesian networks and D-S belief networks have been proposed as alternative methods 

of modeling knowledge about propositions in uncertain domains. Both systems are composed of 
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both graphical and numerical representations. The next section compares Bayesian networks and 

D-S belief networks and examines the similarities and differences. 

 

4. A Comparison 

The previous two sections have described the representation and semantics of Bayesian networks 

and Dempster-Shafer (D-S) belief networks. Differences between the two types of models exist 

in the graphical representations, numerical details, semantics and methods of performing 

inference. However, the two types of models are also similar in important aspects. 

 The graphical representations in each type of network use variables and assign state 

spaces to each variable. The relationships between these variables encode qualitative conditional 

independence assumptions of the uncertain domain. The differences in the conditional 

independence assumptions in Bayesian and D-S networks are superficial, as most of the 

conditional independence assumptions encoded in a Bayesian network are also represented in the 

corresponding D-S belief network. Those conditional independence assumptions present in the 

Bayesian network that are not encoded in the D-S belief network are a consequence of the 

valuations not being conditional probabilities. These assumptions are not used for propagation by 

general-purpose algorithms for computing marginals. 

 Bayesian network model construction involves assessing conditional independence 

relations by considering “direct causes” and “irrelevance” as criteria, whereas construction of a 

D-S belief network model involves assessing conditional independence relations using semantics 

of “no double-counting.” At the numerical level, a Bayesian network is composed of a 

factorization of a joint probability distribution for the variables in the network that can be used to 

specify prior marginal probabilities for each variable. In a D-S belief network, bpa’s are 

specified for each valuation and can be used to calculate a joint bpa for the variables in the 

network, provided there is no double-counting of evidence. 
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 The differing numerical representations in Bayesian networks and D-S belief networks 

each have relative advantages and weaknesses. Conditional probabilities are easy to use for 

representing causal knowledge, but can be difficult and non-intuitive to use for associational, 

logical, and other types of non-causal knowledge. On the other hand, bpa’s are not intuitive to 

use for capturing causal knowledge, but are much easier to use for capturing evidence. Updating 

of knowledge in Bayesian networks is accomplished by using likelihoods, whereas updating of 

knowledge in D-S belief networks is performed by specifying evidence as bpa’s. 

 As an example of the differences in numerical representation of causal knowledge using 

Bayesian and D-S belief networks, consider a domain with two variables: Cancer (C) and 

Smoking (S). The state space of S is comprised of two propositions: s = a person is a smoker and 

~s = a person is a non-smoker; C is defined similarly for cancer. The knowledge that smoking 

causes cancer can be encoded in conditional probabilities by assigning a higher probability to the 

presence of cancer given that a person smokes and a relatively lower probability to cancer given 

that a person does not smoke. For instance, based on expert knowledge or historical data, a 

conditional probability representation, P, is specified as: 

 P(c | s) = 0.4, P(~c | s) = 0.6, P(c | ~s) = 0.1, P(~c | ~s) = 0.9 

The probability of having cancer given that a person does not smoke is 0.10, but this probability 

increases to 0.40 given that a person smokes. 

 Smets [1978] (see also [Shafer 1982, Smets 1993a]) defines an operation, called the 

ballooning extension, for creating a bpa from a conditional probability representation for models 

consisting of a finite number of conditions, each based on independent empirical data. Using the 

above conditional representation P, the following bpa assignments are created: 

 m1({(c, s), (c, ~s), (~c, ~s)}) = 0.4 m2({(c, ~s), (c, s), (~c, s)}) = 0.1 

 m1({(~c, s), (c, ~s), (~c, ~s)}) = 0.6 m2({(~c, ~s), (c, s), (~c, s)}) = 0.9 
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 In this example, let Θ ={s, ~s} denote the set of possible values for the parameter, θ, X = 

{c, ~c} represent the set of outcomes and Pθ: θ ∈ Θ denote the probability model. The 

corresponding bpa, m, is constructed by combining m1 and m2 using Dempster’s Rule as follows: 

 

m({(c,s),(c,~ s )})= (0.4) ⋅(0.1) = 0.04
m({(c,s),(~ c,~ s )}) = (0.4) ⋅(0.9) = 0.36
m({(~ c,s),(c,~ s )}) = (0.6) ⋅(0.1) = 0.06
m({(~ c,s),(~ c,~ s )}) = (0.6) ⋅(0.9) = 0.54

 

The bpa, m, has the following properties: 

(1) m↓s is vacuous. 

