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Abstract. We explore how a simple linear change of variable affects the inclusion functions
obtained with Interval Analysis methods. Univariate and multivariate polynomial test functions are
considered, showing that translation-based methods improve considerably the bounds computed by
standard inclusion functions. An Interval Branch-and-Bound method for global optimization is then
implemented to compare the different procedures, showing that, although with times higher than
those given by Taylor forms, the number of clusters and iterations is strongly reduced.
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1. Introduction

Designed as a technique for controlling propagation of errors in computing [8],
Interval Analysis was soon recognized as a powerful tool for global optimiza-
tion [3, 5, 6, 10]. Its main use is then in feasibility and optimality tests of
Branch-and-Bound methods [8, 10] for solving problems of the form

min�f �x� �gi�x��0 i=1�2�			�m�	

Indeed, a region X can be discarded as soon as one detects it is either infeasible
(because an upper bound for one of the functions g on X is negative), or it cannot
contain optimal solutions (because a lower bound for f �x� on X turns out to be
worse than the value of an already known feasible solution). Hence, it is of great
importance to know, for a given function f , the direct image f �X� of X,

f �X�
=�f �x� 
x∈X��

or, if this is not possible, an enclosure of it. This leads to the concept of inclusion
function, defined as follows in the univariate case: let � denote the set of intervals
X of the form X 
= �xL�xU �, with −��xL�xU �+�.
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Given f 
 �−→�, any F 
 �−→� containing f �X� is called an inclusion
function of F .
A desired property of an inclusion function of f is its isotonicity: F is said to

be an isotone inclusion function of f if

F�Y �⊆F�Z� for all Y �Z with Y ⊆Z	

Some examples of (isotone) inclusion functions will be introduced here; the
reader is referred to [3, 9, 10] for further details.
If an analytical expression of f is given, one formally replaces the variable x

by the corresponding interval variable X, and all the algebraic operations in the
definition of f by their corresponding Interval Arithmetic operations, then one
obtains the so-called Natural Extension of f , denoted throughout the paper by
NE.
For sufficiently smooth functions f , it is possible to obtain different inclusion

functions from Taylor expansions by constructing enclosures of the remainder.
Indeed, f can then be written as

f �x�=f �x0�+
k−1∑
i=1

�x−x0�
i

i! f �i��x0�+
�x−x0�

k

�k�! f �k����

for some �∈X. If F �k� is an inclusion function of f �k�, then f �k����∈F �k��X�,
yielding the Taylor inclusion function of order k centered at x0� Tk�x0�X�,
defined as

Tk�x0�X�=f �x0�+
k−1∑
i=1

�X−x0�
i

i! f �i��x0�+
�X−x0�

k

k! F �k��X�	 (1)

The most used interval Taylor inclusion functions are obtained from the cen-
tered expansions of first or second order,

T1�X�=f �m�+�X−m�F ′�X� (2)

T2�X�=f �m�+�X−m�f ′�m�+ �X−m�2

2
F ′′�X�� (3)

(m being the midpoint of the interval X= �xL�xU �), or a non-centered form of
T1�x0�X�� T1B� due to Baumann [1], consisting of taking, in (1), for k=2,
x0 given by

x0 
=



xU if F ′U �X��0�

xL if F ′L�X��0�
F ′U �X�xL−F ′L�X�xU

F ′U �X�−F ′L�X�
otherwise
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to maximize the lower bound and

x0 
=



xL if F ′U �X��0�

xU if F ′L�X��0�
F ′L�X�xL−F ′U �X�xU

F ′L�X�−F ′U �X�
otherwise

to minimize the upper bound.
These will be the inclusion functions taken as benchmark, with which the

inclusion function we propose in Section 2 will be compared.

