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The historical evolution of the equation of motion for a spherical particle in a
fluid and the search for its general solution are recalled. The presence of an
integral term that is nonzero under unsteady motion and viscous conditions
allowed simple analytical or numerical solutions for the particle dynamics to be
found only in a few particular cases. A general solution to the equation of
motion seems to require the use of computational methods. Numerical schemes
to handle the integral term of the equation of motion have already been devel-
oped. We present here adaptations of a first order method for the implementa-
tion at high order, which may employ either fixed or variable computation time
steps. Some examples are shown to establish comparisons between diverse
numerical methods.
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1. THE EQUATION OF MOTION FOR A SPHERICAL PARTICLE IN
A FLUID

The description of the dynamics of particles in fluids is of fundamental
importance in many scientific and engineering fields. In order to predict the
corresponding behaviour, an adequate equation of motion is required.
Boussinesq [6], Basset [5], and Oseen [24] have been respectively credited
with the original derivation of the equation governing the transient motion



of a spherical particle at small Reynolds number (Re=2a |vF| r/m)
immersed in an otherwise stationary fluid
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for a particle of velocity vF, density d, radius a, and at rest when t=0,
moving in a fluid with viscosity m, density r, pressure gradient NFp and in
the presence of gravity gF. The first and second term on the left-hand side
are respectively due to the net force on the particle and the added mass
(one half of the fluid mass displaced by its volume), also called inertial
drag. On the other side of the equation we respectively find the forces
related to the steady state aerodynamic drag, pressure gradient (usually
replaced by the hydrostatic condition NFp=rgF ) and weight, whereas the
last part is called the history term (it is applicable under Stokes flow
regime, roughly Re < 1). This component increases the drag and represents
the resistance to the unsteady motion of the particle due to fluid viscosity
and it is associated with the diffusion of vorticity away from it (a kind of
feedback of the surrounding flow field, which contains information of the
particle velocity at previous times, as the momentum that was transferred
from one to the other cannot disappear). The effect on particle velocity
may be integrable even if the integrand tends to infinity.

The above expression has been successively extended. The equation of
motion in an unsteady and nonuniform ambient flow at small particle
Reynolds number (Re=2 a | vF− uF | r/m), as used for example by [4], is as
given by Maxey and Riley in 1983 [18], except for the added mass term,
whose more appropriate form was first derived in 1928 [28], but was just
recalled in 1988 [3]

d
dvF
dt

+
1
2

r
dvF
dt

=
1
2

r
DuF
Dt

−
9m

2a2 (vF− uF)+r
DuF
Dt

+(d − r) gF

−
9

2a
=rm

p
F

t

0

d(vF− uF)/dtŒ

`t − tŒ
dtŒ (2)

where uF represents the fluid velocity at the current position of the particle
and the flow is assumed to be incompressible and characterized by a small
shear. The terms on the right-hand side respectively correspond to a new
part of the added mass (due to fluid acceleration), steady state drag, local
fluid element dynamics (also called dynamic buoyancy), body (weight and
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buoyancy) and history forces. Notice that D/Dt and d/dt are respectively
the total derivatives following a fluid element and the particle. The initial
velocities of the particle and the fluid in that position are assumed to be
equal, so a few modifications must be introduced if that is not the case
[16, 17]. Some authors (see below) have also investigated or suggested
modifications to the expression for the history integral, but a term of this
kind is always present. All these additional points will not alter the nature
of our problem and the proposed solutions to be discussed below. The
equation of motion may be applied to any sphere which is small compared
to the scale of the ambient fluid flow. Semiempirical or more complex ana-
lytical versions in order to extend the validity have also been presented.
One common approach for large Reynolds numbers has been the use of an
expression for the steady state drag force valid in that range, but neglecting
the added mass and history forces. Michaelides [23] presented a thorough
review of the study of the problem. Henceforth, unless otherwise stated we
will refer always to the equation of motion (2).

