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Abstract. We analyze the role of different invariant principles in image processing
and analysis. A distinction between the passive and active principles is emphasized,
and the geometric Beltrami framework is shown to incorporate and explain some of
the known invariant flows e.g. the equi-affine invariant flow for hypersurfaces. It is
also demonstrated that the new concepts put forward in this framework enable us
to suggest new invariants namely the case where the codimension is greater than
one.

1. Introduction

The analysis of symmetries in a problem is an important issue in
computer vision. In many problems e.g. camera calibration, stereo and
motion one needs to consider the Euclidean, Affine or Projective groups
acting on the physical space or on the image plane. Sometimes we
encounter different groups acting on the feature space, e.g. color space
under change of illumination. It is desirable in all these cases to have a
denoising process that can act on images without any bias towards spe-
cific feature. We say, then, that it is invariant under the transformation
group of interest.

We are mostly interested in this work in the relation of the (equi-)
affine transformation and diffusion-like denoising processes. The issue
was first addressed in the context of linear scale-space (?)(?) where the
invariance to Euclidean transformations is invoked. The reasoning was
done mainly via the theory of filters rather than on the diffusion equa-
tion (?). The invariance to the affine group and to monotone change of
the intensity values was proposed, in the seminal work (?), as part of the
axioms that define the allowed partial differential equations (PDEs) in
image processing. About the same time the same kind of problems were
tackled and solved from a slightly different point of view. Researchers in
shape recognition and shape evolution derived the same affine invariant
equation (?; ?; ?; ?; ?; ?). The main mathematical concept in these
works is the differential invariant. The works (?; ?; ?) may serve as
pointers to the subject. In almost all works only hypersurfaces i.e.
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codimension 1 are considered. Most works focus their attention on the
two dimensional case.

We present in this work a framework that provides non-linear heat-
like denoising flows that act on the combined spatial-feature domain and
are invariant under the equi-affine, i.e. SL(n, IR), flow. Our point of de-
part is the Beltrami framework. In this framework images are described
as trinaries (Σ,M,X) where Σ and M are Riemannian manifolds and
X : Σ → M is the embedding map. On the space of these embedding
maps we define a functional whose gradient descent minimization leads
to a non-linear heat-like equation. The heat-like flow generates a semi-
group of transformations on the image. Constructing an invariant flow
boils down to choosing a special Riemannian structure i.e. a metric, on
the Σ manifold such that the flow semi-group transformation commutes
with the group of spatial-feature transformations.

We derive a condition for the transformations to commute, and use
our machinery to build several invariant flows. We re-derive in a unified
way all known codimension 1 results (?; ?; ?; ?; ?; ?; ?; ?). We then
generalize for codimension > 1 and find the equi-affine invariant metrics
and flows of a curve in IRn for all n. This is a generalization of the
case n = 3 that was derived in Keriven’s thesis (?). We find next the
invariant metrics of a surface in IRn for n = 4, 5, 6, and of a three-
dimensional manifold in IR5. These flows represent the evolution of
an image with vector valued pixels (e.g. color image). Note that the
flows are invariant under transformation of the spatial domain and the
feature domain at the same time.

The paper is organized as follows: A review of the Beltrami frame-
work is presented in Section 2. In Section 3 we discuss general neces-
sary conditions on the metric which are derived from considerations of
passive coordinates transformations. The analysis of active coordinate
change by a group of transformations and the condition on the metric
that follows from the invariance requirement is treated in Section 4.
Section 5 is devoted to hypersurfaces equi-affine invariant flows. We
treat the codimension > 1 flows in Section 6 and conclude in Section
7.

2. The Beltrami framework

Let us briefly review the Beltrami framework for non-linear diffusion
in computer vision (?; ?; ?).

We represent an image and other local features as an embedding
maps of a Riemannian manifold in a higher dimensional space. The
simplest example is a gray-level image which is represented as a 2D sur-
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face embedded in IR3. We denote the map by X : Σ → IR3. Where Σ is
a two-dimensional surface, and we denote the local coordinates on it by
(σ1, σ2). The map X is given in general by (X1(σ1, σ2), X2(σ1, σ2), X3(σ1, σ2)).
In our example we represent it as follows (X1 = σ1, X2 = σ2, X3 =
I(σ1, σ2)). We choose on this surface a Riemannian structure, namely,
a metric. The metric is a positive definite and a symmetric 2-tensor
that may be defined through the local distance measurements:

ds2 = g11(dσ1)2 + 2g12dσ1dσ2 + g22(dσ2)2 = gµνdσµdσν . (1)

Here and below we use the Einstein summation convention: Repeated
indices are summed over. We use Greek letters to index coordinates of
the manifold Σ and Latin letters to index coordinates of the embedding
space. We denote the elements of the inverse of the metric by gµν . The
determinant is denoted by g = det(gµν). It is clear from Eq. (1) that
the metric elements form a symmetric and positive definite matrix.