(2) If ms(s) = 1, then (m ⊕ ms )↓c(c) = 0.4, ((m⊕ ms )↓c(~ c) = 0.6  

(3) If m~s(~s) = 1, then (m ⊕ m~s )↓c(c) = 0.1, ((m ⊕ m~ s )↓c (~ c) = 0.9 

The ballooning extension representation of conditional probability distribution described 

above is only one method of several others that also satisfy the three conditions stated above. 

Other methods for constructing belief functions from conditional probability distributions have 

been described by Black and Laskey [1990], Dubois and Prade [1986], and Srivastava [1997]. 

 To illustrate the representation of non-causal knowledge using both Bayesian and D-S 

numerical representations, consider the example of visibility (V) and guidance (G) of anti-air 

threats from the anti-air threat identification problem. A conditional representation requires 

creating a dummy variable (TE) whose parents are V and G, then instantiating TE = y, and 

expressing the constraint between V and G in P(TE = y | V, G). The conditional representation for 

each combination of states of V and G is defined in Table 4.1. 
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Table 4.1. Conditional Representation for each Combination of States of V and G 

P(TE|V, G) y n 
Hi, R 1 0 

Hi, EO 1 0 
Me, R 1 0 

Me, EO 0.4 0.6 
Lo, R 1 0 

Lo, EO 0.1 0.9 
 

A bpa for the valuation V-G in the D-S belief network is as follows: 

 
mV −G ({(Hi, R),(Hi, EO),(Me, R),(Lo, R)}) = 0.6
mV −G ({(Hi, R),(Hi, EO),(Me, R),(Me,EO),(Lo, R)}) = 0.3
mV −G ({(Hi, R),(Hi, EO),(Me, R),(Me,EO),(Lo, R),(Lo, EO)}) = 0.1

 

To understand this bpa, suppose V = Hi is represented as mV = Hi({Hi}) = 1. Then (mV–

G⊕mV=Hi)
↓G is as follows: (mV–G⊕mV=Hi)

↓G({R, EO}) = 1. Similarly, if V = Me, then (mV–

G⊕mV=Me)
↓G({R}) = 0.6, (mV–G⊕mV=Me)

↓G({R, EO}) = 0.4. And if V = Lo, then (mV–

G⊕mV=Lo)↓G({R}) = 0.9, (mV–G⊕mV=Lo)↓G({R, EO}) = 0.1. Thus, mV–G can be thought of as a 

“conditional” for G yielding the above bpa’s for different observed values of V. 

 Belief functions are easier to use for modeling evidence than likelihoods. For example, in 

the anti-air threat identification problem, if weak evidence (reliability = 1/3) is available that the 

enemy has only SA-4, SA-6, ZSU-23/4, A3F-23/2 and A3F-35/2 threats, this evidence can be 

easily modeled with the following bpa: 

  m({SA–4, SA–6, ZSU–23/4, A3F–23/2, A3F–35/2}) = 1/3   

  m(ΩT) = 2/3  

 To model this evidence as a likelihood function, we assign a likelihood for each state that 

is proportional to the plausibility of that state: 

 

L(SA − 4) = L(SA − 6) = L (ZSU − 23 / 4) = L(A3F − 23 / 2) = L(A3F − 35 / 2) = 1
L(SA − 8) = L (SA − 9) = 2 / 3  
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These likelihoods can then be entered into the Bayesian network in the usual inference process. 