The history force expression as written above and originally derived
has well known limitations because it ignores the advective term in the
Navier–Stokes equation, leading to an overestimation of the behaviour at
long times. Some extensions for finite Reynolds number have been sum-
marized by [23]. Diverse works [10, 14, 19–21] for example allude to a
different decay of the history integral, that varies as the classical expression
for short times and faster later. However, the description by [20, 21] was
obtained by extrapolating results in the frequency domain for small ampli-
tude perturbations of a steady flow and it has been questioned by other
authors, who presented alternatives (see, e.g., [15]). In another approach
the classical history term is multiplied by an empirical coefficient that
depends on fluid and particle velocities (see, e.g., [23]) to account for finite
Reynolds number. This method became very popular in engineering cal-
culations of the drag force due to its agreement with experimentally
observed quantities. More appropriate expressions of the history integral
than the presently well-known ones may be extremely complex or they may
emerge in the near future. However, when using the classical expression
some works [9] have found small relative differences with full simulations
of the flow configuration or with experimental data. Results are not
conclusive and are still open to discussion, so the uncertainty about
appropriate options keeps different approaches. In brief, the history term
must be taken into account and here it is assumed to have the form of the
classical expression. This may not capture the physical process in the most
faithful manner, but it could be representative in a simple form of the dif-
ficulties to be found in the search for numerical solutions in a variety of
present or future extensions of the integral expression. In addition, the

High Order Computation of the History Term 131



corresponding simulation results should be valuable for the description of
the system involved. Our goal is to obtain a minimal scheme with the clas-
sical expression with which we may search numerical solutions. If there
appear differences against other methods in this approach, with the inclu-
sion of a more complex kernel we expect the advantages to remain or be
even enhanced. However, there is no warranty that any positive aspects
observed for the numerical method described below will also apply for
other versions of the history integral.

2. NUMERICAL METHODS TO SOLVE THE EQUATION OF
MOTION

The history integral yields a term that is clearly different from the
form of all the other ones and it poses a particular problem, as an integro-
differential equation implicit in vF results. Tatom [27] noted that in the field
of fractional calculus, analytical solutions may be obtained in closed form
for certain special cases. Numerical solutions will require a priori an itera-
tive method, but they may then become very much time consuming. Dif-
ferent approaches have been followed in order to overcome this difficulty.
There is an additional drawback for computations at first sight: the integral
term needs to recall the past of the particle and fluid and it therefore
increasingly devours memory.

The search for a general solution of the particle velocity from the
equation of motion has remained a difficult task. An analytical solution to
Eq. (2) in the presence of an uniform background flow field has been
obtained by the use of fractional calculus [11]. However, for more
complex cases this has not been possible. On the other hand, while there
are efficient numerical algorithms for differential equations, methods for
the above type of integrodifferential equations have not been developed to
the same degree. From the whole equation of motion only the history term
represents an inconvenient for numerical solutions. Different ways have
been attempted in order to overcome this complication. An obvious pro-
cedure would imply the search for an implicit technique that involves
iterations, but this often proved to be cumbersome. One common approach
to avoid this inconvenient has been the restriction to cases where the
history term might be considered negligible (basically when the particle is
much denser than the fluid). This reduces the order of the equation of
motion and makes it explicit in the velocity, which diminishes the memory
requirements and increases the speed of the computations (there is no need
to retain information on the past motion of the particle and no iterations
are required). However, under certain conditions the assumption is not
physically appropriate and may therefore lead to erroneous results if
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groundlessly applied [13, 29]. Appropriate solutions when Re < 1 may
require the inclusion of the history term in the equation of motion [2]. By
the way, the wide and ever increasing availability of computational power
makes it now possible to perform simulations which were considered very
expensive in terms of memory and speed some years ago, only feasible at
large institutional computers, but pose no challenge to a PC at the present
time. Anyway, our schemes below will always be guided towards a
minimum computational cost.

By using an integrodifferential transformation, Michaelides [22] has
changed the equation of motion of the particle into a differential equation
explicit in the particle velocity, as the latter is not present in his history
integral. Therefore, solutions may be found with any numerical technique
appropriate for differential equations. The history of the fluid must still be
stored, the differential equation becomes second order and it includes a
larger number of terms, but a significant computer memory demand
reduction occurs as it becomes no longer necessary to keep the past
information of the particle.

