
An Interior Point Heuristic for the Hamiltonian Cycle Problem

via Markov Decision Processes∗

Jerzy Filar † Jacek Gondzio ‡ Vladimir Ejov §

April 3, 2003

Abstract

We consider the Hamiltonian cycle problem embedded in a singularly perturbed
Markov decision process (MDP). More specifically, we consider the HCP as an optimiza-
tion problem over the space of long-run state-action frequencies induced by the MDP’s
stationary policies. We show that Hamiltonian cycles (if any) correspond to the global
minima of a suitably constructed indefinite quadratic programming problem over the
frequency space. We show that the above indefinite quadratic can be approximated by
quadratic functions that are “nearly convex” and as such suitable for the application of
logarithmic barrier methods. We develop an interior-point type algorithm that involves
an arc elimination heuristic that appears to perform rather well in moderate size graphs.
The approach has the potential for further improvements.

Key words: Hamiltonian cycles, Markov Decision Processes, Interior Point
Methods, Non-convex Optimization

1 Introduction

This paper is a continuation of a line of research [11],[4], [12], [7], [10] which aims to ex-
ploit the tools of controlled Markov decision chains (MDP’s)1 to study the properties of a
famous problem of combinatorial optimization: the Hamiltonian Cycle Problem (HCP). More
specifically, the present paper provides evidence that computationally effective algorithms for
determining Hamiltonicity can be developed based on this approach. As such it can also be
viewed as a continuation of the numerical experiments begun in Andramanov et al [4].

In this paper, we consider the following version of the Hamiltonian cycle problem: given
a directed graph, find a simple cycle that contains all vertices of the graph (Hamiltonian cycle
(HC)) or prove that HC does not exist . With respect to this property - Hamiltonicity -
graphs possessing HC are called Hamiltonian. Next we shall, briefly, differentiate between
our approaches and some of the best known “classical” approaches to the HCP.
∗This research was supported in part by the grants from the Australian Research Council no. A00000767

and DP0343028
†School of Mathematics, The University of South Australia, Mawson Lakes, SA 5095, Australia; e-mail:

jerzy.filar@unisa.edu.au
‡School of Mathematics, University of Edinburgh, e-mail: J.Gondzio@ed.ac.uk
§School of Mathematics, The University of South Australia, Mawson Lakes, SA 5095, Australia; e-mail:

vladimir.ejov@unisa.edu.au
1The acronym MDP stems from the alternative name of Markov decision processes.

1

Many of the successful classical approaches of discrete optimisation focus on solving a
linear programming “relaxation” followed by heuristics that prevent the formation of sub-
cycles. In our approach, we embed a given graph in a singularly perturbed MDP in such a way
that we can identify Hamiltonian cycles and sub-cycles with exhaustive and non-exhaustive
ergodic classes of induced Markov chains.

More precisely, our dynamic, stochastic approach to the HCP, considers a moving object
tracing out a directed path on the graph G with its movement “controlled” by a function
f (a policy) mapping the set of nodes V = V(G) = {0, 1 . . . ,N} of G into the set of arcs
A = A(G) of G. We think of this set of nodes as the state space of a controlled Markov
chain Σ = Σ(G) where for each state/node i, the action space A(i) := {a|(i, a) ∈ A} is in
one-to-one correspondence with the set of arcs emanating from that node, or, equivalently,
with the set of endpoints of those arcs.

Illustration: Consider the complete graph G5 on five nodes (with no self-loops) and
think of the nodes as the states of an MDP, denoted by Σ, and of the arcs emanating from
a given node as of actions available at that state. In a natural way the Hamiltonian cycle
c1 : 0→ 1→ 2→ 3→ 4→ 0 corresponds to the “deterministic policy” f1 : {0, 1, 2, 3, 4} →
{1, 2, 3, 4, 0}, where f1(2) = 3 corresponds to the controller choosing arc (2,3) in state 2
with probability 1. The Markov chain induced by f1 is given by the “zero-one” transition
matrix P (f1) which, clearly, is irreducible. On the other hand, the union of two sub-cycles:
0 → 1 → 2 → 0 and 3 → 4 → 3 corresponds to the policy f2 : {0, 1, 2, 3, 4} → {1, 2, 0, 4, 3}
which identifies the Markov chain transition matrix P (f2) (see below)containing two distinct
ergodic classes. This leads to a natural embedding of the Hamiltonian cycle problem in
a Markov control problem Σ. The latter MDP has a multi-chain ergodic structure which
considerably complicates the analysis. However, this multi-chain structure can be “disguised”
- but not completely lost - with the help of a “singular perturbation”. For instance, we could
easily replace P (f2) with Pε(f2):

P (f2) =


0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 and Pε(f2) =


0 1− 3ε2 ε2 ε2 ε2

ε 0 1− ε 0 0
1 0 0 0 0
ε 0 0 0 1− ε
ε 0 0 1− ε 0

 .

The above perturbation is singular because it altered the ergodic structure of P (f2) by
changing it to an irreducible (indeed, completely ergodic) Markov Chain Pε(f2).