2. Translation-based Methods for Univariate Polynomial Functions

2.1. PROBLEM SETTING

In this section we address the problem of finding inclusion functions P, yielding
sharp enclosures for the range of a real univariate polynomial function p,

p�x�=
n∑

k=0
akx

k� with ak∈�� and x∈X= �xL�xU �∈�	 (4)

Throughout this section, n will denote the degree of the polynomial function
p considered.
In this case, the Natural Extension NE of this expression of p becomes

NE�X�=
n∑

k=0
akX

k� X= �xL�xU �∈�	 (5)

Another well-known choice is the Horner scheme H ,

H�X�=a0+X�···�an−2+X�an−1+anX��···�	 (6)

Observe that these two inclusion functions are not comparable in terms of the
enclosures they provide. For instance, for p�x�=x2−x and X= �−1�1�, we have

NE�X�=X2−X

= �−1�2�
⊂ �−2�2�=X�X−1�=H�X�	

Nevertheless, for the same p and X= �1�2�, we obtain

NE�X�=X2−X

= �−1�3�
⊃ �0�2�=X�X−1�=H�X�	
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However, an inclusion function sharper than both NE and H is directly obtained
from H , by computing the range in a box as the union of ranges in sub-boxes
covering the box, [9, 10]:

DEFINITION 1. Given an isotone function F 
 �−→�, and c∈�, define
Fc 
 �−→�, as

Fc�X�=
{
F��xL�c��∪F��c�xU ��� if c∈X

F�X�� otherwise	

LEMMA 1. Fc is an isotone function satisfying Fc�X�⊆F�X� for all X∈�.
Proof. First observe that Fc is well defined; indeed, for c∈X= �xL�xU �, since

F is an inclusion function, both F��xL�c�� and F��c�xU �� are closed intervals
having f �c� as common point; hence, Fc�X�∈�.
Moreover, Fc is an inclusion function. Indeed, if c�X, one has Fc�X�=F�X�⊇

f �X�; if c∈X, one has

f ��xL�c��⊆F��xL�c��

f ��c�xU ��⊆F��c�xU ��	

Hence,

f �X�=f ��xL�c��∪f ��c�xU ��⊆F��xL�c��∪F��c�xU ��=Fc�X��

showing that Fc is also an inclusion function.
In order to see that Fc is isotone, consider Y �Z∈�� Y ⊆Z. Three cases are

considered:

1. If c �∈Z, then the isotonicity of F implies that Fc�Y �=F�Y �⊆F�Z�=Fc�Z�.
2. If c �∈Y and c∈Z then either Y ⊆ �zL�c� or Y ⊆ �c�zU �. In the first case one has

Fc�Y �=F�Y �⊆F��zL�c��⊆�F��zL�c��∪F��c�zU ���=Fc�Z��

whereas in the latter case one has

Fc�Y �=F�Y �⊆F��c�zU ��⊆�F��zL�c��∪F��c�zU ���=Fc�Z�	

3. If c∈Y (thus c∈Z) then �yL�c�⊆ �zL�c�, and �c�yU �⊆ �c�zU �.
Hence, Fc�Y �=�F��yL�c��∪F��c�yU ���⊆�F��zL�c��∪F��c�zU ���=Fc�Z�.

Therefore, Fc is isotone.



IMPROVING INTERVAL ANALYSIS BOUNDS BY TRANSLATIONS 161

Trivially Fc�X�⊆F�X� if c�X. If c∈X, then the isotonicity of F implies that
F��xL�c��∪F��c�xU ��⊆F�X�, thus Fc�X�⊆F�X�, as asserted. �

Particularized to the inclusion function H , splitting by c=0, one obtains the
inclusion function H0, defined as:

H0�X�
=



�min�HL��xL�0���HL��0�xU ����max�HU ��xL�0���HU ��0�xU �����

if 0∈X�

H�X�� else	

(7)

PROPOSITION 1. H0 is an inclusion function which is isotone and satisfies for
all X∈� 

1. H0�X�⊆H�X�
2. H0�X�⊆NE�X�.

Proof. H0 is an isotone inclusion function satisfying H0�X�⊆H�X� by
Lemma 1. By defining NE0 following Definition 1, it suffices to show that
H0�X�⊆NE0�X� for all X∈�.
We show thatH0�X�⊆NE�X� by induction in the degree k of p. For k=0�1 the

inclusion is straightforward. We assume that the inclusion holds for all polynomial
functions of degree smaller than k, and show the result for the polynomial function
p�x� 
=a0+a1x+···+ak+1x

k+1, (of degree k+1).
If 0�X, then

H0�X�=H�X�=a0+X�H ∗�X��=a0+X�H ∗
0 �X��

where H ∗�X� (respectively H ∗
0 ) represents the Horner scheme H (respectively

H0) for the polynomial function p∗ of degree k, p∗�x�=a1+a2x+···+ak+1x
k.

