Skip to main content
Log in

New atom-type-based AI topological indices: Application to QSPR studies of aldehydes and ketones

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Multiple linear regression (MLR) analysis based on a combined use of the modified Xu index and the atom-type based AI indices is performed to construct quantitative structure–property models on several data sets of organic compounds including aliphatic aldehydes and/or ketones. For each of the physical properties (the normal boiling points, molar refractions, gas heat capacities at 25 °C, water solubility at 25 °C, and n-octanol/water partition coefficient at 25 °C ), high quality QSPR models are obtained, particularly the decrease in the standard error is within the range of 23.6–75.9% relative to the linear models with the modified Xu index alone. For individual subsets containing only aldehydes or ketones, in the majority of cases the quality of the model can be further improved. The significant improvement verifies the efficiency of the present approach and also indicates the usefulness of these indices for application to a wide range of physical properties. The results indicate that the physical properties studied are dominated by molecular size but atom types have smaller influences, especially the oxygen atom seems to be most important due to intermolecular polar interactions. The final models are validated to be statistically reliable using the leave-one-out cross-validation and/or an external test set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, L. and Han, S. (Eds.), Quantitative Structure-Activity Relationships of Organic Compounds (in Chinese), Environmental Scientific Press of China, Beijing, China, 1993.

    Google Scholar 

  2. Kamlet M., Abboud, J.L.M. and Taft R.W., Prog. Phys. Org. Chem., 13 (1981) 485, and references therein.

    Google Scholar 

  3. Hansch, C., Leo, A. and Hoekman, D., Exploring QSAR. Hydrophobic, Electronic and Steric Constants, American Chemical Society, Washington, DC, 1995.

    Google Scholar 

  4. Hansch, C. and Leo, A., Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, DC, 1995.

    Google Scholar 

  5. Xu, L. and Hu, C., Applied Chemical Graph Theory, Scientific Press, Beijing, China, 2000.

    Google Scholar 

  6. Bondi, A., J. Phys. Chem., 68 (1964) 441.

    Google Scholar 

  7. Hermann, R.B., J. Phys. Chem., 76 (1972) 2754.

    Google Scholar 

  8. Amidon, G.L., Yalkowsky, H. and Leung, S.J., J. Pharm. Sci., 63 (1974) 3225.

    Google Scholar 

  9. Stanton, D.T. and Jurs, P.C., Anal. Chem., 62 (1990) 2323.

    Google Scholar 

  10. Grigoras, S., J. Comput. Chem., 11 (1990) 493.

    Google Scholar 

  11. Kortvelyesi, T., Gorgenyi, M. and Heberger, K., Anal. Chim. Acta, 428 (2001) 73.

    Google Scholar 

  12. Reynolds, W.F., Prog. Phys. Org. Chem., 14 (1983) 165.

    Google Scholar 

  13. Franke, R., Theoretical Drug Design Methods, Elsevier, Amsterdam, The Netherlands, 1984.

    Google Scholar 

  14. Nelson, T.M. and Jurs, P.C., J. Chem. Inf. Comput. Sci., 34 (1994) 601.

    Google Scholar 

  15. Dixon, S.L. and Jurs, P.C., J. Comput. Chem., 13 (1992) 492.

    Google Scholar 

  16. Grunenberg, J. and Herges, R., J. Chem. Inf. Comput. Sci., 35 (1995) 905.

    Google Scholar 

  17. Taft, R.W., J. Prog. Phys. Org. Chem., 14 (1983) 247.

    Google Scholar 

  18. Kier, L.B. and Hall, L.H., Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.

    Google Scholar 

  19. Kier, L.B. and Hall, L.H., Molecular Connectivity in Structure-Activity Studies, Research Studies Press, Letchworth, UK, 1986.

