Skip to main content
Log in

A correlation study of quinoline derivatives and their pharmaceutical behavior by ab initio calculated NQR parameters

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In this paper, ab initio calculated NQR parameters for some quinoline-containing derivatives are presented. The calculations are carried out in a search for the relationships between the charge distribution of these compounds and their ability to interact with haematin. On the basis of NQR parameters, π-electron density on the nitrogen atom of the quinoline ring plays a dominant role in determining the ability of quinolines to interact with haematin. This point was confirmed with investigation of Fe+3 cation-π quinoline ring interactions in 2- and 4-aminoquinoline. However, our results do not show any preference for those carbon atoms of the quinoline ring which previous reports have noted. In order to calculate the NQR parameters, the electric field gradient (EFG) should be evaluated at the site of a quadrupolar nucleus in each compound. EFGs are calculated by the Gaussian 98 program using the B3LYP/6-31G* level of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Graybeal, J.D., Molecular Spectroscopy. McGraw-Hill, New York, 1998.

    Google Scholar 

  2. Hadipour, N.L., Rafiee, M.A., Javaheri, M. and Mousavi, M.K., Chem. Phys. Lett., 356 (2002) 445.

    Google Scholar 

  3. World Health Organization, The World Health Report, 1999.

  4. Warhurst, D.C., Biochem. Pharmacol., 30 (1981) 3323.

    PubMed  Google Scholar 

  5. Sugioka, Y., Suzuki, M., Sugioka, K. and Nakano, M.A., FEBS Lett., 223 (1987) 251.

    Google Scholar 

  6. Blauer, G., Akkawi, M. and Bauminger, E.R., Biochem. Pharmacol., 46 (1993) 1573.

    Google Scholar 

  7. Adams, P.A., Berman, P.A.M., Egan, T.J., Marsh, P.J. and Silver, J.J., Inorg. Biochem., 63 (1996) 69.

    Google Scholar 

  8. Egan, T.J., Mini Rev. Med. Chem., 1 (2001) 113.

    PubMed  Google Scholar 

  9. Vippagunta, S.R., Dorn, A., Matile, H., Bhattacharjee, A.K., Karle, J.M., Ellis, W.Y., Ridley, R.G. and Vennerstrom, J.L., J. Med. Chem., 42 (1999) 4630.

    Google Scholar 

  10. Egan, T.J., Hunter, R., Kaschula, C.H., Marques, H.M., Misplon, A. and Walden, J., J. Med. Chem., 43 (2000) 283.

    PubMed  Google Scholar 

  11. Egan, T.J., Mavuso, W.W., Ross, D.C. and Marques, H.M., J. Inorg. Biochem., 68 (1997) 137.

    PubMed  Google Scholar 

  12. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, Jr., R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S. and Pople, J.A., Gaussian 98. Gaussian, Inc., Pittsburgh, PA, 1998.

    Google Scholar 

  13. Kawakami, J., Miyamoto, R., Kimura, K., Obata, K., Nagaki, M. and Kitahara, H., J. Comput. Chem. Jpn., 2 (2003) 57.

    Google Scholar 

  14. Coussan, S., Manca, C., Tanner, C., Bach, A. and Leutwyler, S., J. Chem. Phys., 119 (2003) 3774.

    Google Scholar 

  15. Slanina, Z., Hsu, M. and Chow, T.J., J. Chin. Chem. Soc., 50 (2003) 593.

    Google Scholar 

  16. Becke, A.D., J. Chem. Phys., 98 (1993) 5648.

    Google Scholar 

  17. Lee, C., Yang, W. and Parr, R.G., Phys. Rev. B, 37 (1988) 785.

    Google Scholar 

  18. Miehlich, B., Savin, A., Stoll, H. and Preuss, H., Chem. Phys. Lett., 157 (1989) 200.

    Google Scholar 

  19. Lucken, E.A.C., Nuclear Quadrupole Coupling Constant. Academic Press, London, 1969.

    Google Scholar 

  20. Cohen, M.H. and Reif, F., Solid State Phys., 5 (1975) 321.

    Google Scholar 

  21. Hadipour, N.L., Rafiee, M.A. and Javaheri, M., Chem. Phys. Lett., 366 (2002) 578.

    Google Scholar 

  22. Pyykko, P., Mol. Phys., 99 (2001) 1617.

    Google Scholar 

  23. Chou, A.C., Chevli, R. and Fitch, C.D., Biochemistry, 19 (1980) 1543.

    PubMed  Google Scholar 

  24. Egan, T.J., Mavuso, W.W., Ross, D.C. and Marques, H.M., J. Inorg. Biochem., 68 (1997) 137.

    Google Scholar 

  25. Sullivan, D.J. Jr., Gluzman, I.Y., Russell, D.G. and Goldberg, D.E., Proc. Natl. Acad. Sci. USA, 93 (1996) 11865.

    PubMed  Google Scholar 

  26. Hunter, C.A. and Sanders, J.K.M., J. Am. Chem. Soc., 112 (1990) 5525.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser L. Hadipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafiee, M.A., Hadipour, N.L. & Naderi-manesh, H. A correlation study of quinoline derivatives and their pharmaceutical behavior by ab initio calculated NQR parameters. J Comput Aided Mol Des 18, 215–220 (2004). https://doi.org/10.1023/B:JCAM.0000035201.67977.16

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000035201.67977.16

Navigation