By the induction assumption, one has

H ∗
0 �X�⊆NE∗�X��

where NE∗ denotes the natural extension for p∗. Hence,

a0+X�H ∗
0 �X��⊆a0+X�NE∗�X��⊆NE�X�	

Therefore

H0�X�⊆NE�X� ∀X with 0�X	

If 0∈X, a similar argument shows that

H0��x
L�0��⊆NE��xL�0��

and

H0��0�x
U ��⊆NE��0�xU ��	

Hence, H0�X�⊆NE0�X�⊆NE�X�, and the result holds. �
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2.2. TRANSLATION-BASED METHODS

The idea of these methods is to translate the interval X considered into the interval
X!= �xL+!�xU +!� by using an expression for p�x� different from (4), and
then choosing the value of ! yielding the sharpest enclosure. First, observe that,
for any !∈�,

p�x�=
n∑

j=0
aj��x+!�−!�j

=
n∑

j=0
�x+!�j

n−j∑
k=0

ak+j

(
k+j
j

)
�−!�k

=
n∑

j=0
fj�!��x+!�j� (8)

with fj�!� defined as

fj�!�=
n−j∑
k=0

ak+j

(
k+j
j

)
�−!�k	 (9)

For each inclusion function F previously defined one obtains now, for each
!∈�, a new translation-based inclusion function TF�!�·�. For instance, from
the Horner scheme H , one obtains TH ,

TH�!�X�=f0�!�+X!�f1�!�+X!�···�fn−1�!�+X!fn�!����� (10)

with X!=X+!	
Furthermore, TH0 is defined, following Definition 1, as

TH0�!�X�=�TH�!�X��0	 (11)

In the same way, TNE�TNE0�TT1�TTn are defined.
Given an inclusion function F , we obtain for each ! the inclusion function

TF�!�·�. By definition,
TF�0�X�=F�X� (12)

thus by varying the parameter ! it may be possible to come up with more accurate
enclosures. This poses the problem of determining the values of ! yielding the
sharpest enclosure.
For this we define, for an inclusion function F , the optimal translation-based

inclusion function OTF as

OTF�X�=
[
max
!∈�

TFL�!�X�� min
!∈�

TFU�!�X�
]
� (13)

where TF�!�X�= �TFL�!�X��TFU �!�X��.
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Observe that, by (12),

OTF�X�⊆F�X� ∀X∈�	
Remark 1. The function OTF is only of interest for theoretical reasons; indeed,

the practical determination of OTF amounts to solving two optimization problems
which can be non-differentiable and non-convex. Hence, in practice, a few steps
of a local-search algorithm will be used, yielding an enclosure possibly less sharp
than OTF but with much less computational effort.

PROPOSITION 2.

TH0�!�X�⊆TNE�!�X�=Tn�−!�X� for all !∈��X∈�	 (14)

Proof. Let !∈� and X∈�. The inclusion TH0�!�X�⊆TNE�!�X� directly
follows from Proposition 1.
Since p�n��x�=n!an for all x, one has that P

�n��X� 
 �n!an�n!an� is an inclusion
function for p�n�. By (1), Tn�−!�X� can then be written as

Tn�−!�X�=p�−!�+
n−1∑
i=1

�X+!�i

i! p�i��−!�+ �X+!�n

n! P�n��X�

=p�−!�+
n−1∑
i=1

�X+!�i

i!
n−i∑
k=0

�k+i�!
k! ak+i�−!�k+ �X+!�n

n! n!an

=
n∑

i=0
�X+!�i

n−i∑
k=0

((
k+i
i

)
ak+i�−!�k

)

=
n∑

i=0
�X+!�ifi�!�=TNE�!�X�	

This shows the result. �

From (14) one directly has

PROPOSITION 3. OTH0�X�⊆OTNE�X� for all X∈�.

2.3. NUMERICAL RESULTS

The different inclusion functions previously suggested have been compared
according to the bounds they produce. Table 1 summarizes the results obtained
for a series of univariate polynomial functions, either taken from the literature,
[4, 11, 12], or randomly generated. The first ones are the following:

1. p1�x�= 1
10−x− 79

20x
2+ 71

10x
3+ 39

80x
4− 52

25x
5+ 1

6x
6� X= �−2�11�, due to Wingo,

[11]. There is a misprint in the expression of the function in [11].
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Table 1. Results for lower or upper bounds for polynomial functions.

