Skip to main content
Log in

Development and testing of a de novo drug-design algorithm

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In this article we present an implementation of a de novo drug-design algorithm. The algorithm starts with a molecule placed in the binding site of a protein and then modifies it using a sequential growth approach. This involves successive cycles of suppression of randomly picked groups in the molecule and their replacement by other groups chosen from databanks of linear or cyclic fragments. The algorithm has been coupled with the Dynamo library which allows the simulation of macromolecules using molecular mechanical and quantum chemical methods. The main body of the article describes the methodologies we use to create, characterize and evaluate putative ligands. We also consider briefly an application of the algorithm to a protein of pharmacological interest, the neuraminidase of the influenza virus, and discuss the strengths and weaknesses of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Whittle, P.J. and Blundell, T.L. Annu. Rev. Biophys. Biomol. Struct., 23 (1994) 349.

    PubMed  Google Scholar 

  2. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    PubMed  Google Scholar 

  3. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    PubMed  Google Scholar 

  4. Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.

    PubMed  Google Scholar 

  5. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J., J. Comput. Chem., 19 (1990) 1639.

    Google Scholar 

  6. Böhm, H.J., J. Comput.-Aided. Mol. Des., 6 (1992) 593.

    PubMed  Google Scholar 

  7. Westhead, D.R., Clark, D.E., Frenkel, D., Li, J., Murray, C.W., Robson, B. and Waszkowycz, B., J. Comput.-Aided Mol. Des., 9 (1995) 139.

    PubMed  Google Scholar 

  8. Moon, J.B. and Howe, W.J., Proteins, 11 (1991) 314.

    PubMed  Google Scholar 

  9. Gillet, V., Newell, W., Mata, P., Myatt, G., Sike, S., Zsoldos, Z. and Johnson, A.P., J. Chem. Inf. Comput. Sci., 34 (1994) 207.

    PubMed  Google Scholar 

  10. Field, M.J., A Practical Introduction to the Simulation of Molecular Systems. Cambridge University Press, Cambridge, UK, 1999.

    Google Scholar 

  11. Field, M.J., Albe, M., Bret, C., Proust-De Martin, F. and Thomas, A., J. Comput. Chem., 21 (2000) 1088.

    Google Scholar 

  12. Laver, W.G., Bischofberger, N. and Webster, R.G., Sci. Am., 280 (1999) 78.

    PubMed  Google Scholar 

  13. Pellegrini, E., Elaboration d'un Algorithme de Drug Design: Aspects Fondamentaux et Application à une Protéine., Ph.D Thesis, Université Joseph Fourier, Grenoble, France, 2002.

    Google Scholar 

  14. Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, Z., Gilliland, G.L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J.D. and Zardecki, C., Acta Crystallogr. D. Biol. Crystallogr., 58 (2002) 899.

    PubMed  Google Scholar 

  15. Lewell X.-Q., Judd D.B., Watson S.P., and Hann M.M., J. Chem. Inf. Comput. Sci., 38 (1998) 511.

    PubMed  Google Scholar 

  16. Schneider G., Lee M.-L., Stahl M., and Schneider, P., J. Comput.-Aided Mol. Des., 14 (2000) 487.

    PubMed  Google Scholar 

  17. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., Adv. Drug Deliv. Rev., 118 (1997) 3.

    Google Scholar 

  18. Gasteiger, J., Rudolph, C. and Sadowski, J., Tetrahedron Comp. Method., 3 (1990) 537.

    Google Scholar 

  19. Rappé, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A. and Skiff, W.M., J. Am. Chem. Soc., 114 (1992) 10024.

    Google Scholar 

  20. Storer, J.W., Giesen, D.J., Cramer, C.J. and Truhlar, D.G., J. Comput.-Aided Mol. Des., 9 (1995) 87.

    PubMed  Google Scholar 

  21. Dewar, M.J.S. and Thiel, W., J. Am. Chem. Soc., 99 (1977) 4899.

    Google Scholar 

  22. Stewart, J.J.P., J. Comput. Chem., 10 (1989) 209; ibid 10 (1989) 221.

    Google Scholar 

  23. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  24. Jorgensen, W.L., Maxwell, D.S. and Tirado-Rives, J., J. Am. Chem. Soc., 118 (1996) 11225.