Another alternative in order to attack the problem without iterations
is to use a discretisation of the history integral, as considered in [1, 26].
Both works employ first order techniques with respect to the time step of
the numerical integration. We adopt here both options and pursue to
increase their order. To achieve this aim some handling will become neces-
sary. We will present here as a guide for other cases the implementation of
Runge–Kutta methods of order four and five. However, it should be kept
in mind that higher order does often but certainly not always mean higher
accuracy. Notwithstanding, a first order calculation of the history term
places a priori a constraint on the potential accuracy of a numerical
solution to Eqs. (1) or (2).

We may now roughly classify the possible solution alternatives to the
integrodifferential equation and outline their advantages and drawbacks:

• Implicit methods by iterations: the particle velocity, which is the
dependent variable, appears in the integral, computations may
become time consuming and cumbersome and there are memory
requirements in order to store the particle and fluid acceleration
history for recall at each step

• Integral discretisation with first order scheme: the particle velocity
appears explicitly in the integral discretisation and the equation
therefore becomes easier and faster to solve, but low accuracy is
expected and there are memory requirements for the particle and
fluid acceleration history

High Order Computation of the History Term 133



• Integrodifferential transformation: the particle velocity appears
explicitly in a way (not part of a history integral) that memory
requirements for the particle past do not exist, but they still do for
the fluid (there is a history integral for the second time derivative of
the fluid velocity), the differential equation has now become second
order and it has many more terms

• Integral discretisation with high order scheme: the particle velocity
appears explicitly, it remains a first order differential equation with a
few terms, but there are memory requirements in order to store the
particle and fluid acceleration history

In the last three methods the operation count at step k is O(k), as the
largest amount of arithmetics stems in both cases from the calculation of
the corresponding history integrals, which are obtained by addends over all
the previous solution points. Then, for the whole computation they would
be O(K f (K − 1)/2) ’ O(K2) if K is the total number of steps. It is not
clear a priori whether if any of the last two alternatives may represent a
better trade-off between desired accuracy and computer time, so it will
become advisable after the implementation of the present method in the
next chapter to perform some numerical tests.

3. HIGH ORDER COMPUTATION OF THE HISTORY TERM

We consider a problem where t is time, xF are the spatial coordinates,
uF(t, xF) the fluid velocity field, XF (t), vF(t) the particle position and velocity.
The following formulations will be applied to Runge–Kutta schemes, but
they can also be simply extended to other methods and these examples
should serve as a guide in those cases.

3.1. Implementation for One Type of Discretisation

The discretisation by Reeks and McKee [26] of the history integral at
time t, reached after M fixed computational steps Dt, is given by
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where the superscripts 0,..., M refer to the successive solution points in
[0, t],

l(k)=2(`k − `k − 1)

and

duF
dt

=1 “

“t
+vF .NF 2 uF(t, xF=XF (t))

Notice that there are some typos in the expressions of the original article.
With the above discretisation, the dvF/dt integral can be replaced by an

expression explicit in vF(t) (given by vFM), so Eqs. (1) or (2) now resemble a
set of three coupled first order differential equations for the functions vj

(j=1, 2, 3), having the general form

dvj(t)
dt

=fj(t, v1, v2, v3) (4)

where the expressions of the functions fj(t, v1, v2, v3) are known. In order
to advance a solution from tn to tn+1 with a fourth order Runge–Kutta
method we need to make the following calculations:

aj=fj(tn, vn
1, vn

2, vn
3)
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(5)

In the above formulas there is at first glance an inconvenient: the rule
of fixed steps has been broken, as bj, cj make a 0.5 Dt jump, which is half
as large as all the previous ones. However, that does not pose an unavoid-
able obstacle to the discretized history expression given by Eq. (3), which
can be calculated when time t equals M full steps plus the additional 0.5 Dt
according to
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where vFM+0.5 and uFM+0.5 are the velocities at time t. The above formula may
be considered an extension to the derivation of the discretisation for equal
steps by [26].

A fourth order Runge–Kutta now yields

vn+1
j =vn

j +
Dt
6

(aj+2bj+2cj+dj)

whereas for a simpler second order

vn+1
j =vn

j +Dt bj

A Runge–Kutta scheme of fourth-order is usually found to be superior to
higher-order ones, which includes the fact that the amount of function
evaluations (i.e., overload) increases with order. It is the most often used
formula due to its balance between computational efficiency and expected
accuracy [7, 8, 25].