The likelihoods should be based on evidence alone so that there is no double counting of 

knowledge already represented in the Bayesian network. 

 We conclude this section by discussing an example used by Bogler [1987] to claim that 

belief functions are superior to probability theory. However, we show that if the belief function 

model is transformed to a probability model correctly (by using the so-called plausibility 

transformation [Cobb and Shenoy 2003], then the two calculi give identical conclusions. 

Bogler’s Example. Consider a Dempster-Shafer model of two independent pieces of 

evidence in the context of the anti-air threat identification problem: 

1. Weak evidence, i.e., reliability is only 0.3, that the threat is a SA-4 missile modeled using 

bpa m1: 
m1({SA − 4}) = 0.3
m1({SA − 4,SA − 6, SA − 8,SA − 9,ZSU − 23/ 4, A3F − 23/ 2,A3F − 35 / 2}) = 0.7

 

2. Evidence that the missile is definitely a SAM modeled using bpa m2: 
m2 ({SA − 4, SA − 6,SA − 8,SA − 9}) =1 

Using Dempster’s rule, the evidence is combined into bpa m1⊕m2: 

 
(m1 ⊕ m2 )({SA − 4}) = 0.3
(m1 ⊕ m2 )({SA − 4,SA − 6,SA − 8,SA − 9}) = 0.7

 

The plausibilities of each singleton subsets in the combined bpa are: 

 

Plm1⊕m2
({SA − 4}) =1

Plm1⊕m2
({SA − 6}) = 0.7

Plm1⊕m2
({SA − 8}) = 0.7

Plm1⊕m2
({SA − 9}) = 0.7

 

The ratio of the plausibilities of states {SA-4} and {SA-6} are: 

 
Plm1⊕m2

({SA − 4})
Plm1⊕ m2

({SA − 6})
=

1
0.7

= 1.43 
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 Suppose a Bayesian probability model has an equally likely prior probability distribution, 

P, for the seven states of the Threat ID (T) variable: 
P({SA − 4}) = P({SA − 6}) = P({SA − 8}) = P({SA − 9}) = P({SZSU − 23/ 4}) = P({A3F − 23/ 2})

= P({A3F − 35 / 2}) =
1
7

 

The weak evidence that the threat is an SA-4 missile is converted from the bpa representation to 

an un-normalized probability function using the plausibility transformation method [Cobb and 

Shenoy 2003], which yields the un-normalized probability function as follows: 

  
L1({SA − 4}) =1
L1({SA − 6}) = L1({SA − 8}) =L1({SA − 9}) = L1({ZSU − 23/ 4}) = L1({A3F − 23/ 2}) =

L1({A3F − 35 / 2}) = 0.7

The evidence that the missile is definitely a SAM is modeled using a second likelihood function: 

 
L1({SA − 4}) = L1({SA − 6}) = L1({SA − 8}) =L1({SA − 9}) =1
L1({ZSU − 23/ 4}) = L1({A3F − 23/ 2}) = L1({A3F − 35 / 2}) = 0

 

The prior probability distribution, P, and the two likelihood functions, L1 and L2, can then be 

combined and normalized to create a posterior probability distribution, P': 

 P'({SA − 4}) = 0.323, P'({SA − 6}) = P'({SA − 8}) = P'({SA − 9}) = 0.226  
The ratio of the probabilities of states {SA-4} and {SA-6} are: 

 
P'({SA − 4})
P'({SA − 6})

=
0.323
0.226

= 1.43, 

which is roughly the same conclusion as in the belief function model. ■  

 Computationally, D-S belief networks are more expensive to evaluate than Bayesian 

networks. The worst-case complexity of a Bayesian network solution is O(n), where n is the size 

of the state space of the largest clique in the join tree, whereas the worst-case complexity of a  

D-S belief network is O(2n), with n defined equivalently. The size of the state space of the largest 

clique depends on the sizes of the state spaces of variables, the sizes of state spaces of valuations, 

and the structure of the graph. 