It is now convenient to work in the so-called long-run frequency space, Xε, of state action
frequencies. The effect of our perturbation is such that the long-run frequency of visits to
state/node 0 – for a policy that traces out a Hamiltonian Cycle – can be explicitly calculated
as x0 = 1/d1+N (ε) (see Proposition 1) and introduced as an additional constraint on the fre-
quency space. In [7] it was shown that Hamiltonian cycles are precisely the global minimizers
of a suitably constructed quadratic program:

minxTQx

x ∈ Xε & x0 = 1/d1+N (ε).

Furthermore, at the minimum xTQx = 0 which is equivalent to the policy corresponding to
such a minimizer belonging to the set of deterministic policies. Note that Q is indefinite, but
possesses a lot of special structure.

2

The fundamental idea of this paper is to consider a “more convex” objective function
than xTQx. Such a function hα can be constructed for small α > 0 as S(x) − αs(x), where
S(x) =

∑
i (
∑

a xia)
2 , s(x) =

∑
i

∑
a x2

ia, and xia is the frequency of choosing arc a when
leaving node i. The non-convexity occurs from αs(x) that can now be controlled with the
small factor α. We prove that the global minimum of hα occurs if not at HC itself then in its
small neighbourhood sufficient to recover the HC. In view of this it is reasonable to hope that
an interior point algorithm that works well for convex quadratic programs may also work
“well-enough” for the above surrogate problem, when α is sufficiently small.

We develop a heuristic, within an interior point method, that searches for a local minimum
of hα instead of the global one and decides that a particular arc is used at the prospective
HC if it is “dominant” among all arcs from the same node at the local minimum point. The
dominant arcs are then declared to be part of a prospective HC and other arcs from the
corresponding nodes are eliminated. This simplifies the structure of the original graph.

It is often the case that even a single dominant arc causes a cascade of further reductions.
However, it may happen that there are no dominant arcs in the original setting. Then we
need to use some branching algorithm that chooses exactly one arc from a particular node
and then applies the dominant arc search.

We report a series of numerical experiments with this heuristic. We found that it seems
to perform very well on small to moderate size graphs. For instance, on randomly gener-
ated graphs with some 100 nodes and 300 arcs, the heuristic found Hamiltonian cycles in
approximately 107 seconds. For structured graphs such as the “Knight’s tour” problem we
succeeded in solving an instance of the 32× 32 chessboard, albeit in 9 hours and 57 minutes.
We also report the performance of our interior point heuristic on cubic “generalised Petersen
graphs” [1] that have generated interest among graph theorists. We found that instances
of these graphs with approximately 500 arcs were solved in about 1 minute. Finally, in our
experimentation, we found only one instance of a graph where our heuristic failed to find a
Hamiltonian cycle. This was a 94 node graph with 282 arcs. Of course, the heuristic could
be replaced by a complete algorithm that was guaranteed to produce a definitive answer but
at the cost of returning to the previously eliminated “non-dominant” arcs. The subject of an
efficient implementation of the latter is part of the continuing research.

2 A formulation of HCP by means of a perturbed MDP

The Hamiltonian Cycle Problem (HCP) is the problem to find a simple cycle of 1 + N arcs,
that is a Hamiltonian Cycle or a tour, in a directed graph G with 1+N nodes numbered from
0 to N and with arcs m arcs (i, a), or to determine that none exist. Recall that a simple cycle
is one that passes exactly once through each node comprising the cycle. We will identify G
with its adjacency matrix

G[i, a] =
{

1 : G contains arc (i, a)
0 : otherwise

We employ the following perspective of the HC problem, introduced in [14]: Consider a
moving object tracing out a directed path on the graph G with its movement “controlled”
by a function f mapping the set of nodes V = V(G) = {0, 1, . . . ,N} of G into the set of arcs
A = A(G) of G. We think of this set of nodes as the state space of a Markov decision process
Γ = Γ(G) where for each state/node s, the action space

A(i) = {a|(i, a) ∈ A}

3

is in one-to-one correspondence with the set of arcs emanating from that node, or, equiva-
lently, with the set of endpoints of those arcs. In order to ensure that our MDP is irreducible
we now introduce the perturbed transition probabilities for Γ to create an ε-perturbed process
Γε (for 0 < ε < 1) defined by

pε[j; i, a] =



1− (N − 1)ε2 : if i = 1 and a = j
ε2 : if i = 1 and a 6= j
1 : if i > 1 and a = j = 1
ε : if i > 1 and a 6= j = 1

1− ε : if i > 1 and a = j > 1
0 : in all remaining cases

Here pε(j; i, a) represents the probability to move from the node i to the node j by
choosing the action (i, a), so

N∑
j=0

pε[j; i, a] = 1 for all (i, a) ∈ A. (1)

Note that with the above perturbation, for each pair of nodes i, a (not equal to 1) correspond-
ing to a “deterministic arc” (i, a), our perturbation replaces that arc by a pair of “stochastic
arcs” (i, 1) and (i, a) with weights ε and (1−ε) respectively. This stochastic perturbation has
the following interpretation: a decision to move along arc (i, a) results in movement along
(i, a) only with probability (1 − ε) and with probability ε the process returns to the home
node 1; a decision to move along arc (1, a) results in movement along (1, a) with probability
1−Nε2 and with probabilities ε2 along the remaining N arcs (1, a

′
) a

′ 6= a. The quadratic
in ε part of the perturbation ensures that there will arise only irreducible Markov chains
defined by stationary strategies through the above perturbation.