2.1. Polyakov Action: A measure on the space of
embedding maps

Denote by (Σ, (gµν)) the image manifold and its metric and by (M, (hij))
the space-feature manifold and its metric, then the functional S at-
taches a real number to a map X : Σ → M :

S[Xi, gµν , hij ] =
∫

dV 〈∇Xi,∇Xj〉ghij

where dV = dσ1 · · · dσD√g is the volume element of the D-dimensional
manifold, and 〈∇Xi,∇Xj〉g = gµν∂µXi∂νX

j . This functional, for D =
2 and hij = δij , was first proposed by Polyakov (?) in the context of
high energy physics, and the theory known as string theory.

Let us formulate the Polyakov action in matrix form: (Σ, G) is the
image manifold and its metric as before. Similarly, (M,H) is the spatial-
feature manifold and its metric. Define

Aij = (∇Xi)tG−1∇Xj

The map X : Σ → M has a weight

S[Xi, G, H] =
∫

dV Tr(AH),

where m is the dimension of Σ and g = det(G).
Using standard methods in the calculus of variations the Euler-

Lagrange equations with respect to the embedding (assuming Euclidean
embedding space i.e. hij = δij) are (see (?) for explicit derivation):

− 1
2
√

g

δS

δXi
=

1√
g
∂µ(

√
ggµν∂νX

i).
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Or in matrix form

− 1
2
√

g
hil δS

δX l
=

1√
g
div

(√
gG−1∇Xi

)

︸ ︷︷ ︸
∆gXi

. (2)

The analogous equations for non-Euclidean embedding space are treated
in (?; ?; ?; ?). Since (gµν) is positive definite, g ≡ det(gµν) > 0 for all
σµ. This factor is the simplest one that doesn’t change the minimization
solution while giving a reparameterization invariant expression. The
operator that is acting on Xi is the natural generalization of the Lapla-
cian from flat spaces to manifolds and is called the Laplace-Beltrami
operator and is denoted by ∆g.

The non-linear diffusion or scale-space equation emerges as a gradi-
ent descent minimization:

Xi
t =

∂

∂t
Xi = − 1

2
√

g

δS

δXi
= ∆gX

i

3. Passive Transformations

We derive in this section necessary conditions for a matrix to represent
a Riemannian structure i.e. a metric. We have already seen that it must
be a symmetric and positive definite matrix1. We need to understand,
next, how the metric transforms under passive coordinate change, that
is, under reparameterization. This is easy to figure out since distances
on the image do not depend on the coordinate system. Denote he
Jacobian matrix, for the reparameterization σµ → σ̂µ(σ1, . . . , σn), and
its determinant by

(R)µ
ν =

dσµ

dσ̂ν
; J = det(R).

Let d~σ stand for (dσ1, . . . , dσD)t and similarly for the transformed co-
ordinate system d~̂σ. The relation between the original and transformed
infenitesimals is given componentwise by dσµ = dσµ

dσ̂ν dσ̂ν and in matrix
form d~σ = Rd~̂σ. Let G = (gµν) stand for the matrix whose elements
are the metric coefficients gµν . From the invariance of distances we find

ds2 = gµνdσµdσν = ĝµνdσ̂µdσ̂ν

= d~σtGd~σ = d~̂σ
t
Ĝd~̂σ.

1 We allow in fact semi-definite matrices.
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We deduce, thus, the relation between the metric elements in the two
coordinate systems

ĝµν = gγδ
dσγ

dσ̂µ

dσδ

dσ̂ν
(3)

In matrix form the metric should transform as

Ĝ = RtGR (4)

and the determinant
ĝ = det(Ĝ) = J2g (5)

The Eqs. (3,5) are referred to as the tensorial properties of the
metric. They form, together with the symmetry G = Gt and the (semi-)
positive definiteness, a set of necessary conditions.

4. Active Transformation Acting on the Embedding Space

We assume that our embedding space is the Euclidean IRn space. An
active transformation change the shape of the embedded object. It does
so by the group action on the embedded space. The action of the group
on the Cartesian coordinates, and the transformed coordinates, are
denoted by

X̃i = Tgroup[Xi] i = 1, . . . , n.