Some numerical methods require variable steps and in that case the
above discretisation will become inapplicable. We must generalize Eq. (3).
Some additional manipulations to the derivation by [26] yield
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By exerting an adaptive stepsize control over its action, an integrator
may aim some predetermined accuracy in the solution with the least com-
putational effort. Many small steps should advance through intricate parts
while a few long jumps should speed through gentle sectors. When applying
this idea to the fourth order Runge–Kutta method it is even possible to
transform it into fifth order [25]. The discretisation in Eq. (7) may be
applied straightforward.

3.2. Implementation for a Second Type of Discretisation

In order to show another option to manage the history term we will
also present below a different discretisation, worked out by AEA [1].
Some clarifications, which have not been stated in the original documenta-
tion should be made for an appropriate application of the technique: tn and
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(dvF/dt − duF/dt)n respectively correspond to the midpoint and endpoint of
step n. At time t after M computational steps Dtn
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where the superscripts 1,..., M refer to the steps. The first term on the right-
hand side gives the history force for all previous times and it can be expli-
citly calculated. The second part represents the current time step, which
must be separated into two components: the unknown particle acceleration
dvF/dtM( % dvF/dt) is moved to the left-hand side whereas the fluid accelera-
tion, which is a given function, does not change place. The significant dif-
ference in this type of discretisation is that it does use dvF/dt instead of vF.
However, its unknown value at the new point has been moved to the left-
hand side and causes no problem because it appears in a linear way.
Moreover, in equation set (5) there is no inconvenient in making the nec-
essary evaluations at the trial positions 0.5 Dt and Dt ahead of tn (bj, cj, dj),
as Eqs. (1) and (2) have again the format for numerical solution given by
Eq. (4).

The particular case of constant steps yields
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When time t equals M full steps plus an additional 0.5 Dt
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By arguments similar to those of the previous section we see that fixed or
variable step methods may be implemented without trouble for this discre-
tisation.

4. NUMERICAL EXAMPLES

A few simulations are now exhibited as examples and in order to
establish some comparisons along the different solution alternatives. We
followed [22] in defining a characteristic time for the spherical particle

tf=
2 da2

9m
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to express dimensionless times and frequencies. The maximum fluid veloc-
ity in each case has been taken to be 1 cm/s. The initial particle velocity
was set equal to the fluid velocity in that location for simplicity. The values
used for the computations were: d=2.7 g/cm3, r=1.0 g/cm3, m=0.01
g/cm · s, and a=0.01 cm. Figures 1a and 1b depict the particle response
obtained from the integral discretisation with a fourth order Runge–Kutta
described in Sec. 3.1, where a sinusoidal flow field u=sin(wt) in cm/s has
been considered, with w/wf the dimensionless frequency being respectively
1 and 10. At very low frequencies (not shown) the particle follows the flow
rather well, whereas at the highest frequencies both phase lag and ampli-
tude reduction with respect to the fluid increase. We also found solutions
with an integral discretisation under a first order method and the fourth
order solution without the history integral in the equation of motion has
been in addition computed to evaluate the effects and importance of that
term. Both features have been included in the figure. We have also found
the behaviour of the particle in a step and a more randomlike flow, which
may be seen in Figs. 1c and 1d. The field in the latter was given by fluctua-
tions within positive values and accompanied by an increasing trend.
Notice that Re < 1 in all cases. The computational time step in the calcula-
tions for Figs. 1a and 1c was 0.02 tf and 0.002 tf for Figs. 1b and 1d.
Solutions by an implicit iterative method (the required accuracy was set
similar to the one expected for a fourth order method) and by the integro-
differential transformation [22] implemented with a fourth order Runge–
Kutta were also found, but they are not exhibited because they cannot be
discerned from the plot for the integral discretisation under the fourth
order Runge–Kutta. In each of the four flow fields the solutions of the
diverse methods coalesce for sufficiently small stepsizes, which leads to a
kind of reference curve that has also been included. We obtained it by
using our method with time steps of 0.01 tf for Figs. 1a and 1c and 0.001
tf for Figs. 1b and 1d. As stated above, we used the same grid for the
fourth and first order methods in each case and it may be clearly seen that
the former produces a curve much closer to the reference numerical solu-
tion in the four panels.

