Skip to main content
Log in

In silico models for the prediction of dose-dependent human hepatotoxicity

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The liver is extremely vulnerable to the effects of xenobiotics due to its critical role in metabolism. Drug-induced hepatotoxicity may involve any number of different liver injuries, some of which lead to organ failure and, ultimately, patient death. Understandably, liver toxicity is one of the most important dose-limiting considerations in the drug development cycle, yet there remains a serious shortage of methods to predict hepatotoxicity from chemical structure. We discuss our latest findings in this area and present a new, fully general in silico model which is able to predict the occurrence of dose-dependent human hepatotoxicity with greater than 80% accuracy. Utilizing an ensemble recursive partitioning approach, the model classifies compounds as toxic or non-toxic and provides a confidence level to indicate which predictions are most likely to be correct. Only 2D structural information is required and predictions can be made quite rapidly, so this approach is entirely appropriate for data mining applications and for profiling large synthetic and/or virtual libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farrell, G.C. Drug-Induced Liver Disease. Churchill Living-stone, New York, 1994.

    Google Scholar 

  2. Zimmerman, H.J. Hepatotoxicity: The Adverse Effects of Drugs and Other Chemicals on the Liver. Lippincott Williams & Wilkins, Philadelphia, PA 1999.

    Google Scholar 

  3. AASLD/FDA/PhRMA Hepatotoxicity Workshop, Chantilly, VA, 2001.

    Google Scholar 

  4. Source Book of Flavors. Chapman & Hall, New York, 1994.

  5. Coultate, T.P. Food: the Chemistry of its Components, The Royal Society of Chemistry, Cambridge, UK, 1996.

    Google Scholar 

  6. Stricker, B.H.C. Drug-Induced Hepatic Injury, Elsevier, Amsterdam, 1992.

    Google Scholar 

  7. Physicians' Desk Reference: Electronic Library, Thomson Micromedex, Inc., CO Greenwood Village, 2001.

  8. Registry of Toxic Effects of Chemical Substances (RTECS), The National Institute for Occupational Safety and Health, Cincinnati, OH.

  9. Toxicology Data Network (TOXNET), U.S. National Library of Medicine, Bethesda, MD.

  10. FDA Generally Recognized as Safe (GRAS) List, U.S. Food and Drug Administration, Rockville, MD.

  11. Fenaroli's Handbook of Flavor Ingredients. CRC Press, Boca Raton, FL, 1995.

  12. Gold, E.J., Mertelsmann, R.H., Itri, L.M., Gee, T., Arlin, Z., Kempin, S., Clarkson, B. and Moore, M.A., Cancer Treatment Reports, 67 (1983) 981.

    PubMed  Google Scholar 

  13. Guzzo, C., Benik, K., Lazarus, G., Johnson, J. and Weinstein, G., Arch. Dermatol., 127 (1991) 511.

    Article  PubMed  Google Scholar 

  14. Knip, M., Douek, I.F., Moore, W.P.T., Gillmor, H.A., McLean, A.E.M., Bingley, P.J. and Gale, E.A.M., Diabetologia, 43 (2000) 1337.

    Article  PubMed  Google Scholar 

  15. Lagadic-Gossmann, D., Rissel, M., Le Bot, M.A. and Guil-louzo, A., Cell Biol. Toxicol., 14 (1998) 361.

    Article  PubMed  Google Scholar 

  16. Lakhanpal, S., Donehower, R.C. and Rowinsky, E.K., Invest. New Drugs, 19 (2001) 69.

    Article  PubMed  Google Scholar 

  17. O'Brien, J.T., Eagger, S. and Levy, R., Age and Ageing, 20 (1991) 129.

    PubMed  Google Scholar 

  18. Raber, M.N., Newman, R.A., Newman, B.M., Gaver, R.C., Schacter, L.P., Cancer Res., 52 (1992) 1406.

    PubMed  Google Scholar 

  19. Rowinsky, E.K., Noe, D.A., Ettinger, D.S., Christian, M.C., Lubejko, B.G., Fishman, E.K., Sartorius, S.E., Boyd, M.R. and Donehower, R.C., Cancer Res., 53 (1993) 1794.

    PubMed  Google Scholar 

  20. Ryan, D.P., Supko, J.G., Eder, J.P., Seiden, M.V., Demetri, G., Lynch, T.J., Fischman, A.J., Davis, J., Jimeno, J. and Clark J.W., Clin. Cancer Res., 7 (2001) 231.

    PubMed  Google Scholar 

  21. Von Mehren, M., Giantonio, B.J., McAleer, C., Schilder, R., McPhillips, J. and O'Dwyer, P.J., Invest. New Drugs, 13 (1995) 205.

    Article  PubMed  Google Scholar 

  22. Vogel, C.L., Gorowski, E., Davila, E., Eisenberger, M., Kosinski, J., Agarwal, R.P. and Savaraj, N., Invest. New Drugs, 5 (1987) 187.

    PubMed  Google Scholar 

  23. Dixon, S.L. and Villar, H.O., J. Comput.-Aided Mol. Design, 13 (1999) 533.

    Article  Google Scholar 

  24. Susnow, R.G. and Dixon, S.L., J. Chem. Inf. Comput. Sci., 43 (2003) 1308.

    Article  PubMed  Google Scholar 

  25. Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. Classification and Regression Trees. Wadsworth International Group, Belmont, CA, 1984.

    Google Scholar 

  26. Hawkins, D.M. and Kass, G.V., Topics in Applied Multivariate Analysis, Hawkins, D.H., Ed., Cambridge University Press, Cambridge, UK, 1982, p. 269.

    Google Scholar 

  27. Breiman, L. and Machine Learning, 24 (1996) 123.

    Google Scholar 

  28. Freund, Y., Information and Computation, 121 (1995) 256.

    Article  Google Scholar 

  29. Cerius 2, Accelrys, San Diego, CA, 2001.

  30. Dixon, S.L., Kenneth M. and Merz, J., J. Med. Chem., 44 (2001) 3795.

    Article  PubMed  Google Scholar 

  31. S-PLUS 6.1 for Windows, Insightful Corporation, Seattle, WA, 2001.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, A., Dixon, S.L. In silico models for the prediction of dose-dependent human hepatotoxicity. J Comput Aided Mol Des 17, 811–823 (2003). https://doi.org/10.1023/B:JCAM.0000021834.50768.c6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000021834.50768.c6

Navigation