In our case we are interested in (equi-)affine transformation of the em-
bedding space. A generic affine transformation in n-dimensional space
is

Taffine[X
i] = X̃i = Ai

jX
j + Bi

where Ai
j is a non-singular constant matrix and Bi is a constant shift

vector (?).
By group invariance we mean the commutation2 of the following

diagram:

Original Object
Group

Transformation−→ Transformed Object

Diffusion
Flow

y Diffusion
Flow

y

Original Object
After Flow

Group
Transformation−→ Transformed Object

After Flow
2 we allow commutation modulo diffeomorphism i.e. reparameterizations since we

are interested in shape changing flow and the tangential part of the flow does not
change the embedded shape.
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To put it in a more precise form denote a transformation of the
image along the diffusion (scale) parameter by Tt[Xi] and the affine
transformation by Taffine[X

i].
Affine invariance is a commutation relation between the transforma-

tions:

Tt[Taffine[X
i]] = Taffine[Tt[Xi]]. (6)

It means that in the invariant flow the following is true

∂tX̃
i = ∂̃tXi, (7)

and it implies, via the Beltrami framework, that

∆g̃A
i
jX

j = ∆g̃X̃
i = ∆̃gXi = Ai

j∆gX
j . (8)

It is clear now that the condition

(gµν) = (g̃µν), or equivalently G = G̃ ,

is sufficient to insure invariance with respect to affine transformations.
Note that each one of the metric’s elements is affine invariant, not only
the determinant.

We end this section with a comment on the invariance of diffusion-
like flows with respect to more general groups. The crucial property
that was used in the derivation above is the linearity of the affine group
that acts on the embedding space. This enable us to commute the
action of the group and the Laplace-Beltrami operator. For a non-linear
transformation, or a local linear transformation in which the group
element coefficients are locally defined by Ai

j( ~X), the commutator is
not zero and the generalized condition reads

∆g = A−1∆g̃A . (9)

One should be aware though that this is a sufficient condition and
not a necessary condition. In fact we didn’t take into account the
freedom of reparameterization. This freedom enable us to look only
on the coefficient(s) of the normal(s) direction(s) to the manifold since
they are the only directions that change the shape of the manifold.
Thus, for example, an invariant metric G̃ = G was constructed for the
projective group in codimension 1. Although the condition Eq. (9) is not
satisfied in this case the resulting flow is invariant. This happens since
the non-invariants parts of the flow affect the reparameterization and
not the shape of the manifold. One learn from this example that a better
characterization of the conditions on the metric is needed. In particular
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the space of metrics that give rise to flows of reparameterizations only
should be better studied.

5. Codimension= 1

In this, and the next, Sections we construct equi-affine invariant metrics
for different embedding maps. The construction and verification of the
various conditions force us to go beyond vectors and matrices and
to use tensorial calculus with many indices. We introduce now some
notations that will help us below (see the Appendix for explanation
and examples). Define a totally antisymmetric symbol as follows

Ei1i2...id = (−1)s(i1,...,id) (10)

where s(i1, . . . , id) is the number of basic permutations needed to bring
(i1, . . . id) to the form (1, 2, . . . d). Although s is not well defined (there
are many ways with different number of basic permutations to do that)
its parity is invariant. Ei1i2...id = 0 if any of the indices appears twice.

It is convenient to use this symbol to give an explicit expression for
the determinant of a matrix. Take a matrix

A =




A1
1 A2

1 . . . Ad
1

A1
2 A2

2 . . . Ad
2

...
...

. . .
...

A1
d A2

d . . . Ad
d


 . (11)

The determinant is defined as follows:

det A = Ei1...idA
i1
1 Ai2

2 . . . Aid
d = E i1...idA1

i1A
2
i2 . . . Ad

id
, (12)

where summation is assumed on indices that appear twice.
It can be easily proved that

Ei1i2···inAi1
p1

Ai2
p2
· · ·Aid

pd
= det(A)Ep1p2...pd

. (13)

We will use this identity time and again below. As an exercise we
re-derive in the Appendix the relations (3,5) between the determinant
of the metric in the original and transformed coordinate systems.