A policy is defined by (1 + N)× (1 + N) stochastic matrix f (rows of f add up to 1) with
entries

f [i, a] =
{

probability of action a in state i whenever i is visited : a ∈ A(i)
0 : a 6∈ A(i)

Strategies compose the strategy space denoted by FS . A strategy is called deterministic if
f [i, a] ∈ {0, 1} for all i and a. That is, for each i the controller chooses some particular action
a ∈ A(i) with probability 1 whenever i is visited. In this case we will also write f(i) = a. The
space of deterministic strategies will be denoted by FD. The fact that controller’s decision
does not depend on the time of a visit to the state i is reflected in the name stationary policy
often used for a strategy. Any stationary policy f gives rise to a (1+N)× (1+N) probability
transition matrix P (f) with entries

Pε(f)[i, j] := pε(j; i, f) :=
N∑
a=0

pε[j; i, a]f [i, a].

Condition 1 implies that Pε(f) is also a stochastic matrix. In matrix notations the Markov
chain Pε(f) can be written as a regular perturbation of f given by

Pε(f) = f + ε∆1,lf∆1,r + ε2∆2,lf∆2,r

4

where ∆1 and ∆2 are sparse matrices with the entries

∆1,l[i, a] =
{

1 : a = i > 0
0 : otherwise

,

∆1,r[i, a] =


1 : a = 0
−1 : a = i > 0

0 : otherwise
,

∆2,l[i, a] =
{

1 : i = 1
0 : otherwise

,

∆2,r[i, a] =


0 : a = 0

1−N : a = i > 0
1 : otherwise

,

and so Pε may be considered as a non-degenerate operator on stochastic matrices.
The feature of an irreducible Markov chain P is the simple description of its Cesaro-limit

matrix Q that has identical rows q = (q0, . . . , qN) > 0 that represent the unique solution of
the linear system of equations:

qP = q

q1 = 1,

where 1 is an N -dimensional column vector with unity in every entry. The vector q is called
the stationary distribution of the irreducible Markov chain P.

Consider the irreducible Markov chain Pε(f) determined by a stationary policy f . Let q(f)
be its stationary distribution vector. For each a ∈ A(s), i ∈ V define the long-run frequency
of the state-action pair (i, a) ∈ A(i) as

xia(f) := qs(f)f [i, a].

The long run frequency of the state i is defined as the aggregate

xi(f) :=
∑
a∈A(i)

xia(f) = qs(f),

where the last equality follows from the fact that
∑

a∈A(i) f [i, a] = 1. Components {xi} form
the long-run state frequency 1 + N row vector

x̄(f) = (x0(f), x1(f), . . . , xN (f)) .

Furthermore, define the long-run (state-action) frequency vector x(f) induced by f as the
block-column vector whose i-th block is

xi(f) =
(
xiai1

(f), xiai2
(f) . . . , xiaimi

(f)
)T

,

5

where aij ∈ A(i) and mi is the number of arcs in A(i). The construction of x defines a map
M of the strategy space FS into Rm by

M(f) := x(f).

The quadratic in ε part of the perturbation ensures that xi(f) > 0 for each i. Therefore,
M is invertible and its inverse M−1 is defined by

M−1(x)[i, a] = fx[i, a] :=
xia
xi

.

It is shown in [14] that the property that x̄ is the stationary distribution vector for Pε(f)
is equivalent to the inclusion x̄ ∈ Xε, where Xε is a polyhedron in Rm, defined by the linear
constraints

(i)
N∑
i=0

∑
a∈A(i)

(δ(i, j) − pε(j; i, a)) xia = 0; j ∈ V

(ii)
N∑
i=0

∑
a∈A(i)

xia = 1

(iii) xia ≥ 0; a ∈ A(i), i ∈ V,.

with Kronecker δ coefficients δ(i, j).
In matrix notations Xε can be defined as

Xε =
{
x|Wεx = 0, 1Tx = 1, x ≥ 0

}
,

where x, 1 are both m-vectors (1 has unity in every entry), and Wε is an (1+N)×m matrix
with rows numbered by vertices V and columns by arcs A whose (j, (i, a))th entry is

wε[j, (i, a)] := δ(i, j) − pε(j; i, a).

Construction of Xε provides a connection between Wε and the incidence (1 + N) × m
matrix D(G) of the graph defined as

D(G)[j, (i, a)] =


1 : i = j
−1 : i = a

0 : otherwise

Lemma 1 Matrix Wε is a (ε-quadratically) perturbed incidence matrix D.

Proof:
By augmentation of several matrices Qi with the same number of rows we mean “joining”
them horizontally, hence, preserving the number of rows. This operation will be denoted as
augmentiQi. Following the definition of Wε we observe that

Wε = ∆− augmentiWi,

6

where ∆ is the “state-arc” analogue of the Kronecker δ:

∆[j, (i, a)] =
{

1 : j = i
0 : otherwise

and Wi is the (1 + N)×mi-matrix with entries

Wi[j, a] = pε[j; i, a]

The definition of pε[j; i, a] implies the claim of the lemma. 2

We note, that it is clear from the definition of pε[j; i, a] that each column of Wi adds up to 1,
so, each column of Wε adds up to 0. Thus, rank(Wε) ≤ N. In fact, since rank(D(G)) = N
(by [6]), it follows from the lemma (1) that rank(Wε) = N for small ε.