 Differences exist in the graphical and numerical representations of Bayesian and D-S 

belief networks; however, as the above examples show, these two frameworks can both be 
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utilized to model knowledge and evidence of varying types. Bayesian networks and D-S belief 

networks both allow representation of knowledge in uncertain domains. Bayesian networks are 

easier to construct in domains where knowledge is causal, whereas D-S belief networks better 

facilitate representation of non-causal knowledge. When multiple models constructed on the 

same domain are available—a combination of Bayesian models and D-S models—a framework 

for combining the knowledge that does not require experts to reassess one model or another 

using a different numerical or graphical representation is needed. Additionally, when knowledge 

is non-causal, building a D-S belief network and solving the network by translating it to a 

corresponding Bayesian network may be a computationally less expensive than solving the D-S 

belief network directly. 

 Consider the Bayesian network of Figure 2.3. For the variables Range (R) and Visibility 

(V), each possible state is considered equally likely in the original problem formulation. 

Additional information about V or R might be more easily modeled as a bpa, as opposed to a 

likelihood function. A device may be designed to provide evidence about range or visibility 

using a bpa; however, since other valuations have been established as conditional probabilities 

and since Bayesian networks are typically more efficient to solve than D-S belief networks, the 

bpa could be transformed to a likelihood function prior to solution of the Bayesian network. 

 The previous example which utilized D-S plausibilities to create an equivalent treatment 

of evidence in D-S and Bayesian models points to a possible solution for combining evidence 

from the two types of models and translating D-S belief networks to Bayesian networks for 

solution during implementation. 

 Proponents of the Dempster-Shafer’s theory of belief functions claim that the D-S theory 

is more expressive than probability theory since it can distinguish between vacuous knowledge 

(represented by a vacuous belief function) and knowledge that all states of a variable are equally 

likely (represented by a Bayesian belief function in which all focal elements are singleton subsets 

with the same probability mass). When such belief functions are converted to equivalent 

probability functions, they both reduce to an equally likely probability distribution. From a 
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descriptive point of view, Ellsberg [1961] argues that human decision makers react quite 

differently to the two different situations. From a normative point of view (e.g. Savage [1950]), 

the two situations have no significant differences for making decisions. We note, however, that 

there is no coherent decision theory for the Dempster-Shafer’s theory that can take advantage of 

this expressiveness. The decision theory proposed by Jaffray [1989] and Strat [1990] requires the 

choice of an ad-hoc parameter that in essence reduces an expectation with respect to a belief 

function to an expectation with respect to a probability function. The decision theory proposed 

by Kennes and Smets [1994] reduces a belief function to a probability function prior to making 

decisions using Bayesian decision theory. Neither decision theory is able to exploit the so-called 

expressiveness of belief functions in representing ignorance. 

 

5. Conclusions and Summary 

The main goal of this paper is to compare two seemingly disparate calculi for uncertain 

reasoning. While there are many differences, there are also many commonalities. Our main 

conclusion is that the two calculi have roughly the same expressive power. The reason we need 

these calculi is that they have different semantics and if our knowledge of the domain fits a 

particular semantic, then we should use the appropriate calculus to build a model in that domain. 

This does not mean that other calculi cannot represent the knowledge in the domain. An analogy 

is having a toolbox with many tools. If one has a nail, use a hammer. If one has a screw, use a 

screwdriver. We can drive a screw with a hammer, but the results may not be so elegant. We are 

skeptical of claims such as one tool is sufficient for all jobs or that one tool is superior to another. 

Thus, e.g., we should not be restricted to using just one calculus. We should be more concerned 

with the models we build using these calculi. The theory of belief functions provides us with 

some semantics for building models. If these semantics are appropriate for the domain we are 

trying to model, we should model the domain using belief functions. 
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The thesis that the theories of belief functions and probability have roughly the same 

expressive power suggests that one can translate a belief function model to an equivalent 

probability model. This topic is explored in detail in Cobb and Shenoy [2003]. 
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