5.1. The Curve Affine Flow

We construct an affine invariant metric. Let the coordinates of IR2 be
Xi i = 1, 2 and the curve is parameterized by σ. the line element is

ds2 = g(σ)dσ2. (14)
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8 N. Sochen

Theorem
The following expression:

f = EijX
i
σXj

σσ = det
(

X1
σ X1

σσ

X2
σ X2

σσ

)
(15)

is equi-affine invariant.
Proof:

Denote the transformed coordinates of IR2 by tilde

X̃i = Ai
jX

j , (16)

where detA = 1. Then

f̃ = EijX̃
i
σX̃j

σσ = EijA
i
kX

k
σAj

l X
l
σσ

= (EijA
i
kA

j
l )X

k
σX l

σσ

= detAEklX
k
σX l

σσ = f (17)

where we used Eq. (16) in the second equality, rearrangement in the
third equality, the identity Eq. (13) in the forth and the fact that
detA = 1 for equi-affine transformation in the last equality ¥

Under a reparameterization of the curve σ → σ̂(σ) it transforms as

f̂ = EijX
i
σ̂Xj

σ̂σ̂ = Eij

(
∂σ

∂σ̂
Xi

σ

)
∂

∂σ̂

((
∂σ

∂σ̂

)
Xj

σ

)

= (
∂σ

∂σ̂
)3EijX

i
σXj

σσ + (
∂σ

∂σ̂
)(

∂2σ

∂σ̂2
) EijX

i
σXj

σ︸ ︷︷ ︸
=0

= (
∂σ

∂σ̂
)3f. (18)

Define
g = f2/3 (19)

then obviously g is invariant under equi-affine transformation and trans-
forms as

ĝ = (
∂σ

∂σ̂
)2g, (20)

under reparameterization of the curve. It follows that g is an equi-
affine invariant metric for the curve. Consequently the Beltrami flow is
equi-affine invariant
Theorem

The flow

Xi
t = ∆gX

i =
1√
g
∂σ
√

gg−1∂σXi

=
1√
g
∂σ

1√
g
∂σXi = Xi

ss (21)
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is equi-affine invariant:
X̃i

t = Ai
j∆gX

j (22)

Proof:

X̃i
t = ∆g̃X̃

j = ∆gA
i
jX

j = Ai
j∆gX

j (23)

Explicitly we get

~Xt =
1
g
Xi

ss −
(∂sg)
2g2

Xi
s = a~T + b ~N, (24)

where we use the reparameterization freedom to work with the Eu-
clidean arclength. In this parameterization ~Xs = ~T the tangent vector
and ~Xss = κ ~N where N is the normal and κ is the curvature. Since
~Xss = κ ~N for the Euclidean arc length and since g = κ2/3 we get
b = κ1/3. The ~T term affect the parameterization of the curve but not
its shape and can be ignored ¥

5.2. The Surface Affine Flow

Following the general considerations, in Section 4, we construct an
affine invariant metric for the flow of a surface in IR3. The coordinates
of the embedding space are Xi i = 1, 2, 3. The Riemannian surface is
parameterized by the local coordinates σ1, σ2.
Theorem

The expression

fµν = 2EijkX
i
σ1X

j
σ2X

k
µν = EθφEijkX

i
θX

j
φXk

µν (25)

is equi-affine invariant.
Proof:

The proof is similar to the one we gave for affine curve evolution:

f̃µν = EijkX̃
i
σ1X̃

j
σ2X̃

k
µν = EijkA

i
lX

l
σ1Aj

mXm
σ2Ak

nXn
µν

= detAEijkX
i
σ1X

j
σ2X

k
µν = fµν (26)

where we used Eq. (16) in the second equality, the identity Eq. (13) in
the third and the fact that detA = 1 for equi-affine transformation in
the last equality ¥

A metric should also transform in a specific way under a change in
the reparameterization σ → σ̂(σ). Let us first rewrite fµν in a more
convenient form. We use the antisymmetry of the E and the fact that
i, j and k are dummy indices that are being summed over to write

fµν = −EijkX
i
σ2X

j
σ1X

k
µν = −EjikX

j
σ2X

i
σ1Xk

µν
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10 N. Sochen

= −EjikX
i
σ1X

j
σ2X

k
µν = EijkX

i
σ1X

j
σ2X

k
µν

where in the first equality we use our freedom to rename the dummy
indices to rename the first index of summation j and to rename the
second i. We use the fact that Xi

σ2 and Xj
σ1 are numbers in order

rewrite their multiplication in different order. The last equality follow
the antisymmetry of E , i.e. Ejik = −Eijk.

The element fµν can be rewritten now (up to a multiplication by 2)
as

fµν = EθφEijkX
i
θX

j
φXk

µν = EijkX
i
σ1X

j
σ2X

k
µν − EijkX

i
σ2X

j
σ1X

k
µν

Denote by f the determinant of fµν then f and fµν transform as
follows

f̂µν =
∂σλ

∂σ̂µ

∂σρ

∂σ̂ν
Eθφ ∂σa

∂σ̂θ

∂σb

∂σ̂φ
EijkX

i
aX

j
b Xk

λρ

=
∂σλ

∂σ̂µ

∂σρ

∂σ̂ν
JEabEijkX

i
aX

j
b Xk

λρ = J
∂σλ

∂σ̂µ

∂σρ

∂σ̂ν
f̂λρ

f̂ = J4f (27)

Where we used the identity eq. (13) to write

Eθφ ∂σa

∂σ̂θ

∂σb

∂σ̂φ
= JEab .