We now recall [14] the partition of the space FD of deterministic strategies that is based
on the subgraphs they “trace out” in G. In particular, note that with each f ∈ FD we
associate a subgraph Gf of G defined by

arc (i, a) ∈ Gf ⇐⇒ f(i) = a.

We shall also denote a simple cycle of length 1 + k and beginning at 0 by a set of arcs

c0
1+k = {(i0 = 0, i1), (i1, i2), . . . , (ik, i1+k = 0)} ; k = 2, 3, . . . ,N.

Thus, c0
1+N is a HC. If Gf contains a cycle c0

1+k we write Gf ⊃ c1
1+k. Let

C0
1+k :=

{
f ∈ FD| Gf ⊃ c0

1+k

}
,

namely, the set of deterministic strategies that trace out a simple cycle of length 1 + k,
beginning at 0, for all k = 2, 3, . . . ,N . Thus,

⋃N
k=1 C0

1+k contains all strategies that start
at 0 and the node where the strategy for the first time returns to is also node 0. Denote the
complement to

⋃N
k=1 C0

1+k in FD by B. Then B will contain strategies that start at the home
node 0 and the node where the strategy for the first time returns to is different from node 0.
The following proposition [9] can be proved along the same lines as the analogous result in
[11]. It characterizes the partition

FD =

[
N⋃
m=2

Cm

]⋃
B

by means of the long-run frequency x0(f) of visits to the home node 0:

Proposition 1 Let ε ∈ (0, 1√
N−1

), f ∈ FD, and x(f) be its long-run frequency vector (that
is, x(f) = M(f)). The long-run frequency of visits to the home state 0 is given by

x0(f) =
∑

a∈A(1)

x0a(f) =


1

d1+N (ε)
=

1
1 + N

+ O(ε) : if f ∈ C1+N

1
d1+k(ε)

+ O(ε) =
1

1 + k
+ O(ε) : if f ∈ C1+k, k = 1, 2, . . . ,N

ε

1 + ε
+ O(ε); : if f ∈ B,

where

d1+k(ε) =
1− (1− ε)k

ε
+ ε + (1 + (k − 1)ε)(1− ε)k = 1 + k + O(ε)

7

The above proposition leads to the following characterization of HC in G :

Corollary 1 [14] Hamiltonian Cycles of the graph G are in 1 : 1 correspondence with those
points of Xε which satisfy

(i) x0 =
∑

a∈A(0)

x0a =
1

d1+N (ε)

(ii) For every i ∈ V, xi =
∑
a∈A(i)

xia > 0 and xia
xi
∈ {0, 1} for each a ∈ V(i), i ∈ V.

We now interpret the HC problems as an optimization problem. Let

S(x) :=
∑
i

x2
i =

∑
i

 ∑
a∈A(i)

xi,a

2

= xTE(G)x,

where E(G) is the block-diagonal matrix consisting of 1 + N blocks with its i-th block being
a mi ×mi matrix full of units. Let

s(x) :=
∑
i

∑
a∈A(i)

x2
i,a = xT Imx,

where Im is the identity matrix of the size m. Consider the quadratic form

Q(x) := S(x) − s(x)

=
∑
i

Qi(xi)

=
∑
i

(
∑
a∈A(i)

xi,a)2 −
∑
a∈A(i)

x2
i,a


= xTQ(G)x.

Here Q(G) is a block-diagonal matrix with its i-th block being a mi × mi matrix with all
diagonal elements equal 0 and all off-diagonal elements equal 1. We observe that

Qi(xi) = (
∑
a∈A(i)

xi,a)2 −
∑
a∈A(i)

x2
i,a =

∑
a,b∈A(i),a6=b

xi,a xi,b,

is nonconvex and has nonnegative value for any nonnegative xi. Qi(xi) is zero if and only
if at most one of variables xi,a is nonzero. Hence the (unconstrained) minimization of Qi

chooses one variable xi,a out of all variables in xi. In other words, it chooses one neighbour
of node i in graph G.

The following indefinite quadratic programming problem is closely related to the HC
problem:

min xTQ(G)x

subject to:

(i) x ∈ Xε

(ii) x0 =
∑

a∈A(0) x0a = 1
d1+N (ε) .

(2)

8

Theorem 1 [14]

(i) Let f be a HC in G. Then x(f) is a global minimum of (2) and xTQ(G)x = 0.

(ii) Conversely, let x∗ be a global minimum of (2) such that (x∗)TQx∗ = 0. Then f∗x =
M−1(x∗) is a deterministic strategy which traces out a HC in G.

We note that both constraints in (2) can be expressed as a single linear equation

Aε(G)x = b, (3)

where

(i) Aε(G) is (N+3)×m matrix that is obtained from Wε by adding two rows at the bottom:
one full of units and the other consisting of units at positions (0, a) corresponding to
the arcs emanating from the home node 0 and of zeroes elsewhere,

(ii) b is (3 + N)-vector consisting of zeroes for the first 1 + N components, b2+N = 1, and
b3+N = 1

d1+N (ε) .