Pb p1 p2 p3 p4 p5 p6 p7
lb ub lb lb lb lb ub lb

NE �−3	34E5 3	12E5� −3	33E10 −1	70E4 −5	00E2 −4	99E3 6	16E5 −4	62E2

H �−3	73E5 8	68E4� −2	48E10 −1	40E4 −1	23E3 −4	57E3 3	77E4 −1	09E3

H0 �−3	19E5 1	61E4� −2	48E10 −1	40E4 −4	00E2 −4	57E3 3	77E4 −3	62E2

T1 �−1	08E6 1	08E6� −1	51E16 −4	67E4 −4	20E3 −1	37E5 2	61E8 −3	7E3

T1B �−1	03E6 1	03E6� −5	15E11 −3	71E4 −3	29E3 −1	42E4 4	09E6 −3	07E3

T2 �−1	19E6 1	59E6� −9	79E11 −2	15E4 −1	50E3 −1	56E4 3	84E6 −1	21E3

T3 �−1	27E6 1	23E6� −3	65E17 −1	86E4 −3	00E3 −4	63E4 8	22E8 −2	96E3

OTH0 �−5	46E4 2	35E2� −1	01E3 −9	96E2 −6	72E1 1	92 −3	11E1 −1	64E2

! −6	3 −1 −1	08 −5	35 −0	87 −0	17 −0	65 −0	45

2. p2�x�=
∑50

i=1aix
i�x∈ �1�2�, the coefficients are a1�			�n=�−500, 2.5,

1.666666666, 1.25, 1, 0.833333333, 0.714285714, 0.625, 0.555555555, 1,
−43	636363636, 0.416666666, 0.384615384, 0.357142857, 0.333333333,
0.3125, 0.294117647, 0.277777777, 0.263157894, 0.25, 0.238095238,
0.227272727, 0.217391304, 0.208333333, 0.2, 0.192307692, 0.185185185,
0.178571428, 0.344827586, 0.666666666, −15	483870970, 0.15625,
0.151515151, 0.147058823, 0.142857142, 0.138888888, 0.135135135,
0.131578947, 0.128205128, 0.125, 0.121951219, 0.119087619, 0.116279069,
0.113636363, 0.111111111, 0.108695652, 0.106382978, 0.208333333,
0.408163265, 0	8�, the Moore function.

3. p3�x�= 0	000089248x− 0	0218343x2 +0	998266x3 − 1	6995x4+ 0	2x5, x∈
�0�10�, the Wilkinson function.

4. p4�x�=4x2−4x3+x4�x∈ �−5�5�, the Dixon and Szegö function.
5. p5�x�=7x4−5x3+4x2+3x+2, X= �0�10�, generated randomly with integer
coefficients in the range �−10�			�10�.

6. p6�x�=−5	87x13−2	32x12−1	83x11−16	64x10+7	71x9+8	71x8+5	26x7−
5	29x6−17	69x5+3	47x4−12	4x3−19	35x2−19	37x+4	34�X= �0	77�3	38�,
generated randomly with real coefficients in the interval �−20�20�.

7. p7�x�=10x−1	5x2−3x3+x4�x∈ �−5�5�, the Dixon function.
The inclusion functions considered are NE�H�H0�T1B and Tk� k=1�2�3, tak-

ing as x0 the midpoint of the interval X. Moreover, OTH0 is computed using
fminu of MatLab to perform a local search, setting ! equal to 0 as starting point,
and performing at most 30 iterations. In order to check the computed bounds,
an outwardly rounded interval arithmetic code must be used [6–8]. Here, we
have developed in MatLab the needed operations, i.e., addition and multiplica-
tion for computing polynomial functions, with outwardly rounded computations.
Hence, the results presented are numerically correct for each inclusion func-
tion. It may be possible that the floating computations performing the translation
! produce some numerical errors and that the result differs slightly, or in rare
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cases largely, from the optimal value. But no negative effect can occur, because
TF�!�X� is always an inclusion function for all real (or floating) values of !.
In most cases, either the lower bound (lb) or the upper bound (ub) improved

considerably with respect to the other enclosures, the optimal ! for the other
bound being close to zero. The bounds, together with the optimal ! for OTH0

are given in the last two rows of the table. It appears that some surprising
improvements of the bounds are obtained for polynomial functions both of low
degree (e.g. p5) and high degree (e.g. p2).