It is clear that gµν = fµν/f1/4 satisfies both the equi-affine and the
metric transformation rules.

5.3. Hypersurfaces in IRn+1

We construct, along the same lines, an equi-affine invariant metric for
higher dimensional hypersurfaces i.e. manifolds with codimension 1.
The notations are similar to the two-dimensional case. Let Xi i =
1, . . . , n + 1 be the coordinates of IRn+1, and σ1, . . . , σn the local coor-
dinates of the n-dimensional Riemannian manifold embedded in IRn+1.
Theorem

The line element gµν = fµν/f1/(n+2), where

fµν = Eρ1ρ2...ρnEi1i2...inin+1X
i1
ρ1

Xi2
ρ2
· · ·Xin

ρn
Xin+1

µν (28)

is equi-affine invariant.
Proof: The invariance with respect to equi-affine transformations is
verified in Analogous way to eq. (26). The tensorial properties of the
metric under reparameterization can be checked along the same line as
the case of the surface embedded in IR3 ¥
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6. Codimension > 1

The results in Section 5 are well known (?). They were rephrased in
a language that facilitates generalizations. Several examples for such
possible generalizations follow.

6.1. curves

Let us analyze first the equi-affine flow of a curve embedded in IR3. The
Cartesian Coordinates are Xi i = 1, 2, 3. The curve is parameterized
by σ, or by the arclength s. The Serret-Frenet structure equations are

∂

∂s




~T
~N
~B


 =




0 κ 0
−κ 0 τ
0 −τ 0







~T
~N
~B


 (29)

where ~T , ~N and ~B are the tangent, normal and binormal unit vectors
respectively. They form a right hand frame at point σ on the curve. κ
is the curvature of the curve and τ is its torsion.
Theorem (?)

The flow
~Xt = (

κ

τ
)1/3 ~N (30)

is equi-affine invariant.
Proof:

Clearly the following expression

g(σ) = (EijkX
i
σXj

σσXk
σσσ)1/3 (31)

is an equi-affine invariant metric.
Since ~Xs = ~T and ~Xss = ~Ts = κ ~N it follows that

~Xsss = κs
~N + κ ~Ns = −κ2 ~T + κs

~N + κτ ~B.

Using this identity we find

g(s) =
(
(EijkT

i(κN j)(−κ2T k + κsN
k + κτBk)

)1/3
=

(
κ2τ

)1/3
(32)

where s is the Euclidean arclength. This follows from

1− EijkT
iN jBk = EijkT

iN jT k = EijkT
iN jNk = 0 .

The Beltrami flow, based on this metric, is obviously an equi-affine
invariant flow. Its explicit form is

~Xt =
1
g

~Xss − (∂sg)
2g2

~Xs =
1

(κ2τ)1/3
κ ~N − gs

2g2
~T . (33)
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12 N. Sochen

The assertion follows from the fact that the ~T term changes only the
parameterization but not the shape of the curve. ¥

Note that while the velocity of the curve depends on the torsion it
changes its shape in the normal direction only and have zero velocity in
the binormal direction. This can be seen observed easily in the example
of the clockwise helix depicted in Fig. 1.
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Fig. 1 t = 30 t = 42

We see that the helix does not shrink or expand in the z direction and
the flow affect its radius only. For the clockwise helix the radius shrinks
to zero and the helix converges to a straight line.

Since the torsion has a sign we get for the anticlockwise the inverse
sign and the helix is expanding. This phenomenon may cause severe
instability since the flow has properties of inverse diffusion. In points
where the torsion change sign the two segments in its two sides flow in
inverse directions and the flow is unstable. We show below the curve of
intersection of a sphere and a cylinder. It has four point in which the
torsion changes sign and we can see the instabilities that are generated
in Fig. 2
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Fig. 2 t = 15 t = 20

Using the absolute value stabilizes the flow. It flows until the curve
lies entirely in a plane and continues with the equi-affine curvature
flow in that plane. The torsion is cutoff to a constant on that plane to
regularize the division by zero3.

The generalization to an n-dimensional curve is straightforward. The
generalized Serret-Frenet relations for a curve in IRn are

∂

∂s




~T
~N
~B1
~B2
...

~Bn−2




=




0 κ 0 · · · · · · 0
−κ 0 τ1 0 · · · 0
0 −τ1 0 τ2 · · · 0
... 0 −τ2

. . . . . .
...