    Google Scholar 

  25. Leach, A.R., J. Mol. Biol., 235 (1994) 345.

    PubMed  Google Scholar 

  26. Carlson, H.A., Curr. Opin. Chem. Biol., 6 (2002) 447.

    PubMed  Google Scholar 

  27. Holland, J.H., Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  28. Oshiro, C.M., Kuntz, I.D. and Dixon, J.S., J. Comput.-Aided Mol. Des., 9 (1995) 113.

    PubMed  Google Scholar 

  29. Davis, M.E., Madura, J.D., Luty, B.A. and McCammon, J.A., Comp. Phys. Comm., 62 (1991) 187.

    Google Scholar 

  30. Woodcock, D. Molecule Models Web Site at http://people.ouc.bc.ca/woodcock/molecule/molecule.html, Okanagan University, British Columbia: 2002.

  31. Schrödinger Inc., Jaguar 3.5. Schrödinger Inc., Portland, OR, 1998.

    Google Scholar 

  32. Williams, D.E., Rev. Comp. Chem., 2 (1991) 219.

    Google Scholar 

  33. Varghese, J.N., Epa, V.C. and Colman, P.M., Protein Sci., 4 (1995) 1081.

    PubMed  Google Scholar 

  34. Smith P.W., Sollis S.L., Howes P.D., Cherry P.C., Cobley K.N., Taylor H., Whittington A.R., Scicinski J., Bethell R.C., Taylor N., Skarzynski T., Cleasby A., Singh O., Wonacott A., Varghese J. and Colmna P., Bioorg. Med. Chem. Lett., 6 (1996) 2931.

    Google Scholar 

  35. Taylor, N.R., Cleasby, A., Singh, O., Skarzynski, T., Wonacott, A.J., Smith, P.W., Sollis, S.L., Howes, P.D., Cherry, P.C., Bethell, R., Colman, P. and Varghese, J., J. Med. Chem., 41 (1998) 798.

    PubMed  Google Scholar 

  36. Molecular Simulations Inc., Insight II. M+olecular Simulations Inc., San Diego, CA, 1993.

    Google Scholar 

  37. Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V., and Mee, R.P., J. Comput.-Aided Mol. Des., 11 (1997) 425.

    PubMed  Google Scholar 

  38. Mitchell, J.B.O., Laskowski, R.A., Alex, A., Forster, M.J. and Thornton, J.M., J. Comput. Chem., 20 (1999) 1177.

    Google Scholar 

  39. Jedrzejas, M.J., Singh, S., Brouillette, W.J., Laver, W.G., Air, G.M. and Luo, M., Biochemistry, 34 (1995) 3144.

    PubMed  Google Scholar 

  40. Collard, P. and Clergue, M., Complex Systems, 12 (2000) 1.

    Google Scholar 

  41. Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., J. Am. Chem. Soc., 118 (1996) 3959.

    Google Scholar 

  42. Pellegrini, E. and Field, M.J., J. Phys. Chem. A, 106 (2002) 1316.

    Google Scholar 

  43. Ghose, A.K., Viswanadhan, V.N. and Wendoloski, J.J., J. Phys. Chem. A, 102 (1998) 3762.

    Google Scholar 

  44. Muegge, I. and Martin, Y.C., J. Med. Chem., 42 (1999) 791.

    PubMed  Google Scholar 

  45. Luo, Z., Wang, R. and Lai, L., J. Chem. Inf. Comput. Sci., 36 (1996) 1187.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellegrini, E., Field, M.J. Development and testing of a de novo drug-design algorithm. J Comput Aided Mol Des 17, 621–641 (2003). https://doi.org/10.1023/B:JCAM.0000017362.66268.d5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000017362.66268.d5

Navigation