2.4. EXTENSION TO UNIVARIATE RATIONAL FUNCTIONS

The methodology extends in a straightforward manner to functions r given as the
ratio of two polynomial functions p�q. Indeed, if THp

0 �!1�X� and TH
q
0 �!2�X�

represent translation-based inclusion functions for p and q according to (11), then
one obtains, for each !1�!2, the inclusion function

TH
p
0 �!1�X�

TH
q
0 �!2�X�

	

The optimization in the translation parameters yields a new (and sharper)
enclosure,

OTH
p
q

0 �X�= OTH
p
0 �X�

OTH
q
0 �X�

(15)

= �max!1∈��TH
p
0 �

L�!1�X�� min!1∈��TH
p
0 �

U �!1�X��

�max!2∈��TH
q
0 �

L�!2�X�� min!2∈��TH
q
0 �

U �!2�X��

⊇
[
max
!∈�

(
TH

p
0 �!�X�

TH
q
0 �!�X�

)L

� min
!∈�

(
TH

p
0 �!�X�

TH
q
0 �!�X�

)U
]
	 (16)

Remark 2. Remark that the latest enclosure, although less sharp, requires the
resolution of two instead of four optimization problems. Moreover, if just one
out of the two bounds is needed, one has to solve only one instead of four
optimization problems.

The improvement in precision of the enclosures obtained in this way is illus-

trated in Table 2. We have compared OTH
p
q

0 , as defined in (15) as well as the
enclosure defined in (16) (the two last lines of the table) with the enclosures
NE�

H
p
0

H
q
0
, the first-order Taylor expansion T1 and the Baumann inclusion function

T1B.
The numerical tests are performed on the rational function r�x�= p1�x�

p5�x�
over

different intervals. Observe that, for large intervals, the standard enclosures cannot
exclude zero in the denominator, yielding the trivial interval �−��+�� using
extended arithmetic.
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Table 2. Results for lower or upper bounds for rational functions.

Pb r over �0�10� r over �1�5� r over �3�5� r over �3	2�3	6�
lb ub lb ub lb ub lb ub

NE �−� +�� �−� +�� �−� +�� �−1	54 0	66�
H
p
0

H
q
0

�−� +�� �−444	6 62	63� �−8	0354 −0	00285� �−0	92 −0	25�
T1 �−� +�� �−� +�� �−� +�� �−1	66 0	67�
T1B �−� +�� �−� +�� �−� +�� �−1	16 0	17�

OTH
p
q

0 �−2	088E4 12	33� �−255	31 0	2168� �−5	8607 −0	0494� �−0	8615 −0	2768�
�−� +�� �−315	12 63	01� �−5	9431 −0	0494� �−0	8615 −0	2768�

3. The Multivariate Case

In this section, we explore possible extensions of the translation-based method to
the case in which the function p under consideration has the form

p 
 x∈�m �−→p�x� 
=
n∑

i=0
ai

( m∏
j=1

x
kij
j

)
� (17)

where ai∈�, and kij ∈�∪�0�, and an enclosure for p in the box X 
=X1× 			Xm

is sought.
The main idea is first to associate with p a series of univariate polynomial

functions pl, but having interval coefficients. For such functions pl it is easy to
extend our translation method in order to obtain an enclosure, yielding then an
inclusion function of p.
Define, for each l=1�			�m, the polynomial function with interval coefficients

pl,

pl 
 �X1�			�Xl−1�xl�Xl+1�			�Xm�∈�l−1×�×�m−l

�−→pl�X1�			�Xl−1�xl�Xl+1�			�Xm� 

n∑

i=0

(
ai

m∏
j=1�j �=l

X
kij
j

)
x
kil
l 	 (18)

Hence, if Pl�X� denotes an enclosure of pl�X1�			�Xl−1�xl�Xl+1�			�Xm�, then
for each nonempty L⊆�1�2�			�m�, the interval