...
...

...
. . . . . . τn−2

0 0 0 · · · −τn−2 0







~T
~N
~B1
~B2
...

~Bn−2




.

(34)
The vectors ~T , ~N and { ~Bi}n−2

i=1 form a positively oriented basis of IRn

i.e. Ei1···inT i1N i2Bi3
1 · · ·Bin

n−2 = 1. The coefficients k and τi are the
curvature and the torsions respectively.

3 See http://www.math.tau.ac.il/∼sochen/MIA/jmiv.html
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14 N. Sochen

Theorem
The equi-affine invariant metric is

g(s) =

(
Ei1i2...in

∂Xi1

∂s

∂2Xi2

∂s2
· · · ∂

nXin

∂sn

) 4
n(n+1)

=

(
kn−1

n−2∏

i=1

τn−i−1
i

)4/n(n+1)

. (35)

Proof
Notice that Xi

s = T i. In the second expression Xi
ss only the coef-

ficient of the normal N i is contributing because of the antisymmetric
tensor. In the third expression only the coefficient of Bi

1 is contributing
since the terms of ~T and ~N are being cancelled in the alternating
summation. In general, in the r-th derivative Xs···s only the coefficient
of Br−2 is contributing. We claim that this coefficient has the general
form k

∏r−2
i=1 τi. The proof is by induction: for r = 2 the coefficient is k

by definition i.e. Xi
ss = kN i. For r = 3 we saw that it is kτ . Assume

now that this is the expression for the r-th derivative and check the
r+1 derivative.

Xj
s · · · s︸ ︷︷ ︸

r+1

= ∂sX
j
s · · · s︸ ︷︷ ︸

r

= ∂s

[
(· · ·)T j + (· · ·)N j + · · ·+ k

r−2∏

i=1

τiB
j
r−2

]

=

[
(· · ·)T j + (· · ·)N j + · · ·+ k

r−2∏

i=1

τi∂sB
j
r−2

]

=

[
(· · ·)T j + (· · ·)N j + · · ·+

(
k

r−2∏

i=1

τi

)
τr−1 Bj

r−1

]
(36)

where the coefficients of the lower normals and the tangent vector are
changing from one side of an equality sign to the other. They are not
calculated since they do not contribute to the final answer anyway. We
can now proceed by direct calculation

g(s) =

(
Ei1i2...in

∂Xi1

∂s

∂2Xi2

∂s2
· · · ∂

nXin

∂sn

) 4
n(n+1)

=

(
n∏

r=2

(
k

r−2∏

i=1

τi

)
Ei1i2...inT i1N i2Bi3

1 · · ·Bin
n−2

) 4
n(n+1)

=

(
kn−1

n−2∏

i=1

τn−i−1
i

)4/n(n+1)

. (37)
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since Ei1i2...inT i1N i2Bi3
1 · · ·Bin

n−2 = 1 by the fact the ~T , ~N and the ~Bis
form a positively oriented basis ¥
Theorem

The affine invariant flow of a curve in IRn is

~Xt =


 k

n2−3n+4
4

τn−2
1 τn−3

2 · · · τn−2




4
n(n+1)

~N (38)

Proof
By direct computation

Xi
t = g−1Xi

ss + bT i

where b is some coefficient. Since the flow in the T direction is a
reparameterization only we ignore it and concentrate on the first term.

Xi
t = g−1kN i =

(
kn−1

n−2∏

i=1

τn−i−1
i

)−4/n(n+1)

kN i

and the assertion follows ¥

6.2. Surfaces

For codimension greater then 1 we proceed by a case by case analysis.

6.2.1. A surface embedded in IR4

Consider first the case of two-dimensional surface embedded in IR4.
Define

fµν = EabEλρEi1i2i3i4X
i1
a Xi2

b Xi3
λµXi4

ρν . (39)

Obviously fµν is equi-affine invariant. Under reparametrization fµν and
its determinant f transform as

f̂µν = J2 ∂σλ

∂σ̂µ

∂σρ

∂σ̂ν
f̂λρ

f̂ = J6f. (40)

It is easy to show that gµν = fµν/f1/3 transforms properly under a
change of local coordinates and is equi-affine invariant.

6.2.2. A surface embedded in IR5

The only equi-affine invariant object, that is also reparameterization
invariant, up to a multiplicative function, is

f = Ei1i2i3i4i5X
i1
1 Xi2

2 Xi3
11X

i4
12X

i5
22. (41)
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16 N. Sochen

Clearly, it is an equi-affine invariant expression. Under a change of
parameterization it transforms as

f̂ = J4f. (42)

Note that it is the only possible expression and there is no second
expression (like the determinant in all other cases) to cancel out the
multiplicative factor. It is impossible, therefore, to write down a metric
similar in form to those of the previous subsections.