It is important for numerical purposes that system (3) has maximal rank. In fact, as
rank(Wε) = N , the maximal rank of Aε(G) is, therefore, at most N + 2. The lemma be-
low ensures the maximality of the rank(Aε(G)) for communicating graphs, (i.e. graphs that
for any pair of nodes {i, j} ⊂ V(G) there exists a path between i and j in G). Without loss
of generality we may assume that G is communicating, otherwise, clearly G does not contain
a HC. As was shown in [16], it takes polynomial time to verify the communication property
for a given graph G.

Lemma 2 If graph G is communicating then rank(Aε(G)) = 2 + N.

The proof of this lemma is purely technical, so it is relegated to the Appendix. For our heuris-
tic the single objective function Q(x) is insufficient. Our algorithm requires a 1-parameter
family of objective functions that (if the graph G contains an HC) achieve the (global) min-
imum at a HC or in a small neighbourhood of a HC so that the HC can be recognized by
the location of such global minima in Xε. It appears that the convex combination

fα(x) := S(x)− αs(x) = αQ(x) + (1− α)S(x), 0 < α ≤ 1

provides such a family. By argmin(fα(x)) we denote the location of a global minimum of
fα(x) in Xε.

Lemma 3 If G contains a HC then for every δ > 0 there exists ε0(δ, α) > 0 such that for
every ε from 0 < ε ≤ ε0(δ, α) a global minimum {argmin(fα(x))} lies in the δ-neighbourhood
of a HC in G.

Proof:
Let x0 := x0(α) = argmin(fα(x)) and let xHC be a frequency vector corresponding to HC.
As Q(xHC) = 0 and, by Proposition 1, S(xHC) = 1

1+N + O(ε), then,

fα(x0(α)) ≤ fα(xHC) =
1− α

1 + N
+ O(ε).

9

Since the functional S(x) takes its minimal value for all equal values xi = 1
1+N , i =

0, . . . , 1 + N, it follows that S(x) ≥ 1
1+N for all x ∈ Xε. Therefore, S(x0) = 1

1+N + O(ε).
Also, Q(x0) should be of the order O(ε), which implies that x0 is located in a small neigh-
bourhood of an extreme point x∗ in Xε. Since map M establishes 1 − 1 correspondence
between the extreme points of Xε and the deterministic policies FD on Γε it follows that
fx∗ := M−1(x∗) is a deterministic policy. By Proposition 1 the only available option for fx∗
to satisfy x0(fx∗) = 1

1+N + O(ε) is that fx∗=HC. 2

3 Solution of QP with an interior point method

The theory [20] and the implementation [3] of interior point methods for optimization are
well understood. These methods offer a number of advantages, specially when applied to very
large problems. Since we intend to apply our approach to large sparse graphs we decided to
employ an interior point algorithm to solve the nonconvex quadratic problem (2). We use
HOPDM solver [2, 15] for this purpose. Below we discuss the main issues of this application.

An interior point algorithm for quadratic programming implemented in HOPDM is the
primal-dual method with multiple centrality correctors. The algorithm is applied to the
primal-dual formulation of the quadratic program

Primal Dual

min cTx + 1
2xTQx max bT y − 1

2xTQx
s.t. Ax = b, s.t. AT y + s−Qx = c,

x ≥ 0; y free, x, s ≥ 0,

where A ∈ Rm×n, Q ∈ Rn×n, x, s, c ∈ Rn and y, b ∈ Rm. The main computational effort of
this algorithm consists in the computation of the primal-dual Newton direction. This requires
solving the following linear system A 0 0

−Q AT I
S 0 X

 ∆x
∆y
∆s

 =

 ξp
ξd
ξµ

 , (4)

where

ξp = b−Ax,

ξd = c−AT y − s + Qx,

ξµ = µe−XSe,

and X and S denote n × n diagonal matrices in which vectors x, s ∈ Rn are spread across
the diagonals, respectively. After an elimination of

∆s = X−1ξµ −X−1S∆x

the Newton system is reduced to:[
−Q−X−1S AT

A 0

] [
∆x
∆y

]
=
[

ξd −X−1ξµ
ξp

]
. (5)

10

The matrix involved in (5) is symmetric but indefinite (even for a convex problem when Q
is positive definite). For the sake of efficiency, in HOPDM implementation [2], the matrix in
the reduced Newton system is regularized with diagonal terms Rp and Rd

H =
[
−Q−X−1S AT

A 0

] [
−Rp 0

0 Rd

]
(6)

to obtain a quasidefinite one [18]. This allows the use of Cholesky-like factorization in
which an LDLT decomposition is found with diagonal matrix D containing both positive
and negative elements. The use of primal-dual regularization (6) guarantees the existence
of Cholesky-like factorization with diagonal D and avoids the need of using the 2× 2 pivots
required otherwise to decompose an indefinite matrix [5, 8].

A direct application of an interior point optimizer to solve (2) faces two difficulties. First,
a considerable density of diagonal blocks in Q(G) causes the symmetric LDLT decomposition
of matrix H in (6) to become very dense, which adversely affects the efficiency of the interior
point method. Secondly, the matrix Q(G) is indefinite and the quadratic problem (2) has
many local minima. Below we discuss our approach to addressing these difficulties.

Diagonal blocks in Q(G) can be represented as rank-one corrections of diagonal matrices.
Indeed, for

Qi(xi) := (
∑
a∈A(i)

xi,a)2 −
∑
a∈A(i)

x2
i,a = xTi Qixi

we write

Qi =


1
1
...
1

 [1 1 · · · 1
]
−I =


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

 .

