Skip to main content
Log in

Fuzzy-Logic Based Navigation of Underwater Vehicles

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

A fuzzy logic based general purpose modular control architecture is presented for underwater vehicle autonomous navigation, control and collision avoidance. Three levels of fuzzy controllers comprising the sensor fusion module, the collision avoidance module and the motion control module are derived and implemented. No assumption is made on the specific underwater vehicle type, on the amount of a priori knowledge of the 3-D undersea environment or on static and dynamic obstacle size and velocity. The derived controllers account for vehicle position accuracy and vertical stability in the presence of ocean currents and constraints imposed by the roll motion. The main advantage of the proposed navigation control architecture is its simplicity, modularity, expandability and applicability to any type of autonomous or semi-autonomous underwater vehicles. Extensive simulation studies are performed on the NPS Phoenix vehicle whose dynamics have been modified to account for roll stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, J., Monferrer, A., Batlle, J., and Cufi, X.: GARBI: A low-cost underwater vehicle, Microprocessors Microsystems 23 (1999), 61-67.

    Google Scholar 

  2. Antonelli, G., Cassavale, F., Chiaverini, S., and Fusco, G.: A novel adaptive control law for underwater vehicles, IEEE Trans. Control Systems Technol. 11(2) (2003), 221-232.

    Google Scholar 

  3. Antonelli, G., Chiaverini, S., Sarkar, N., and West, M.: Adaptive control of an autonomous underwater vehicle: Experimental results on ODIN, IEEE Trans. Control Systems Technol. 9 (July 2001), 756-765.

    Google Scholar 

  4. Arkin, R. C.: Behavior-Based Robotics, MIT Press, 1998.

  5. Balch, T. and Parker, L. E. (eds): Autonomous Robots, A. K. Press, 2002.

  6. Brooks, R. A.: A robust layered control system for a mobile robot, IEEE J. Robotics Automat. 2 (1986), 14-23.

    Google Scholar 

  7. Brutzman, D. P.: A virtual world for an autonomous underwater vehicle, PhD Thesis, Naval Postgraduate School, Monterey, CA, 1994.

    Google Scholar 

  8. Brutzman, D. P.: Virtual world for an autonomous underwater vehicle, Tutorial notes, in:'96, 1996.

  9. Corradini, M. L. and Orlando, G.: A discrete adaptive variable structure controller for MIMO systems and its application to an underwater ROV, IEEE Trans. Control Systems Technol. 5 (1997), 349-359.

    Google Scholar 

  10. Coste-Maniere, E., Wang, H. H., and Peuch, A.: Control architectures: What's going on? in: Proc. of Internat. Program Development in Undersea Robotics and Intelligent Control (URIC): A Joint U.S./Portugal Workshop, Lisbon, Portugal, 1995, pp. 54-60.

  11. Cristi, R., Papoulias, F. A., and Healey, A.: Adaptive sliding mode control of autonomous underwater vehicles in the dive plane, IE 15 (1990), 152-160.

    Google Scholar 

  12. Cui, Y. and Sarkar, N.: A unified force control approach to autonomous underwater manipulation, in: Proc. of IEEE Conf. on Robotics and Automation, San Francisco, CA, 2000, pp. 1263-1268.

  13. DeBitetto, P.: Fuzzy logic for depth control of unmanned undersea vehicles, IEEE J. Oceanic Engrg. 20(3) (1995), 242-248.

    Google Scholar 

  14. Driankov, D., Hellendoorn, H., and Reinfrank, M.: An Introduction to Fuzzy Control, Springer, Berlin, 1996.

    Google Scholar 

  15. Doitsidis, L., Valavanis, K. P., and Tsourveloudis, N. C.: Fuzzy logic based autonomous skid steering vehicle navigation, in: CD-ROM Proc. of the IEEE Internat. Conf. on Robotics and Automation, Washington, DC, May 2002.

  16. Doitsidis, L., Valavanis, K. P., and Tsourveloudis, N. C.: Sonar sensor based autonomous navigation and collision avoidance of skid-skeering mobile robots, J. Autonom. Robots (submitted).

  17. Farinwata, S. S., Filev, D. E., and Langari, R. (eds): Fuzzy Control: Synthesis and Analysis, Wiley, New York, 2000.

    Google Scholar 

  18. Fossen, T.: Guidance and Control of Ocean Vehicles, Wiley, New York, 1994.

    Google Scholar 

  19. Fossen, T. I. and Sagatun, S. I.: Adaptive control of nonlinear systems: A case study of underwater robotic systems, J. Robotic Systems 8 (1991), 393-412.

    Google Scholar 

  20. Ganesan, K. and Smith, S. M.: A pragmatic software architecture for UUVs, in: Proc. of Symposium on Autonomous Underwater Vehicle Technology, 1996, pp. 209-215.

  21. Guo, J. and Huang, S. H.: Control of an autonomous underwater vehicle testbed using fuzzy logic and genetic algorithms, Department of Naval Architecture and Ocean Engineering, National Taiwan University, Taipei.

  22. Healey, A. J.: Analytical redundancy and fuzzy inference in AUV fault detection and compensation, in: Proc. of Oceanology-1998, Brighton, 1998, pp. 45-50.

  23. Healey, A. J. and Brutzman, D. P.: Underwater Robotics Workshop, Proc. of the 8th Internat. Conf. on Advanced Robotics, July 1997.

  24. Healey, A. J. and Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles, IEEE J. Ocean Engrg. 18(3) (1993), 327-339.

    Google Scholar 

  25. Healey, A. J. and Marco, D. B.: Slow speed flight control of autonomous underwater vehicles: Experimental results with the NPS AUV II, in: Proc. of the 2nd Internat. Offshore and Polar Engineering Conf., San Francisco, CA, 1992, pp. 523-532.

  26. Healey, A. J., Marco, D. B., McGhee, R. B., Brutzman, D. P., and Cristi, R.: Evaluation of the NPS Phoenix autonomous underwater vehicle hybrid control system, in: Proc. of American Control Conference, Seattle, 1995, pp. 2954-2963.

  27. Healey, A. J., Marco, D. B., McGhee, R. B., Brutzman, D. P., Cristi, R., and Papoulias, F. A.: Coordinating the hovering behaviors of the NPS AUVII using onboard sonar servoing, in: Proc. of IARP 2nd Workshop on Mobile Robots for Subsea Environments, Monterey, CA, 1994, pp. 53-62.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanakakis, V., Valavanis, K.P. & Tsourveloudis, N.C. Fuzzy-Logic Based Navigation of Underwater Vehicles. Journal of Intelligent and Robotic Systems 40, 45–88 (2004). https://doi.org/10.1023/B:JINT.0000034340.87020.05

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JINT.0000034340.87020.05

Navigation