6.2.3. Surface embedded in IR6

Denote
(abc) = Ei1i2i3i4i5i6X

i1
1 Xi2

2 Xi3
11X

i4
12X

i5
22X

i6
abc

the following expression is equi-affine invariant:

fµν = EacEbd(abµ)(cdν)

Clearly this expression is symmetric in µ and ν.
It transforms as follows under reparameterization:

f̂µν = J10 ∂σλ

∂σ̂µ

∂σρ

∂σ̂ν
fλρ

and the determinant transforms as f = J22f . It follows that

gµν =
fµν

f5/11

transforms as a metric and is equi-affine invariant.

6.3. Volumetric data

Volumetric medical images and movies are examples of three-dimensional
manifolds embedded in a higher dimensional spatial-feature space.

6.3.1. 3D manifold embedded in IR5

Equi-affine invariant metric for a three-dimensional manifold embedded
in IR5 is defined in terms of

(abcd) = Ei1i2i3i4i5X
i1
1 Xi2

2 Xi3
3 Xi4

abX
i5
cd

the following expression is equi-affine invariant:

fµν = EacqEbpr(abcµ)(pqrν) .

Clearly this expression is symmetric in µ and ν.
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It transforms as follows under reparameterization:

f̂µν = J4 ∂σλ

∂σ̂µ

∂σρ

∂σ̂ν
fλρ

and the determinant transforms as f = J14f . It follows that

gµν =
fµν

f2/7

transforms as a metric and is equi-affine invariant.

6.4. The meaning of spatial-feature transformations

While spatial equi-affine transformations and monotone change of the
intensity function were studied in the past, and are well understood, the
coupled spatial intensity transformations were neglected. We try to pro-
vide, in this section, an intuition for the action of these transformations
on images by simple examples.

original image

mat = [[1,0,0];[0,1,0];[1,0,1]]

Fig. 4 Top: original image. Bottom: After “rotation” in the x-I
plane.
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18 N. Sochen

As a simple exercise we apply various transformations on the clown
image. Fig. 4 top depict the original image. We now ”rotate” it in the
x-I direction by the following equi-affine transformation

T =




1 0 0
0 1 0
1 0 1


 .

The transformed image is shown in Fig. 4 bottom. This transformation
leaves the spatial coordinates intact while transforming I → x+I. This
has the effect of changing the direction of the illumination.

One can, of course, include spatial transformations together with
the illumination direction transformations. Few examples are shown on
the clown image Fig. 5.

mat = [[1,2,0];[−4,1,0];[0.1,−0.3,1]]

mat = [[1,−0.3,0];[0,1,0];[0,0.3,1]]

Fig. 5 Two example of spatial-feature transformations.
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7. Concluding Remarks

The question of non-linear diffusion flows which are invariant under
groups of transformation is studied. The Beltrami viewpoint, which
separates between the image manifold and the embedding space, makes
it easier to notice the difference between passive and active transfor-
mations. We analyze the conditions on the metric in order to construct
an equi-affine invariant flow. We are able to generalize results from
codimension 1 to higher codimension and in particular to construct an
equi-affine invariant flow for a curve in any codimension and equi-affine
invariant metrics for a surface in codimensions 2 and 4. These flows can
be applied, in principle, to any two or four features defined on a 2D
image. Given the metric, the invariant flow can be computed and pro-
jected on the normal subspace. A detailed analysis of the corresponding
flows will be treated in a future publication.

We call the attention of the reader to the meaning of these transfor-
mations. Take the codimension 2 surface for example. The coordinates
of the embedding space are (x, y, C1, C2) where Ci can be, for example,
chromatic channel. The metric that we present is invariant under shifts
trivially, and also under the full four-dimensional group SL(4, IR) –
the group of 4 × 4 non-singular matrices with determinant = 1. This
means that the metric is invariant under the combined transformations
of the spatial and the color (or the features in other cases) spaces!
In other words the flow is invariant under spatial and illumination
transformations at the same time.