By introducing an auxiliary variable

xi =
∑
a∈A(i)

xi,a (7)

we transform the quadratic form Qi(xi) into a diagonal one

Q̃i(xi, xi) = x2
i −

∑
a∈A(i)

x2
i,a.

Of course, we have to add one new constraint (7) and one new variable xi for each node of
the graph in the reformulated quadratic program. Therefore instead of N + 3 constraints
and |A| variables in (2) the new QP formulation has 2N + 4 constraints and |A| + N + 1
variables. However, the system (5) obtained for such transformed problem has diagonal
matrix Q̃ and the interior point implementation takes full advantage of the sparsity of this
separable formulation.

Nonconvexity of the quadratic programming problem means that the matrix −Q−X−1S
in the upper left corner of system (5) is not necessarily negative definite. Consequently, there
is no longer a guarantee that the small primal and dual regularizations Rp and Rd would
suffice to make H in (6) quasidefinite. Since the main objective of primal-dual regularizations

11

[2] is to guarantee the existence of a triangular decomposition of H, one way to proceed is
to accept positive pivots corresponding to the upper left corner whenever they appear and
are sufficiently stable and use the primal regularization Rp only to correct pivot candidates
which are dangerously close to zero. Another approach consists of correcting all positive pivot
candidates in the upper left corner by subtracting large enough regularization terms. This
approach is equivalent to a convexification of the objective. We have implemented the latter
approach. To reduce the perturbation introduced by potentially very strong regularization
we have used in our approach a different objective, namely:

fα(x) := S(x)− αs(x)

which, after a transformation to a separable form, gives the following i-th term

Q̄i(xi, xi) = x2
i − α

∑
a∈A(i)

x2
i,a.

This function is still nonconvex. However, its negative curvature decreases when α is reduced.
Consequently, a weaker regularization suffices to convexify the problem. Lemma 3 provides
a foundation for the use of fα(x).

4 Heuristics based on the QP solution

For an arbitrary (nontrivial) problem there is little chance to solve the nonconvex QP and
obtain the global minimum, i.e., attain zero objective value in (2). If this happens we im-
mediately obtain a Hamiltonian Cycle. What is more likely to happen is that one of the
numerous local minima of (2) is found. Such a solution has at least one set of frequencies
for which there are two or more nonzero elements in xi,a, a ∈ A(i). In the usual situation
when a nonconvex QP corresponding to a large graph is solved the local optimal solution has
many nodes i with such a property. Consequently, we cannot translate the solution into a
HC. However, this local solution provides us with a lot of useful information and allows the
use of heuristics to find a HC. The heuristics rely on the interpretation of the solution xi,a as
frequencies of traversing an arc (i, a) in the graph.

Arc elimination
For the optimal solution (local minimum) of the quadratic problem we compute

f [i, a] = xi,a/xi, a ∈ A(i).

These variables can be interpreted as relative frequencies of leaving node i by appropriate arcs
originating from i. If f [i, a] is negligible, that is, if f [i, a] < δ for some prescribed tolerance
δ, then the arc (i, a) is eliminated from the graph as unlikely to be a part of a HC. After arc
elimination the new quadratic program for the reduced graph is solved and the analysis is
repeated. After a couple of such reductions and repeated QP solutions we eventually observe
that no more arcs satisfy the elimination criteria. If the last solution corresponds to the case
that for each node i only one variable f [i, a] is equal to 1, that is, out of all possible outgoing
arcs only one is used, then a cycle is found. However if two or more of variables f [i, a] are
bounded away from zero, then we start branching on these variables.

Branching
Branching is a technique widely used in integer programming [19]. In our approach we analyze

12

the solution of the current quadratic program Pk (corresponding to the reduced graph Gk)
and if this solution has any node i with two or more variables which satisfy f [i, a] ≥ δ, then
we replace the problem with a set of |A(i)| new problems. Each of them corresponds to a
different reduced graph in which (i, a) is the only arc leaving node i and all remaining arcs
which originated from i have been removed.

This way branching forces the use of one particular arc leaving node i. By replacement
of the original problem with a tree of problems branching inevitably increases the compu-
tational complexity. This technique applied in the context of integer programming is often
combined with other techniques such as pricing and cut generation which help to prevent un-
controllable growth of the search tree. In our approach branching strategy is combined with
arc elimination technique which results in a fast reduction of the size of the graph. However,
search trees may occasionally grow to very large depths. We discuss this in more detail in
the next section.

5 Implementation and numerical results

The approach presented in this paper has been implemented using HOPDM interior point
solver (http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html). We have run the
program on the 200 MHz Pentium III PC with Linux operating system.

Nonconvex quadratic problems of form (2) are formulated using the auxiliary variable xi
(7) to guarantee the separability. Small parameter α = 0.01 or α = 0.001 in fα(x) is used
to limit the negative curvature of the quadratic function. The arc elimination procedure is
run after a local solution to the QP is found. The elimination threshold δ = 0.01 has been
used in our computations. Whenever an elimination occurs the new QP is solved for the
reduced problem. Branching starts when no more reductions are possible. At this stage the
optimization algorithm switches to the use of search tree. For a given graph (reduced by
the earlier arc elimination) a family of subgraphs is created and the procedure identical as
described earlier is applied to each of the subgraphs. A combination of branching and arc
elimination accelerates the reduction of the graph size. However, every branching increases
the size of the tree and potentially contributes to a significant growth of the computation
time necessary to analyze the tree.