⋂
l∈LP

l�X�, is an enclosure for
the function p given in (17) over the box X.
We then need to construct an enclosure for a univariate polynomial function p

with interval coefficients,

p�x�=
n∑

k=0
Akx

k� (19)

where Ak∈�, ∀k∈�1�			�n�.
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As in (8), one can rewrite p as

p�x�∈
n∑

j=0
Fj�!��X+!�j ∀x∈X�

where, as in (9), Fj�!� is defined by

Fj�!�=
n−j∑
k=0

Ak+j

(
k+j
j

)
�−!�k	

We define the translation-based Horner scheme TH as

TH�!�X�F0�!�+X!�F1�!�+X!�···�Fn−1�!�+X!Fn�!����� (20)

with X!=X+!, and we also define TH0 directly following Definition 1.
By optimizing the bounds, as in (13), we obtain the enclosure OTH0,

OTH0�X�
=
[
max
!∈�

TH0
L�!�X�� min

!∈�
TH0

U �!�X�

]
	 (21)

The properties enjoyed by this enclosure are similar to those described in
Section 2.
With this, we have at hand a methodology for computing enclosures for mul-

tivariate polynomial functions p as defined in (17). The lower bounds obtained
are compared in Table 3 with standard bounding procedures. Three bivariate
polynomial functions are considered, p8�p9�p10, taken from [2, 11],

p8�x1�x2�=2x21−1	05x41+�1/6�x61−x1x2+x22�

p9�x1�x2�=�x1+1�2+�x2−1�2�
p10�x1�x2�=4x21−2	1x41+�1/3�x61+x1x2−4x22+4x42	

Table 3. Results for lower bounds for polynomial multivariate functions.

Pb p8 over p9 over p10 over
X1 X2 X3 X1 X3 X1 X3 X4 X5

NE −39	6 −681	2 −2	05 0 1	0 −459	2 −7	1 −0	777 0	267
T1 −260	9 −2	3E3 −5	56 −73	5 −2	8 −7	0E5 −29	6 0	117 0	372
T1B −175	3 −1	3E4 −4	76 −8	4 1	0 −979	5 −28	8 0	373 0	373
T2 −274	2 −9	9E3 −3	44 −23	7 −0	3 −5	8E5 −23	9 0	251 0	373

TH1�2�0�·� −22	6 −59	0 −1	00 −7	4 −1 −120	2 −5	0 0	268 0	364
TH1�2

0 �0�·� −22	6 −34	0 −1	00 −3	2 0 −120	2 −5	0 0	268 0	364

OTH1�2
0 −12	9 −25	0 −0	39 0 1	0 −25	71 −4	2 0	324 0	369
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Lower bounds for these polynomial functions are computed on different boxes,
X1�			�X5∈�2,

X1= �−2	1�2�×�0	9�10�

X2= �0�5�×�−5�5�
X3= �0�1�×�−1�1�
X4= �0	5�0	6�×�−1	1�−1�
X5= �0	5�0	51�×�−1	01�−1�	

Different bounding methods are considered, namely, the natural extension NE,
first-order and second-order Taylor expansions T1�T2, (centered at the midpoint)
and Baumann form T1B, where the three last inclusion functions are the general-
ization to the multidimensional case of the forms previously defined, [1, 10].
For each bivariate polynomial function p�x1�x2�� p

1� p2 are constructed follow-
ing (18), their corresponding inclusion functions TH 1�2 
=TH 1∩TH 2 following
(20), then TH 1�2

0 
=TH 1
0 ∩TH 2

0 , and finally OTH 1�2
0 
 OTH 1

0 ∩OTH 2
0 following

(21).
The results are given in Table 3. It appears that OTH 1�2

0 outperforms NE;
an exception is p9, whose expression has its variables separated, and for which
the natural extension already produces optimal bounds. For small intervals
the translation-based method produces bounds comparable with Taylor forms,
whereas for large intervals OTH 1�2

0 is more efficient.

4. Application to Global Optimization

The numerical experiments presented in the previous sections show that
translation-based methods may yield much sharper bounds than the standard
enclosure procedures. However, since the computation of these forms is much
more expensive in CPU-time, it is not clear in advance if, within a Branch-and-
Bound procedure, it deserves spending a (much) longer computing time in order
to obtain (much) sharper lower bounds.
We have implemented a Branch-and-Bound procedure, based on the Ichida-

Fujii method, [5], [10], which encloses all the +-optimal solutions of the problem.
The algorithm, described in what follows, is a two-phase procedure; the first
phase seeks the optimal value (up to +f ), by a Branch-and-Bound procedure with
bisection as branching rule and selecting the interval with the lowest lower bound;
once the optimal value is found, one starts a new Branch-and-Bound procedure,
still branching by bisection, selecting the largest interval, and stopping when all
intervals remaining in the list are sufficiently small, namely of length not greater
than +X . The final list of intervals is such that any +f -optimal solution of the
problem is contained in the union of these intervals.
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Algorithm

Phase 1. 1. Set X 
= the interval in which the global
minimum is sought.