While the subject of invariant flow was extansively studied in the
past, the flows of codimensions greater than 1 were not known. The
present study presents a unifying framework for all previous results and
opens the way to the construction of new invariants. This paper points
to new possibilities and leaves many open questions. The directions for
further research, that we wish to follow, are the construction of general
equi-affine invariant metric for a surface in any codimension and the
construction of the corresponding flows. Three dimensional manifolds
are of interest as well since they represent volumetric medical images,
or movies. The analytical study of the resulting flow should follow.
In particular the questions of existence, uniqueness and of extremum
principle (or at least stability) are of special interest. Other groups of
transformations such as the full affine group and the projective group
are of special interest in computer vision. The Beltrami flow allow the
question of invariance in an embedding space which is not Euclidean
as well. We hope to address part of these questions in the future.
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Appendix

In this appendix we explain and give simple example for the compu-
tational techniques presented in Section 4 and used extensively in the
rest of the paper. We introduced in Section 4 the totally antisymmetric
symbol

Ei1i2...id = (−1)s(i1,...,id) (43)

where s(i1, . . . , id) is the number of basic permutations needed to bring
(i1, . . . id) to the form (1, 2, . . . d). Although s is not well defined (there
are many ways with different number of basic permutations to do that)
its parity is invariant. Ei1i2...id = 0 if any of the indices appears twice.
For d = 2 it can be written as follows

(Ei1i2) =
(

0 1
−1 0

)
.

for d = 3 it is given by

Ei1i2i3 =





1 (i1i2i3) = even permutation of (123)
−1 (i1i2i3) = odd permutation of (123)
0 otherwise

We use this symbol to give an explicit expression for the determinant
of a matrix. Take a matrix

A =




A1
1 A2

1 . . . Ad
1

A1
2 A2

2 . . . Ad
2

...
...

. . .
...

A1
d A2

d . . . Ad
d


 . (44)

The determinant is defined as follows:

det A = Ei1...idA
i1
1 Ai2

2 . . . Aid
d = E i1...idA1

i1A
2
i2 . . . Ad

id
, (45)

where summation is assumed on indices that appear twice.
The proof is by induction. Take first the determinant of a 2x2 matrix

det
(

A1
1 A2

1

A1
2 A2

2

)
= EijA

i
1A

j
2
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= E11A
1
1A

1
2 + E12A

1
1A

2
2 + E21A

2
1A

1
2 + E22A

2
1A

2
2

= A1
1A

2
2 −A2

1A
1
2. (46)

It is more illuminating at this stage to work out the example of d=3
than to jump to the general case. For a general 3x3 matrix

A =




A1
1 A2

1 A3
1

A1
2 A2

2 A3
2

A1
3 A2

3 A3
3


 . (47)

The determinant is developed along a row where each element of the
row is multiplied by a determinant of a 2x2 matrix for which we already
proved the formula. Explicitly

detA = A1
1Ei2i3A

i2
2 Ai3

3 −A2
1Ei1i3A

i1
2 Ai3

3 + A3
2Ei1i2A

i1
2 Ai2

3 (48)

Look now on the first term. We can rewrite it as

A1
1Ei2i3A

i2
2 Ai3

3 = E1i2i3A
1
1A

i2
2 Ai3

3

This follows from the fact that Eij = E1ij for i and j that take the
values 2, 3. Similarly

A2
1Ei1i3A

i1
2 Ai3

3 = −E2i1i3A
2
1A

i1
2 Ai3

3

and
A3

1Ei1i2A
i1
2 Ai2

3 = E3i1i2A
3
1A

i1
2 Ai2

3

and the formula follows.
As an exercise we re-derive the relation between the determinant of

the metric in the original and the reparameterized coordinate systems.
The Jacobian matrix of the reparameterization is the matrix whose
elements are ∂σµ/∂σ̂ν . The Jacobian is the determinant of this matrix:

J = det(∂σµ/∂σ̂ν) = Eµ1µ2...µd
∂σ1

∂σ̂µ1

∂σ2

∂σ̂µ2
. . .

∂σd

∂σ̂µd
(49)

Using the identity Eq. (13) we get

Eµ1µ2...µd
∂σν1

∂σ̂µ1

∂σν2

∂σ̂µ2
. . .

∂σνd

∂σ̂µd
= JEν1ν2...νd . (50)

The determinant g transforms as follows:

ĝ = Eµ1µ2...µd ĝ1µ1 ĝ2µ2 . . . ĝdµd

= Eµ1µ2...µdgγ1δ1

dσγ1

dσ̂1

dσδ1

dσ̂µ1
. . . gγdδd

dσγd

dσ̂d

dσδd

dσ̂µd

= JEδ1δ2...δdgγ1δ1

dσγ1

dσ̂1
. . . gγdδd

dσγd

dσ̂d
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22 N. Sochen

= JgEγ1γ2...γd

dσγ1

dσ̂1

dσγ2

dσ̂2
. . .

dσγd

dσ̂d
= (J2)g. (51)
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