We have used a hybrid strategy to search the tree. For the first two or three levels of
the tree we use the breadth-first-search order. Then the list of most attractive nodes in the
tree (the ones corresponding to the smallest possible graphs) is created. Each of these nodes
is processed in the same way as the initial graph, that is , a sequence of QP problems is
solved each resulting with arc eliminations. When no more elimination is possible we apply
branching to the problem. All children of the node are processed in a similar way. However
only the most promising one (corresponding to the smallest graph) is further analyzed. In
other words, we use the depth-first-search order to promote a fast decrease of the graph size.
Such a strategy is promising for graphs which do have a HC.

We have applied our approach to three classes of problems:

(i) randomly generated graphs,

(ii) knight’s tour problems,

(iii) cubic graphs.

The first class of problems needs little introduction. We have developed these problems
for the purpose of testing the approach. In Table 1 the sizes of graphs (number of nodes and

13

Table 1: Solution times for randomly generated graphs.
Problem Nodes Arcs time (CPU secs)
rand1 25 59 1.48
rand2 30 72 0.44
rand3 40 100 3.92
rand4 50 150 7.92
rand5 100 293 107.15
rand6 110 323 12.94
rand7 120 353 67.23
rand8 130 392 19.11
rand9 140 402 147.53
rand10 150 420 1267.07

Table 2: Solution for the 6× 6 chessboard problem.
4 15 34 27 6 17
35 26 5 16 33 28
12 3 14 29 18 7
25 36 11 32 21 30
10 13 2 23 8 19
1 24 9 20 31 22

arcs) and the overall CPU times in seconds needed to find a HC are reported. The analysis
of results collected in Table 1 indicates the potential of the approach but also indicates the
fast growth of the solution time when the size of the graph increases.

The knight’s tour problem consists in finding a tour of the knight to visit each square
of the k × k chessboard exactly once. This problem has received a lot of attention from
the research community and a variety of algorithms have been developed for its solutions,
see for example [17]. The problem has a solution only for even k ≥ 6. Table 2 gives the
solution for the 6 × 6 chessboard: the numbers in the fields provide the order in which the
knight visits them. In Table 3 the sizes of graphs and the corresponding solution times for
the knight’s tour problems are reported. From the analysis of these results we conclude again
that the approach proposed in this paper provides solution to HC problems of moderate size
in acceptable computation time. We also observe that the solution time grows rapidly for a
larger graph corresponding to the 32× 32 chessboard.

Finally, in Table 4 we report the sizes of graphs and the CPU times needed to find
Hamiltonian cycles in Generalised Petersen (GP) cubic graphs GP (n, k) (see [1] for the
discussion of Hamiltonicity of the GP graphs).

14

Table 3: Solution times for the knight’s tour problem.
Problem Nodes Arcs time (CPU secs)
chess6 36 160 1.25
chess8 64 336 3.35
chess10 100 576 29.77
chess12 144 880 33.58
chess14 196 1248 194.45
chess20 400 2736 819.10
chess32 1024 7440 35697.00

Table 4: Solution times for cubic graphs.
Problem Nodes Arcs time
GP(29,5) 58 174 12.26
GP(41,5) 82 246 29.42
GP(59,5) 118 354 29.42
GP(89,8) 178 534 60.97

6 Appendix

Proof of Lemma 2:
If there is a single arc emanating from every node of G, the communication property implies
that G is itself a HC. For G = HC the claim is straightforward. Assume that there is a
node i with at least two arcs (i, a0) and (i, a1) in A(i). We reorder the nodes of G so that
node a0 becomes the home node “0”, node i becomes node “2” and node a1 becomes node
“1”. This will now guarantee the maximality of rank(Aε(G)). As Aε(G) is a ε-perturbation of
A0 := Aε=0(G), it will be sufficient to prove that rankA0 = 2+N. Let γ0,2 be a shortest (w.r.t
the number of involved arcs) path from “0” to “2”. Suppose that γ0,2 traces out the path
0→ i1 → i2 → . . .→ is → 2. Suppose there exists a vanishing non-trivial linear combination
of the rows Aj, j = 0, 1, . . . , 2 + N of the matrix A0 :

νA2+N + µA1+N +
N∑
i=0

λiAi = 0. (8)

Since
∑N

i=0 ∗Ai = 0, we assume that λ0 = 0. For the arc (0, i1) equation (8) implies:

λ0 − λi1 + µ = 0,

hence,

λi1 = µ (9)

For consecutive arcs (i1, i2), . . . , (is−1, is), (is, 2) equation (8) further reads:

λi1 − λi2 + ν = 0, . . . , λis−1 − λis + ν = 0, λis − λ2 + ν = 0.

So, by (9) and by induction on s one obtains:

λi2 = λi1 + ν = µ + ν, . . . , λis = µ + (s− 1)ν, λ2 = µ + sν. (10)

15

Arcs (2, 0) and (2, 1), respectively, contribute:

λ2 − λ0 + ν = 0

and

λ2 − λ1 + ν = 0.