2. Set fmin 
=+�.
3. Set � 
=��+��X��.
4. Extract from � the element with the lowest

lower bound.
5. Bisect the interval chosen by its midpoint,

yielding V1�V2.
6. For j 
=1 to 2 do

(a) Compute vj 
=lower bound of f on Vj	
(b) If fmin�vj then

• Insert �vj�Vj� in �.
• Set fmin 
=min�fmin�f �m��, where m is the
midpoint of Vj.

• If fmin is changed then remove from � all
couples �z�Z� with z>fmin.

7. If fmin<min�z�Z�∈� z+0f, then GoTo Phase 2. Else
GoTo Step 4.

Phase 2. 1. Extract from � the largest interval.
2. If the interval chosen has length not greater

than +X then STOP.
3. Bisect the interval chosen by its midpoint,

yielding V1�V2.
4. For j 
=1 to 2 do

(a) Compute vj 
=lower bound of f on Vj.
(b) If fmin�vj then

• Insert �vj�Vj� in �.
• Set fmin 
=min�fmin�f �m��, where m is the
midpoint of Vj.

• If fmin is changed then remove from � all
couples �z�Z� with z>fmin.

5. GoTo 1.

This procedure has been implemented in Fortran 90 on a Digital
AlphaServer 8200 5 /625 quadriprocessor, using as bounding procedures
NE�H0�T1�T2�T1B�Tn�OTH0�OTNE. The local optimization used in the transla-
tion methods was done with the NAG-subroutine E04ABF, performing at most
30 iterations, seeking for the optimal ! in the interval �−100�100�. All these
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methods for finding inclusions use an outwardly rounded interval arithmetic code
developed in [7]. Thus, the computed bounds are correct (no numerical error can
occur) and that is why the global optimization based on this principle is said to
be rigorous [6, 7].
As test functions we have considered first the functions p1, p3, p4, p6, p7 of

Section 2 together with the Goldstein-Price function, p11,

p11 
=250+27x2−15x4+x6	

Different intervals and values of +f are chosen, whereas +X is fixed to 0	00001.
The results are summarized in Table 4, where we give the number of iterations
needed, Its, the CPU-time in seconds, time(s), and the number of intervals in the
final list, Cls.
One can note on these first numerical examples the efficiency of our algorithms;

the number of iterations can be strongly reduced (from thousands to 8 in the
first example), CPU-times are much better than those obtained with the Natural
Extension and of the same order than those produced with Taylor forms. More-
over, there is a dramatic reduction in the number of intervals (clusters) remaining
in the final list; thus the well-known clustering problem [2] is avoided.
In order to study if the efficiency of the translation-based method is dependent

on the degree of the polynomial function considered, we have generated randomly
polynomial functions of degrees 5�6�10�11�14�15 with coefficients uniformly
distributed in the set �−10�−9�			�0�			�10�⊂�. The sample size in all cases
is 1000. The interval within which the polynomial functions are optimized is
always �−1�1��+f =0	0001, and +X=0	00001. Table 5 shows for each sample
the average number of iterations, Its, the total CPU-times in seconds, time(s), and
the average number of clusters, Cls, rounded to the closest integer.
It appears that, compared with those obtained with Taylor forms, the number

of clusters and iterations is strongly reduced for all the degrees of polynomial
functions tested. However, computing times are higher; hence, there is room for
heuristic rules.

5. Conclusion

The purpose of this paper was to show that a linear change of variable can con-
siderably improve the quality of bounds in Interval Arithmetic computations.
This leads to the problem of determining the optimal translation, to be obtained
via local search. Numerical tests are given for univariate and multivariate poly-
nomial and univariate rational functions, showing a significant improvement of
the enclosures. Finally, the different inclusion functions are used in an Inter-
val Branch-and-Bound algorithm, showing that, although at a higher computa-
tion cost, translation-based methods reduce strongly the number of clusters and
iterations.
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