    Google Scholar 

  20. Hosoya, H., Bull. Chem. Soc. Jpn., 44 (1971) 2332.

    Google Scholar 

  21. Balaban, A.T., Chem. Phys. Lett., 89 (1982) 399.

    Google Scholar 

  22. Bonchev, D. and Trinajstić, N., J. Chem. Phys., 67 (1977) 4517.

    Google Scholar 

  23. Schultz, H.P., J. Chem. Inf. Comput. Sci., 29 (1989) 227.

    Google Scholar 

  24. Wiener, H., J. Am. Chem. Soc., 69 (1947) 17.

    Google Scholar 

  25. Ren, B., J. Chem. Inf. Comput. Sci., 39 (1999) 139.

    Google Scholar 

  26. Ren, B., Chen, G. and Xu, Y., Acta Chim. Sinica, 57 (1999) 563 (in Chinese).

    Google Scholar 

  27. Trinajstić, N., Chemical Graph Theory, 2nd ed., CRC Press, Boca Raton, FL, 1992.

    Google Scholar 

  28. Hall, L.H., Mohney, B. and Kier, L.B., J. Chem. Inf. Comput. Sci., 31 (1991) 76.

    Google Scholar 

  29. Maw, H.H. and Hall, L.H., J. Chem. Inf. Comput. Sci., 41 (2001) 1248.

    Google Scholar 

  30. Rose, K., Hall, L.H. and Kier, L.B., J. Chem. Inf. Comput. Sci., 42 (2002) 651.

    Google Scholar 

  31. Ren, B., Comput. Chem., 26 (2002) 1121.

    Google Scholar 

  32. Ren, B., Comput. Chem., 26 (2002) 357.

    Google Scholar 

  33. Ren, B., J. Mol. Struct. (THEOCHEM), 586 (2002) 137.

    Google Scholar 

  34. Ren, B., J. Chem. Inf. Comput. Sci., 42 (2002) 858.

    Google Scholar 

  35. Ren, B., J. Chem. Inf. Comput. Sci., 43 (2003) 161.

    Google Scholar 

  36. Ren, B., J. Chem. Inf. Comput. Sci., 43 (2003) 1121.

    Google Scholar 

  37. Ren, B., Chemometrics Intel. Lab. Sys., 66 (2003) 29.

    Google Scholar 

  38. Weast, R., CRC Handbook of Chemistry and Physics, 70th ed., CRC Press, Boca Raton, FL, 1989-1990.

    Google Scholar 

  39. Lide, D.R. and Milne, G.W.A., Handbook of Data on Common Organic Compounds, CRC Press, Boca Raton, FL, 1992.

    Google Scholar 

  40. Dictionary of Organic Chemistry. 6th ed.; Chapman & Hall, London, 1996.

  41. Dean, J.A., Lange's Handbook of Chemistry, 15th Ed., McGraw-Hill, Beijing, China, 1999.

    Google Scholar 

  42. Yaws, C.L., Chemical Properties Handbook, McGraw-Hill, Beijing, China, 1999.

    Google Scholar 

  43. Huang, F. and Liu, X., Aldehydes In Encyclopedia of Chemical Industry, Vol. 13. Chemical Industry Press, Beijing, China, 1997 (in Chinese).

    Google Scholar 

  44. Huang, F. and Liu, X., Ketones, In Encyclopedia of Chemical Industry, Vol. 16. Chemical Industry Press, Beijing, China, 1997 (in Chinese).

    Google Scholar 

  45. Wessel, M.D. and Jurs P.C., J. Chem. Inf. Comput. Sci., 35 (1995) 841.

    Google Scholar 

  46. Xu, L., Chemometrical Method (in Chinese), Scientific Press of China, Beijing, China, 1996.

    Google Scholar 

  47. Needham, D.E., Wei, I.-C. and Seybold, P.G., J. Am. Chem. Soc., 110 (1988) 4186.

    Google Scholar 

  48. Mihalić, Z. and Trinajstić, N. J. Chem. Educ., 69 (1992) 701.

    Google Scholar 

  49. Lin, Z., Xu, J., Liu, S., Zhen, X. and Li, Z., Acta Phys.-Chim. Sinica (in Chinese), 16 (2000) 153.

    Google Scholar 

  50. Reid, R.C., Prausnitz, J.M. and Poling, B.E., The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, 1987.

    Google Scholar 

  51. Nelson, T.M. and Jurs, P.C., J. Chem. Inf. Comput. Sci., 34(1994) 601.

    Google Scholar 

  52. Klopman, G., Li, J.-Y., Wang, S. and Dimayuga, M., J. Chem. Inf. Comput. Sci., 34(1994) 752.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, B. New atom-type-based AI topological indices: Application to QSPR studies of aldehydes and ketones. J Comput Aided Mol Des 17, 607–619 (2003). https://doi.org/10.1023/B:JCAM.0000005764.26206.74

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000005764.26206.74

Navigation