We had previously repeated the computations for the integrodifferen-
tial transformation scheme and for our method on a series of successively
halved steps and found that the solutions converged to a stepsize indepen-
dent behaviour. We then checked the order p by replacing the results for
three consecutive halved stepsizes into the formula [12]

p=
log((f2 dt − f4 dt)/(fdt − f2 dt))

log 2
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Fig. 1. Numerical solutions for particle velocity in diverse flow fields (parameter values are
given in the text). The results correspond to integral discretisation with first and fourth order
methods. The solution from the equation of motion without history term (integral discretisa-
tion with fourth order Runge–Kutta), the reference numerical curve and the fluid velocity are
exhibited for convenience.
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Fig. 2. The reference numerical solution for particle velocity in a triangular flow field.

where fdt denotes the solution with stepsize dt. In all cases the result for
our method was around 4 and in average 5% larger than for the other
alternative. Both were found to be one order of magnitude faster than the
implicit iterative method, but ours was in average 10% faster.

For further analysis we include an additional one-dimensional case
with a triangular flow field. It is shown in Fig. 2 with the reference numer-
ical solution obtained when using our method for dt=0.01tf. The initial
particle and fluid velocity were set equal. A summary of relevant charac-
teristics of runs with first and fourth order methods using integral discreti-
sation are presented in Table I. The advantage regarding CPU time of
using the latter becomes clear. It should be noted that time consumption
may become extremely significant whenever repeated calculations are
made, as in the computation of particle transport and diffusion coefficients.

Table I. Relevant Run Characteristics of Methods with Integral Discretisation on
a Triangular Flow Field

Parameter First order method Fourth order method

|(f2 dt − f4 dt)/fdt |rms for dt=0.0005tf 1.8 × 10−2 1.9 × 10−9

|(fdt − f2 dt)/fdt |rms for dt=0.0005tf 9 × 10−3 1.4 × 10−10

p for dt=0.0005tf 1.0 3.8
dt for |(fdt − f2 dt)/fdt |rms < 0.01a 0.0005tf (20000 steps) 0.1tf (100 steps)
Run time for dt=0.002tf (5000 steps)b 90 s 90 s
Run time for dt=0.001tf (10000 steps)b 3 min 3 min
Run time for dt=0.0005tf (20000 steps)b 13 min 13 min

a Largest stepsize that suited the specified error target.
b We used a 1.2 GHz PC with 256 MB of memory.
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5. DISCUSSION

It has been shown that the first order procedures for the numerical
solution of the motion equation of a spherical particle in a fluid that have
been described can be generalized to a Runge–Kutta or to other methods
of any order. The main concern refers to the history term of that equation.
Constant or variable step discretisations of that complicate part may be
implemented.

Fixed step methods may be applied even though some trial evaluations
of the higher order methods must be performed at positions which are
shifted with respect to the equally spaced solution points, as shown in
Eqs. (6) and (10).

When using variable steps the memory needs will be higher, because
all past calculation times must be kept. This would imply a 50% larger
average storage requirement in a one dimensional problem (this percentage
represents an increase of 40 KB every additional 10000 steps), because in
the fixed discretisation only the particle velocity and position must be kept
in each step (the last one in order to be always able to recalculate the fluid
acceleration at past times in the appropriate place). When using a variable
discretisation it is more efficient to store the fluid and particle acceleration
in each step.

The scheme here developed and an alternative one were implemented
with a fourth order Runge–Kutta method and they exhibited significant
time saving and accuracy improvement as compared to respectively an
iterative and a first order method when applied in a few representative
numerical examples. However, the present development exhibited a slightly
better performance. In summary, it has been shown that a high order
Runge–Kutta method may be formulated to treat the history term effi-
ciently. The importance of this relies on the fact that particularly computer
time may become very significant whenever repeated calculations of
particle trajectories are essential.
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