Combined with (10) this implies:

µ = −(s + 1)ν and λ1 = 0. (11)

Choose γ1,0 to be the shortest path 1→ j1 → . . .→ jr → 0 from “1” to “0”. For the arc
(1, j1) equation (8) implies:

λ1 − λj1 + ν = 0, hence, λj1 + ν.

Arc (j1, j2) in (8) contributes

λj1 − λj2 + ν = 0, so, λj2 = λj1 + ν = 2ν.

Consideration of consecutive arcs in γ1,0 up to (jr−1, jr) and induction on r lead to

λjt = tν, t = 1, 2, . . . , r.

Finally, arc (jr, 0) implies:

λjr − λ0 + ν = 0, so ν = 0 since λ0 = 0.

It now follows from(11) that µ = 0. It remains to prove that the only vanishing linear com-
bination

∑N
i=0 λiAi with λ0 = 0 has to be trivial. This follows from the property of the

incidence matrix D(G) that its rank equals the number of nodes take the number of con-
nected components of the graph ([6], p.23-24). For the simple situation of a single connected
component (as in the case of a communicating graph) we supply a short proof: denote by Vj0
those nodes that can be reached from node “0” by a path of length j. Then the entire V(G)
admits a representation

V(G) =
j=p≤N⋃
j=0

Vj0.

For each i1 ∈ V1
0 arc (0, i1) in (8) contributes:

λ0 − λi1 = 0, so λi1 = 0.

For each i2 ∈ V2
0 there exists i1 ∈ V1

0 adjacent to “i2”. So,

λi1 − λi2 = 0, hence, λi2 = 0.

Eventually, for each ip ∈ Vp0 there is arc (ip−1, ip) in G with ip−1 ∈ Vp−1
0 . Thus,

λip = λip−1 = 0.

2

16

References

[1] B. Alspach, The classification of Hamiltonian Generalized Petersen graphs , Journal
of Combinatorial Theory, ser. B 34 (1983), pp. 293–312.

[2] A. Altman and J. Gondzio, Regularized symmetric indefinite systems in interior point
methods for linear and quadratic optimization, Optimization Methods and Software, 11-
12 (1999), pp. 275–302.

[3] E. D. Andersen, J. Gondzio, C. Mészáros, and X. Xu, Implementation of interior
point methods for large scale linear programming, in Interior Point Methods in Mathe-
matical Programming, T. Terlaky, ed., Kluwer Academic Publishers, 1996, pp. 189–252.

[4] M. Andramonov, J. A. Filar, A. Rubinov, & P. Pardalos,. Hamiltonian cycle
problem via Markov chains and min-type approaches, in P. M. Pardalos (Ed.), Approxi-
mation and Complexity in Numerical Optimization: Continuous and Discrete Problems
Dordrecht, The Netherlands: Kluwer Academic Publishers, 2000, pp. 31–47.

[5] J. R. Bunch and B. N. Parlett, Direct methods for solving symemtric indefinite
systems of linear equations, SIAM Journal on Numerical Analysis, 8 (1971), pp. 639–
655.

[6] N. L. Biggs, Algebraic Graph Theory, Cambridge University Press, London, New York,
1974.

[7] M. Chen and J. A. Filar (1992) em Hamiltonian cycles, quadractic programming and
ranking of extreme points, in C. A. Floudas & P. M. Pardalos (Eds.), Recent Advances in
Global Optimization, Princeton, New Jersey: Princeton University Press, 1992, pp. 32–
49.

[8] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse matrices,
Oxford University Press, New York, 1987.

[9] V. Ejov, J. Filar and J. Thredgold, Geometric interpretation of Hamiltonian Cy-
cles problem via singularly perturbed Markov decision processes, CIAM Technical report,
submitted for publication

[10] E. Feinberg, Constrained discounted Markov decision processes with Hamiltonian cy-
cles, Mathematics of Operations Research, 25 (2000), pp. 130–140.

[11] J. Filar and D. Krass, Hamiltonian cycles and Markov chains, Mathematics of Op-
erations Research, 19 (1994), pp. 223–237.

[12] J. A.Filar, J. A. and J. B. Lasserre, A non-standard branch and bound method for
the Hamiltonian cycle problem, ANZIAM J. 42(E)(2000), 556–577.

[13] J. Filar and T. Schultz, Commmunicating MDPs: equivalence and LP properties,
Operations Research Letters, 7 (1988), pp. 303–307.

[14] J. Filar and K. Vrieze, Competitive Markov Decision Processes, Springer, Berlin,
1996.

17

[15] J. Gondzio, Multiple centrality corrections in a primal-dual method for linear program-
ming, Computational Optimization and Applications, 6 (1996), pp. 137–156.

[16] L. Kallenberg, Classification problems in MDPs, in Markov Processes and Controlled
Markov Chains, X. WhoIsIt, ed., Kluwer Academic Publishers, 2002, pp. 151–166

[17] I. Parberry, Scalability of a neural network for the knight’s tour problem, Neurocom-
puting, 12 (1996), pp. 19–34.

[18] R. J. Vanderbei, Symmetric quasidefinite matrices, SIAM Journal on Optimization, 5
(1995), pp. 100–113.

[19] L. A. Wolsey, Integer Programming, John Wiley & Sons, New York, 1998.

[20] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.

18

